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Abstract 

It is important to identify boundary constraints in the inverse algorithm for the reconstruction of 

flame temperature because a negative temperature can be reconstructed with improper boundary 

constraints. In this study, a hybrid algorithm, a combination of Levenberg-Marquardt with boundary 

constraint (LMBC) and non-negative least squares (NNLS), was proposed to reconstruct the flame 

temperature and absorption coefficient simultaneously by sampling the multi-wavelength flame 

radiation with a colored plenoptic camera. To validate the proposed algorithm, numerical 

simulations were carried out for both the symmetric and asymmetric distributions of the flame 

temperature and absorption coefficient. The plenoptic flame images were modeled to investigate the 

characteristics of flame radiation sampling. Different Gaussian noises were added into the radiation 

samplings to investigate the noise effects on the reconstruction accuracy. Simulation results showed 

that the relative errors of the reconstructed temperature and absorption coefficient are less than 10%, 

indicating that accurate and reliable reconstruction can be obtained by the proposed algorithm. The 

algorithm was further verified by experimental studies, where the reconstructed results were 

compared with the thermocouple measurements. The simulation and experimental results 

demonstrated that the proposed algorithm is effective for the simultaneous reconstruction of the 

flame temperature and absorption coefficient.  

 

 

Keywords— 3-D reconstruction; Flame temperature; Absorption coefficient; Plenoptic imaging; 

Levenberg-Marquardt with boundary constraint; Non-negative least squares 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



1. Introduction  

The haze caused by combustion emissions like particulate matter (PM) has become a serious 

environmental problem in China. A large amount of smoke, dust and nitrogen oxide (NOX) is 

emitted from coal and natural gas combustion furnaces [1, 2]. It is significant and urgent to 

investigate the combustion process which emits harmful products into the atmosphere. The 

temperature is a vital factor that affects the generation of combustion emissions including PMs and 

NOx. Therefore, in order to control and improve the combustion process, it is necessary to measure 

the flame temperature accurately and thus precise measurement techniques are required. Many 

studies have been devoted to the area of the flame temperature measurements [3-17], including one-

dimensional (1-D) [10, 11], two-dimensional (2-D) [9, 12-14] and three-dimensional (3-D) [3, 15-

17] technologies. In general, the 1-D or 2-D methods can only provide the temperature information 

in a limited region of the flame, such as the temperature of single volume [11] or the 2-D temperature 

distributions over a light sheet [12]. However, the flame is a precipitating medium with three spatial 

dimensions in nature. Therefore, it is desirable to measure the 3-D flame temperature field, which 

can provide an in-depth understanding of flame. To achieve this, advanced and precise 3-D 

measurement techniques are necessarily required for the flame temperature measurement. 

In general, there are two kinds of technologies for the investigation of 3-D flame temperature field 

[5, 8, 18-25]. One is the laser-based method, which utilizes the spectral response to the imposed 

external laser light to calculate the flame temperature [8, 16, 21]. Another approach, known as an 

image-based method, incorporates conventional CCD or CMOS cameras and 3-D techniques to 

sample the flame self-radiation and then reconstruct the temperature distribution [4, 20, 22-24]. For 

both methods, multiple cameras or optical sensing arrangements [17] are required to obtain the 

flame radiation information in multiple directions for the 3-D temperature reconstruction. However, 

for the image-based method, no external laser light is required and thus it is simple in equipment, 

low cost, easy to install, more suitable and potential for the large-scale application in the hostile 

industrial environments such as coal/biomass-fired furnace [24]. 

Various techniques based on the image-based method have been developed to reconstruct the 3-D 

flame temperature profile [4, 19, 25]. Gong et al. [19] proposed a combination of optical sectioning 

tomography (OST) and two-colour method to reconstruct the temperature of impinging flames. 

However, the flame radiation captured by the photosensor depends on both the flame temperature 

and radiative properties. The absorption and scattering effects of the flame on the radiative transfer 

were not considered in their measurement technique and thus the reconstructed temperature may 

not accord with the realistic radiation transfer inside the flame [26, 27]. Inversed radiative transfer 

(IRT) method also can be used to calculate the temperature of each flame voxel by solving the 

radiative transfer model with suitable inverse reconstruction algorithms [22, 28-30]. But, it is still 

crucial to know beforehand the flame radiative properties for the temperature measurement. 

Although the empirical value of the flame radiative properties could be used to reconstruct the flame 

radiation intensity with the IRT method, the reconstruction accuracy is limited due to the 

inaccurately assumed radiative properties [7, 31]. A better choice for solving this issue is to estimate 

the 3-D flame temperature distribution and radiative properties simultaneously by using inverse 

algorithms such as LSQR-PSO [32, 33]. However, negative values can be obtained during solving 

the radiation intensity and properties, and boundary constraints to deal with the negative values have 

not been investigated [5, 32, 33]. Noted that the inverse problem of flame radiation is normally ill-

posed and its solutions are mathematically ambiguous, negative solutions may occur during the 

required iterations and thus render inaccurate flame temperature reconstruction. Consequently, 

boundary constraint must be considered for solving inverse radiation problems accurately.  

To reduce the number of cameras required for the image-based method, a single plenoptic camera 

with microlens array mounted above the photosensor was utilized for the flame temperature 

measurement [5, 7, 34]. It is capable of sampling the 3-D flame radiation and reconstructing the 3-

D flame temperature because the direction and position of each radiation sample can be traced with 

the benefits of the microlens array [7]. Huang et al. [5] developed a hybrid LSQR–CG (Conjugated 

Gradient) algorithm based on multi-spectral light-field imaging technique. Li et al. [34] simplified 

the reconstruction process by simulating the plenoptic imaging of the temperature distribution by a 

plenoptic camera model based on the Monte Carlo method. Although the IRT methods based on the 



plenoptic camera were verified for the flame temperature reconstruction, the boundary constraint 

has not been investigated, especially for the non-negativity of the reconstruction results. Moreover, 

simple setting the negative values of boundary constraint to be zero obtained during each iteration 

may cause divergence. Thus, further practical applications are limited for the temperature 

reconstruction of realistic flames. 

In this study, a hybrid LMBC-NNLS algorithm with non-negative boundary constraint is proposed 

and discussed in details to reconstruct the flame temperature and absorption coefficient 

simultaneously. A radiative model based on the plenoptic imaging technique is developed to retrieve 

the multi-wavelength flame radiation sampling. Numerical simulations were performed to validate 

the proposed hybrid algorithm, where different distributions of flame temperature and absorption 

coefficient were considered to evaluate the robustness and accuracy of the hybrid algorithm. 

Experimental studies were also carried out to reconstruct the flame temperature and absorption 

coefficient under different combustion conditions. The reconstructed results were compared with 

the thermocouple measurements and discussed. 

2. Measurement principle 

2.1 Multi-wavelength flame radiation sampling 

The sooty flame can emit thermal radiation including visible wavelengths towards the surroundings 

[35]. The flame radiation at the visible wavelengths can be sampled by a colored plenoptic camera 

with an optical filter array. Basically, the filter array consists of many filters and each pixel of the 

light field sensors is covered by a single filter to detect the flame radiation at the visible wavelengths, 

i.e., red (R), green (G) and blue (B). Reversely, the flame temperature and absorption coefficient 

can be retrieved through the sampled radiation intensity. In this work, the R and G channels were 

chosen for the flame temperature and absorption coefficient reconstruction because they have higher 

spectral sensitivities on CCD sensor than the B channel, giving a better signal-to-noise ratio. 

Fig. 1 illustrates the schematic of the multi-wavelength flame radiation sampling through the 

colored plenoptic camera. Here, the RGB Bayer pattern is selected as a filter array due to its wide 

usage. a, m and p denote the planes of the main lens, microlens array and photosensor, respectively. 

The intermediate plane i is the conjugate plane of plane p relative to the microlens array. The virtual 

object plane v is the conjugate plane of plane i relative to the main lens. The flame radiation along 

a detection path is detected by a pixel on the photosensor of the plenoptic camera with the direction 

and starting position at plane o. The red or green lines denote the detection path of each pixel. F is 

the direction angle vector of the detection path (polar angle θo and azimuthal angle ψo) and W is the 

coordinate vector (xs, ys, zs) of the starting point at plane o. 



 

Fig. 1. Schematic of the multi-wavelength flame radiation sampling through the colored plenoptic camera. 

 

In order to calculate F and W, the Cartesian coordinate system is set on the flame central point of 

the bottom part (considered as a flat surface). The x-axis is parallel to the optical axis of the camera 

and the y-axis belongs to the bottom part of the flame. In this coordinate system, xs = 0 and only ys 

and zs coordinates are required to calculate. F and W are then obtained by calculating the intersection 

point between the ray detection path and each plane. The detailed procedure is described as follows: 

Step 1. The sampled radiation from each pixel passes through the pixel Zp, the center of the 

corresponding microlens Zm, the corresponding points Zi and Za at plane i and plane a (refer to Fig. 

1). Its intensity is denoted as Iλ (W, F) with a unit of W/(m3∙sr). According to the intercept theorem 

[36], the coordinates Za(ya, za) and Zi(yi, zi) can be calculated by the following equations: 
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where (ym, zm) and (yp, zp) are the center coordinates of the corresponding microlens and pixel, 

respectively. Lam is the separation from the plane a to plane m. Lim is the separation from plane i to 

plane m. Lmp is the separation from plane m to plane p.  

Step 2. The points at planes o and i are conjugated to the main lens and they are in one line. Based 

on the intercept theorem [36], the coordinate of the corresponding point at plane o can be calculated 

by 
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where (yL, zL) is the optical center coordinate of the main lens. Loa is the separation from plane o to 

plane a and Lai is the separation from the plane a to plane i.  

Step 3. According to the known coordinates of the points at the planes o and a, the direction F (θo, 

ψo) of the flame radiation is obtained by 
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Once F and W are determined, the flame radiation intensity can be obtained by solving the following 

radiative transfer equation [33]: 
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where Ibλ is the blackbody radiation intensity at position W at a wavelength of λ, W/(m3∙sr). Φ(F′, F) 

is the scattering phase function between the incident direction F′ and the scattering direction F. a is 

the length of the ray direction F. Ω is the solid angle in direction F′. K, β and σ are the absorption, 

emission and scattering coefficients, respectively. The relationship between Ibλ and temperature T 

can be expressed by 

5

2 1/ ln[ / ( ) 1]bT c c I                           (7) 

where c1 is the first radiation constant, 3.7418×10-16 W∙m2 and c2 is the second radiation constant, 



1.4388×10-2 m∙K.  

On a monochromatic basis, the spectral emissivity of a luminous flame can be calculated by [37]: 

 1 exp c c s sK X K X K X                               (8) 

where Kωλ, Kcλ and Ksλ are the spectral absorption coefficients of the water vapor, carbon dioxide and 

soot, respectively. Xω and Xc are the mass path lengths for the water vapor and carbon dioxide. Xs is 

the geometric length of flame. The scattering contribution of the soot particles within flame is 

neglected because the soot particles are both absorptive and small (less than 0.1 μm). The calculation 

results of the Mie theory also verified that the scattering cross-section is much smaller than the 

absorption cross-section. In this study, the scattering process of the participating media is ignored 

and only the absorption is taken into consideration. The radiation intensity of the flame Iλ(W, F) 

along the detection path (W, F) is then obtained by solving Eq. (6) through the discretized solution: 
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where n is the total number of voxels the flame radiation passes through. i and j are the ith and jth 

voxels along the flame detection path (W, F), respectively. According to Eqs. (6)-(9), the radiation 

intensity Iλ(W, F) emitted by the flame depends on the flame temperature and the absorption 

coefficient along the detection path (W, F). 

2.2 Hybrid LMBC-NNLS inversion algorithm 

From the sampled flame radiation by the plenoptic camera, a linear system is derived based on the 

radiative equation (9) and defined as follows: 
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bλ I A I                            (12) 

where Iλ is the flame radiation intensity vectors; Ibλ is the blackbody radiation intensity vectors. A is 

the coefficient matrix and calculated by Eq. (11). m and n are the total numbers of detected paths and 

flame voxels, respectively. i and j are the ith detected path and jth flame voxel, respectively. Nj is the 

number of flame voxels passed through the jth detected path. I and J are the Ith and Jth voxels of flame 

along the jth detected path, respectively. 

It is required to solve Eq. (12) for the flame temperature reconstruction. However, the absorption 

coefficient and the temperature are both unknown for the realistic flames (refer to Section 4). To 

solve this issue, a hybrid algorithm combining non-negative least squares(NNLS) and Levenberg–

Marquardt with Boundary Constraint (LMBC) is proposed to solve Eq. (12) for the simultaneous 

reconstruction of flame temperature and absorption coefficient. NNLS is firstly used to solve linear 

least square problems through the computation of the pseudo-inverse. Compared to other linear 

algorithms such as LSQR and Truncated Singular Value Decomposition (TSVD), the non-negativity 

of the reconstruction results by NNLS can be guaranteed. But, it is still unable to solve Eq. (12) 



independently because the unknown temperature distribution and the absorption coefficient of flame 

make the Eq. (12) nonlinear. In this study, a nonlinear optimization method, i.e., Levenberg–

Marquardt (LM) algorithm, is therefore combined to solve this problem [39, 40]. The LM algorithm 

can add non-negative constraints to the solutions of Eq. (10) in the process of flame temperature 

reconstruction. It is generally used for solving nonlinear least squares problems to obtain A when 

Ibλ and Iλ are known. It also has better performance of global convergence and non-dependence of 

initialization than other nonlinear algorithms such as Conjugate Gradient (CG). More importantly, 

boundary constraints can be easily considered in the LM algorithm without iteration convergence. 

The LM algorithm with boundary constraints projecting estimated parameter onto the range of [l, u] 

in each iteration is named by LMBC in this study [41]. More details can be found in Step 6 in the 

following LMBC-NNLS procedures. In LMBC, the upper boundary u and lower boundary l are 

determined by the specific inverse problem. During the flame temperature reconstruction, the lower 
boundary l is normally set to zero due to the impossibility of negative absorption coefficient. The 

upper boundary u depends on the flame combustion characteristics. For instance, due to the limited 

absorbing ability of particles and gas molecule inside the ethylene diffusion flame utilized in this 

study (Section 4.1), the absorption coefficient couldn’t be too high and therefore u is set to 1000. 

In the hybrid LMBC-NNLS algorithm, the objective function is applied to optimize the temperature 

and absorption coefficient as follows: 

  ( ) ( ), G GF  
  I IT                        (13) 

where Iλ(G) and I′λ(G) are measured and assumed radiation intensity vectors, respectively. Fig. 2 shows 

the implementation procedures of the hybrid LMBC-NNLS algorithm and they are described in 

detail as follows: 

Step 1. Set the initial values such as number of iterations k = 0 and kmax = 200, intermediate 

parameters ν = 2 and η = 2, vector of absorption coefficient K = K0= 1 (unit vector). Calculate the 

symmetric matrix Ω, the difference between the measured and the assumed intensity r, gradient of 

the objective function g, index to stop the iteration Stp and the damping factor μ by the following 

equations (14) – (18). 
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where J is the Jacobian matrix of the first-order partial derivatives of the function I′λ(G) for variable 

K. ε1 is a threshold and set to 1×10-10. Ωii is the diagonal elements of the matrix Ω. 

Step 2. Determine the coefficient A based on Eq. (11) for variable K and then solve Eq. (12) using 

the NNLS algorithm with the calculated coefficient A and the intensity Iλ(R) captured by the plenoptic 

camera. Then calculate the radiative blackbody intensity Ibλ of each flame voxel. 

Step 3. The flame temperature T of each voxel is calculated by Eq. (7) with the obtained blackbody 

radiation intensity Ibλ. 

Step 4. The blackbody radiation intensity Ibλ of each voxel is determined by rearranging Eq. (7) 



with temperature T. The function I′λ(G) is determined according to Eq. (11) with absorption 

coefficient A and the monochromatic intensity of blackbody Ibλ. 

Step 5. Calculate the Jacobian matrix J of the function I′λ(G) for K and determine Ω, r and g using 

Eqs. (14)-(16). The LM step of Δ is obtained by Eq. (19) and checked with a threshold value of 1e-

10. 

  I g                         (19) 

where I is the unit matrix.  

Step 6. The absorption coefficients K
new

 is obtained for the optimization step Δ
 
and projected onto 

the constraint set Q according to the following equations: 
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where l ([l1, l2, …, lm]) and u ([u1, u2, …, um]) are the lower and upper boundaries of the absorption 

coefficient. The values of the absorption coefficient are then constrained to the range of [l, u].  

Step 7. The iteration index ρ is determined by Eq. (21) and the decreasing of the iteration index ρ 

can indicate the converging of the reconstruction. 
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Step 8. Update K with the Knew and calculate Ω, r and g according to Eqs. (14) - (16). The Stp and 

μ are calculated by the following two equations. Also, check the Stp to see whether the iterations can 

be stopped or not. 

   1 1ortpS  
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                  (24) 

Step 9. Finally, the optimal solution of flame temperature T and absorption coefficient K are 

obtained by multi-iterations. 



 

Fig. 2. The flowchart of the hybrid LMBC-NNLS algorithm. 

3. Numerical Simulations 

3.1 Simulation setup 

In this study, numerical simulations were carried out to validate the proposed LMBC-NNLS 

algorithm. A cylindrical flame is considered in the simulation to reconstruct the temperature and 

absorption coefficient. The radius (R) and the height (Z) of the simulated cylindrical flame were 

respectively set to 8 mm and 30 mm because the radius of experimental flame is about 8 mm and 

the height varies from 14 - 44 mm, as described in Section 3.2. Two cases were considered in the 

simulation to investigate the reconstruction accuracy under different combustion conditions. The 

distributions of temperature and absorption coefficient are considered as symmetrical in Case 1 (T1, 

K1) and asymmetrical in Case 2 (T2, K2). The symmetrical distribution along the z-axis was set based 

on Ref. [6] for ethylene flames while the asymmetrical distribution along the z-axis was based on 

the Ref. [33]. For both cases, the temperature range was set to be 900 - 2100 K and the absorption 

coefficients K1 and K2 were set to be 0- 30 m-1 for the ethylene flame [42]. T1, K1, T2 and K2 are 

expressed in Eqs. (25- 28) and plotted in Fig. 3.  
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(a) Case 1 



 

 (b) Case 2 

Fig. 3. Distributions of T1, K1, T2 and K2. 

 

The parameters of the focused plenoptic camera were shown in Table 1. Here, f and fm are the focal 

lengths of the main lens and the microlens array, respectively. Nm is the number of microlens along 

the horizontal/vertical direction of the microlens array. Np is the number of pixels covered by each 

microlens array along the horizontal/vertical direction. dp is the length of each pixel and dm is the 

diameter of each microlens.  

Table 1. Parameters of the focused plenoptic camera  

Loa (mm) Lai (mm) Lim (mm) Lmp (μm) F (mm) fm (μm) Nm Np dp (μm) dm (μm) 

505  55.5  2.4  480  50  600  60 12 8  95  

 

In order to obtain the flame radiation intensity Iλ(R) and Iλ(G), the whole flame was discretized into 64 

(4 × 4 × 4) voxels in the circumferential (Cr), axial (Zr) and radial (Rr) directions. Fig. 4 illustrates 

the division and voxels of the cylindrical flame where the ith flame voxel is numbered according to 

the division in Cr, Zr and Rr directions. The position and direction of the flame radiation were 

calculated with Eqs. (3) - (5). Iλ(R) and Iλ(G) were then calculated according to Eq (12). To obtain 

plenoptic images of the flame, the intensity of Iλ(R) and Iλ(G) were linearly mapped to a gray level in 

the range of 0- 255, as shown in Fig. 5. It was observed that the brightness of the simulated flames 

mainly depends on the temperature distribution over the longitude-sections (y-z plane) (Fig. 3). 

Although the distribution of the absorption coefficient can also be affected by the flame brightness, 

the temperature is the dominant factor for the brightness level of the flame light field image. 

Therefore, the radiation intensity of each pixel is more sensitive to the temperature, rather than the 

absorption coefficient. 



 

Fig. 4. Example of divisions and voxels of the cylindrical flame. 

 

 
(a) Symmetric (Case 1)        (b) Asymmetrical (Case 2) 

Fig. 5. Simulated plenoptic flame images for Case 1 and Case 2. 

 

3.2 Performance validation 

To investigate the performance of the proposed algorithm for different signal-to-noise ratios (SNRs, 

defined in Eq. (29)), 20, 30 and 40 dB Gaussian noises were added into the radiation intensity Iλ(R) 

and Iλ(G). The temperature and the absorption coefficient were then reconstructed using the proposed 

LMBC-NNLS algorithm.  
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Firstly, to investigate the non-negativity of the inverse problem by the proposed algorithm for 

solving the flame temperature, the LMBC-NNLS is compared with LMBC-LSQR (without 

boundary constraint) [5]. The Iλ(R) is compared when SNR = 20 dB for Case 2. The procedures of 

LMBC-LSQR are similar to LMBC-NNLS, by replacing NNLS with LSQR in Step 2 in Section 

2.2. Fig. 6 shows the reconstructed results by LMBC-NNLS and LMBC-LSQR. Noted that negative 

radiation intensity values were obtained at the first iteration for LMBC-LSQR, the temperature 

cannot be calculated using these negative values and therefore the iteration stopped at the first 

iteration. Thus, only reconstructed values at the first iteration are presented in Fig. 6 (a). It also can 

be seen that 19 negative intensity values were generated in the reconstructed results by the LMBC-

LSQR algorithm. Even though some zero values are observed at the first iteration for LMBC-NNLS, 



the flame temperature can be calculated in Step 2 and the iterations can still continue to the final 

convergence. For the final converged results of LMBC-NNLS, the inaccuracy caused by zero values 

can be compensated through interpolation methods. Particularly, the zero intensity of each flame 

voxel generated by NNLS at the final convergence can be interpolated by averaging non-zero values 

of flame voxels in the spatial neighbourhood. No negative values were then obtained by the 

proposed LMBC-NNLS.  

The LMBC-NNLS is also compared with LM (without boundary constraint)-NNLS to investigate 

the non-negativity of the proposed algorithm for solving the absorption coefficient. The comparison 

is also carried out when SNR = 20 dB in Case 2. The procedures of LM-LSQR are Similar to LMBC-

NNLS except for Step 6 in Section 2.2. The reconstructed absorption coefficient of the flame voxels 

at the final convergence is shown in Fig. 6 (b). For the LM-NNLS, the negative value (refer to the 

8th flame voxel) of the absorption coefficient can be seen in the reconstructed results. For the 7th 

flame voxel, a great difference can be observed between the reconstructed absorption coefficient 

and the set value. For the LMBC-NNLS, non-negative values were obtained and a much smaller 

difference can be seen between the reconstructed absorption coefficient and the set value. Generally, 

the LMBC-NNLS improves the accuracy of the simultaneous reconstruction of flame temperature 

and absorption coefficient. 

 

(a) Distribution of radiation intensity 

 

(b) Distribution of the absorption coefficient 

Fig. 6. Reconstructed radiation intensity and absorption coefficient for different algorithms. 

3.3 Reconstruction of simulated flame temperature and absorption coefficient 

The LMBC-NNLS algorithm is applied to reconstruct the temperature and absorption coefficient 

for Cases 1 and 2 at different SNRs. The value of the objective function defined by Eq. (13) 
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illustrates the convergence of the algorithm and thus can be used to evaluate the performance of the 

proposed algorithm. Fig. 7 plots them at different iterations. It can be seen that the convergent values 

are the same for both cases but differ for different noise levels, below 1, 3 and 8 for the 

corresponding 40, 30 and 20 dB SNRs. It is also observed that fewer iterations are required for Case 

1 to obtain the minimum convergence value compared to Case 2 at the same SNR, meaning that the 

higher iterations are required for the asymmetry condition to reach minimum convergence. Overall, 

the values of the objective function with higher iterations indicate better applicability of the hybrid 

LMBC-NNLS algorithm for both the symmetric and asymmetric conditions.  

 

Fig. 7. The values of the objective function with the different iterations and noises. 

 

The relative errors (δT, δK) of the reconstructed temperature and absorption coefficient were 

calculated to evaluate the reconstruction accuracy of the proposed algorithm. Fig. 8 and Fig. 9 show 

the calculated relative errors for different noises. The variation of the relative errors is similar for 

each case. The maximum relative error is observed for the positions Zr = 4 mm at 16th, 32th and 18th 

voxels, corresponding to the tip part of the flame because fewer radiative detection lines are received 

from the tip of the flame. In general, the relative errors are below 10% for all cases at different noise 

levels, suggesting that the proposed algorithm can reconstruct the temperature and absorption 

coefficient accurately for both the symmetrical and asymmetrical flames. 
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(d) Case 2 

Fig. 8. The relative errors of the reconstructed flame temperature and absorption coefficient for different noise 

levels  

 

The mean relative errors of the temperature and absorption coefficient (ΔT and ΔK) were also 

calculated, as shown in Fig. 9. In each case, the mean value of ΔK and ΔT increase with SNR and 

thus enlarge the reconstruction errors of T and K. The maximum value of ΔT is below 1% while the 

maximum value of ΔK is below 10% for all cases, indicating that the flame temperature can be 

reconstructed more accurately than the absorption coefficient. This coincides with the fact that the 

radiation intensity is more sensitive to the flame temperature than the absorption coefficient. 

Moreover, the mean errors become larger for Case 2 due to the asymmetry distribution of the 

temperature and absorption coefficient.  

  
Fig. 9. The mean relative errors of the reconstructed temperature and absorption coefficient for different cases and 

noises. 

 

The reconstructed distributions of the simulated flame temperature and absorption coefficient when 

SNR = 20 dB are shown in Fig. 10. It can be seen that the reconstructed distributions agree well with 

the original distributions of flame temperature and absorption coefficient presented in Fig. 3. Better 

reconstruction of temperature and absorption coefficient was observed for Case 1 in comparison to 

Case 2. Also, the lower value of ΔT and ΔK was obtained for Case 1. Therefore, the symmetrical 

distribution of the temperature or absorption coefficient can be reconstructed more accurately than 

the asymmetrical distribution. The reconstructed results of the simulated flames show that the 

proposed algorithm is effective for the simultaneous reconstruction of flame temperature and 

absorption coefficient under the symmetric and asymmetric conditions.  
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(a) Case 1 

  

(b) Case 2 

Fig. 10. The reconstructed distribution of flame temperature and absorption coefficient for different cases when 

SNR = 20 dB. 

4 Experimental research 

4.1 Experimental setup 

Experiments were conducted to validate the proposed hybrid LMBC-NNLS method. Fig. 11 shows 

the schematic of the experimental setup. A co-flow burner is used to generate ethylene diffusion 

flame. The burner consists of two coaxial tubes (i.e., inner and external) with the inner diameters of 

10 mm and 50 mm, respectively. The ethylene fuel is supplied through the inner tube and 

compressed air through the external tube. The co-flow of the ethylene and compressed air is 

beneficial to stabilize the flame. The flame is shielded by a black painted chamber to eliminate the 

surrounding disturbance. A colored focused plenoptic camera (Raytrix R29) is utilized to capture the 

plenoptic flame image and thus to obtain the multi-wavelength flame radiation intensity. The details 

of the geometric and intensity calibrations have been carried out and reported in previous researches 



[7, 43]. The focused plenoptic camera has a 207×160 microlens array. The F-numbers of the main 

lens and microlens are all F/9.0. The RGB wavelengths of the camera are 610 nm, 530 nm and 460 

nm, respectively. 

   

Fig. 11. Schematic of the experimental setup. 

 

During the experiments, six combustion operating conditions (three no co-flow conditions 1, 3 and 

5 and three co-flow conditions 2, 4 and 6) were summarized in Table 2 to investigate the 

reconstruction performance for the proposed hybrid LMBC-NNLS algorithm. Three different 

ethylene flow rates (0.8, 1.12 and 1.76 mL/s) were considered to analyze the flame temperature and 

absorption coefficient. Ethylene and air flow pressure were set to 0.2 MPa and 0.5 MPa, 

respectively. In each condition, 100 raw flame images were captured continuously by the plenoptic 

camera. Fig. 12 shows typical raw and refocused plenoptic flame images for different experimental 

conditions. The refocused images were obtained from the captured raw flame images by applying 

refocusing algorithms described in Ref. [44]. These refocused images can demonstrate the structural 

shape of the flame. The co-flow of the compressed air squeezes the inner combustion medium and 

thus the flame shape is a bit thinner compared to the no co-flow conditions. 

Table 2. Experimental conditions. 

Condition C2H4 (mL/s) Air (mL/s) (Co-flow) 

1 
0.8 

0 

2 138.9 

3 
1.12 

0 

4 138.9 

5 
1.76 

0 

6 138.9 

 



 

Fig. 12. Example of raw and refocused flame images under different operating conditions. 

4.2 Reconstruction of flame temperature and absorption coefficient  

To reconstruct the flame temperature, the noise of the CCD sensor was eliminated by subtracting 

gray levels of the dark image from the raw image. The dark image is captured when the camera is 

fully capped with no external light. The flame temperature reconstruction is a well-defined ill-posed 

inverse problem, where the captured radiative rays are the observations and the temperatures of the 

flame voxels are to be solved. It is observed that the illness of the inverse problem can be reduced 

by identifying the actual flame area for the reconstruction, which could be achieved by employing 

a background subtraction algorithm. In this study, an Otsu’s thresholding algorithm is used to 

remove the flame background. Figure 13 illustrates an example of the refocused flame images with 

and without background for Condition 5. 

 

Fig. 13.  The refocused flame images with and without background for Condition 5. 

 



The flame was divided into 240 (1 × 20 × 12) voxels in the circumferential (Cr), axial (Zr) and radial 

(Rr) directions. The temperature and absorption coefficient of the six conditions were then 

reconstructed by the proposed LMBC-NNLS. The obtained zero intensity of each flame voxel were 

interpolated by averaging non-zero values of six neighbourhood flame voxels. The reconstructed 

results of the flame temperature and absorption coefficient are shown in Fig. 14. The flame 

temperature varies from about 1200 K to 2000 K. The temperature increases with the ethylene flow 

rate due to the greater heat release during the combustion reaction. The reconstructed absorption 

coefficient varies from about 8 m–1 to 28 m–1. The absorption coefficient also increases with the 

ethylene flow rate. This is because the increasing ethylene flow rate would cause a higher flame 

temperature and thus promote the soot formation. Besides, for the co-flow conditions, more oxygen 

content diffuses into the fuel, resulting in more intense combustion reaction and heat release. 

Therefore, the higher temperature and lower absorption coefficient were obtained for the co-flow 

conditions compared to the no co-flow conditions.  

 
Fig. 14. The reconstructed flame temperature and absorption coefficient over five longitude-sections of the flames 

under six operating conditions. 

 

During the diffusion and mixing of ethylene and air, the combustion reaction occurs and releases 



lots of heat [42]. If the fuel mixture is insufficient, sufficient combustion reaction does not occur in 

the region closer to the inner of the flame or the region closer to the outside of the flame. In the 

region with sufficient mixing of fuel and air, the combustion reaction occurs and causes the highest 

temperature [45]. Besides, soot can be formed in this region during the combustion reaction. For 

each condition in Fig. 14, the temperature increases first and then decreases from inner to the edge 

of the flames. The absorption coefficient also has a similar trend as the temperature, but peak at the 

interior of the peak temperature position. Since the absorption coefficient mainly depends on the 

soot particles of the flame, the positions of the peak absorption coefficient indicate the positions of 

plentiful soot formed during the combustion reaction [6]. Moreover, compared to Conditions 1, 3 

and 5, the reconstructed shapes of both the temperature and absorption coefficient distribution for 

co-flow Conditions 2, 4 and 6 are squeezed closer to the flame center, which is consistent with the 

flame shape in Fig. 12. 

4.3 Experimental validation 

Further to validate the proposed algorithm, the flame temperature was measured by an R type high 

precision thermocouple at seven points along the flame diameter (radial axis) over several cross-

sections for each experimental condition. Due to the radiation heat loss of the medium to the 

surroundings and the conduction heat loss of the thermocouple junctions, the measured results of 

the flame temperature were corrected according to Ref. [4, 46]. Fig. 15 illustrates the comparison 

between the reconstructed flame temperatures and the thermocouple measurements at five 

measurement points over three different flame cross-sections. The reconstructed temperatures were 

averaged from 100 consecutive flame images. A good agreement is demonstrated between the 

thermocouple measurements and the reconstructed temperatures. It has been observed that the 

maximum temperature increases with the fuel flow rate although it is difficult to see the difference 

from Fig. 15 as the maximum temperature point moves with the flame size. Fig. 16 shows the 

comparison of the reconstructed results with the thermocouple measurement along the central axis 

of the flame. The flame temperature has peak values along the z-axis for both the LMBC-NNLS 

and thermocouple measurements. The position of the peak temperature depends on the position of 

the intense combustion reaction zone and changes with different operating conditions. Also 

obviously, the flame height increases with the ethylene flow rate. It also can be seen that the 

maximum difference between the reconstructed and the thermocouple results is 124.2 K (14.3%) at 

Y = 4 mm and Z = 8 mm (Condition 1). The difference between the two measurements may be 

explained by the diversity in principle between the two measurement technologies and subtle 

fluctuation of the flame during the thermocouple measurements. However, a good agreement is 

observed between the reconstructed results and the thermocouple measurements, demonstrating that 

the hybrid LMBC-NNLS algorithm is capable of measuring the realistic flame temperature 

accurately.  

It has been realized that the radiative information recorded by the single plenoptic camera is limited 

due to the limited viewing angle and it is a common restraint of the single plenoptic camera for the 

flame temperature measurement. As a result, the resolution of the reconstructed flame temperature 

is quite low, only 1 × 20 × 12 in the circumferential (Cr), axial (Zr) and radial (Rr) directions in this 

study. In the experiments, subtle temperature changes, especially in the flame sheet, cannot be 

observed in the reconstructed flame temperature. Instead, wider distributions of high temperature 

are obtained as the flame sheet occupies only a small part of the voxel. 

 



 
(a) Condition 1                               (b) Condition 2 

 
(c) Condition 3                               (d) Condition 4 

 

(e) Condition 5                                 (f) Condition 6  

Fig. 15. The comparison between the reconstructed flame temperatures and the thermocouple measurements at 

five measurement points over three flame cross-sections. 
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(a) Condition 1                                  (b) Condition 3 

 

 

   (c) Condition 5 

Fig. 16. The comparison of the reconstructed results with the thermocouple measurement along the central axis of 

the flame. 

 

It is worth noting that the Otsu’s thresholding method cannot determine the root part of the flame 

boundary accurately. Thus, there are some errors involved in the reconstruction of the flame root 

part. Therefore, the flame boundary treatment needs to be further improved. In addition, other 

factors may also contribute to the measurement errors in this study such as the geometric calibration 

error. The geometric calibration error could cause the inaccurate calculation of the direction and 

starting position of the detection ray. The calibration errors are up to 0.2% found in our previous 

study [41]. Generally, the above results demonstrate that the proposed algorithm is capable of 

reconstructing the flame temperature and absorption coefficient successfully. 

 

5. Conclusions  

In this paper, the hybrid LMBC-NNLS algorithm was proposed to reconstruct the flame temperature 

and absorption coefficient simultaneously based on plenoptic imaging technique. Numerical 

simulations were carried out for the symmetric and asymmetric distribution of the flame temperature 

and absorption coefficient to validate the proposed algorithm. Experiments were also carried out on 

the ethylene diffusion flames and the flame temperature and absorption coefficient were 

simultaneously reconstructed using the LMBC-NNLS algorithm. The obtained temperature was also 

compared with the thermocouple measurements. The concluding remarks are as follows: 

(1) It has been observed that the negative values of the radiation intensity and absorption coefficient 

can be generated in the reconstruction using the inverse algorithms such as LMBC-LSQR and 
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LM-NNLS without boundary constraint. The proposed hybrid LMBC-NNLS algorithm is 

effective to simultaneously reconstruct the flame temperature and absorption coefficient 

without generating negative values, and thus with improved reconstruction accuracy. 

(2) The reconstruction errors of the flame temperature and absorption coefficient with the proposed 

algorithm are all below 10% for both the symmetric and asymmetric cases according to the 

numerical simulations, demonstrating the proposed algorithm can reconstruct the flame 

temperature and absorption coefficient simultaneously under different combustion conditions. 

(3) Experiments on a co-flow burner are carried out to reconstruct the flame temperature and 

absorption coefficient simultaneously. A good agreement between the reconstructed result and 

the thermocouple measurement was observed with a maximum difference of 124.2 K, proving 

the feasibility of the proposed hybrid LMBC-NNLS algorithm. 
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