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Abstract 

Background: A lack of data reproducibility (“reproducibility crisis”) has been extensively debated 

across many academic disciplines.  

Main body: Although a reproducibility crisis is widely perceived, conclusive data on the scale of the 

problem and the underlying reasons are largely lacking. The debate is primarily focused on 

methodological issues. However, examples such as the use of misidentified cell lines illustrate that 

the availability of reliable methods does not guarantee good practice. Moreover, research is often 

characterised by a lack of established methods. Despite the crucial importance of researcher 

conduct, research and conclusive data on the determinants of researcher behaviour are widely 

missing.  

Conclusion: Meta-research is urgently needed that establishes an understanding of the factors that 

determine researcher behaviour. This knowledge can then be used to implement and iteratively 

improve measures, which incentivise researchers to apply the highest standards resulting in high 

quality data. 

 

Key words: reproducibility crisis, replication crisis, data reliability, bias, publication bias, meta-

research  
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Background 

A lack of data reproducibility (“reproducibility crisis”) is debated across many medical and scientific 

disciplines [1-12]. It seems to receive increasing attention as demonstrated by the rise in articles 

indexed in PubMed [13] related to the terms "reproducibility crisis" and "replication crisis" (Figure 

1). This finding is in agreement with another recent analysis that indicated a rapidly increasing 

number of scientific articles within a “crisis narrative” *14]. Factors suggested to affect 

reproducibility include (a lack of) methodological standards, (unconscious) bias, pressure related to 

the need to attract grants and publish in ‘high impact’ journals, and publication bias favouring the 

publication of novel (“positive”) findings and discouraging the publication of confirmatory findings 

and “negative” results [3,11,15-22]. Some authors argue that a high proportion (up to 90%) of 

research money is wasted [2-7]. However, this very pessimistic view may not be widely shared. 

Other authors argue that the crisis narrative is exaggerated and that periods of self-correction and 

self-improvement are an immanent feature of scientific research [14,23]. Nevertheless, the 

perception of a reproducibility crisis seems to be common among researchers. In two Nature 

surveys, the majority of respondents (52% of 1576 respondents, 86% of 480 respondents) agreed 

that a reproducibility crisis exists [24,25].   
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Main text 

Scale of crisis remains unclear 

Despite the high visibility of the issue, systematic research and in turn conclusive evidence on the 

scale of a potential reproducibility crisis is lacking. In a survey among faculty and trainees at the MD 

Anderson Cancer Center, about 50% of the participants reported that they had failed to reproduce 

published data at least once [26]. Similarly, in a Nature survey >70% of the 1576 respondents stated 

that they had been unable to reproduce data at least once [24]. However, systematic data that 

would enable the reliable quantification of the issue are lacking.  

In the “Reproducibility Project: Cancer Biology” by the Center for Open Science [27] and Science 

Exchange [28], findings from 29 high-profile scientific publications will be independently replicated 

[29-31]. To date, the results of eleven replication studies have been reported. Important parts of the 

original paper could be reproduced in four studies [32-35]. The results from two replication studies 

could not be interpreted [36,37], and two studies failed to replicate the original findings [38,39]. In 

three further reports, some parts of the original studies were reproduced while others were not [40-

42] (Table 1). 

Psychological studies also seem to vary with regard to replication success. Very low levels of 

reproducibility have been reported in some cases [43,44]. A study by the Open Science Collaboration 

reported the successful replication of 39 of 100 psychological studies [9]. However, other studies 

replicated a majority of the analysed effects [45] or confirmed previous findings [46,47]. A data set 

provided a qualitative list of 54 replication attempts of implicit Theory of Mind paradigms based on a 

survey [48]. 26 studies (48%) were successfully replicated, 15 studies (28%) were partially replicated, 

and 13 studies (24%) were not successfully replicated [48]. 

In the clinical research field, an analysis of follow-up publications of 49 original clinical research 

studies, which had been published between 1990-2003 and had each acquired more than 1000 

citations, revealed that seven (16%) were not confirmed by subsequent studies, seven (16%) had 

reported stronger effects than those found in subsequent studies, 20 (44%) were successfully 

replicated, and for 11 (24%) follow-up data was not available [1]. Another study compared the 

results from a limited number of initial clinical studies and respective follow-up studies. It concluded 

that less than 50% of the investigated studies reported reproducible effects [49]. However, it is not 

clear how representative the data are. 

Notably, reproducibility data has also been reported in articles other than original research articles. 

For example, researchers from drug companies reported that only six out of 53 studies (11%) [5] or 

16 out of 67 studies (24%) [3] had been successfully reproduced. However, these data were 

published as a Comment [5] and a Correspondence [3] without presentation of detailed data. Hence, 

the exact nature of the investigations and the criteria for reproducibility remain elusive. 

Taken together, there are anecdotal reports of data irreproducibility. However, the actual scale of 

the issue remains unclear due to a lack of systematic data. Most replication attempts focus on highly 

cited early-stage studies. This may not adequately reflect the general reproducibility of research 

findings. A meta-assessment of bias in the sciences observed a significant risk of small, early, and 

highly cited studies to overestimate effects [50]. Further, failed and successful replication attempts 
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would need to be systematically analysed together to provide meaningful insights. However, such 

studies are not available. A psychology study estimated that only about 1% of studies are subject to 

replication attempts [51]. 

Some studies have investigated the extent to which researchers may be able to estimate the 

reproducibility of data but conclusive evidence is still missing. Individual cancer researchers were not 

able to predict accurately whether studies would be reproducible in the “Reproducibility Project: 

Cancer Biology” [29,52]. However, studies from the social and psychological sciences suggested that 

the 'wisdom of the crowd' of researchers in the respective fields predicts the reproducibility with 

higher accuracy than expected by chance [53,54]. 

The determination of the scale of the problem may be further complicated by the absence of clear 

criteria that define the successful or unsuccessful repetition of a study. For example, two large 

pharmacogenomics screens in cancer cell lines [55,56] provoked a dispute on the consistency of the 

data, which resulted in at least ten research articles and letters [57-66]. Six of these contributions 

reported discrepancies between the datasets, while four reported consistency. All six contributions 

that reported discrepancies were published by the same research group, whereas the articles 

reporting consistency were published by four different research groups (Table 2). The dispute does 

not appear to have been resolved. This illustrates that the criteria for reproducibility may differ 

significantly between researchers. In this context, a modelling study from the psychology field 

suggests that the criteria for reproducibility may sometimes be interpreted in an unrealistically strict 

fashion [67]. 

Initiatives focus on methodology, data transparency, researcher training, and 

institutional standards 

The issue of limited reproducibility has also been recognised by research funders and scientific 

journals [68,69]. For example, the UK funders Medical Research Council, Academy of Medical 

Sciences, Wellcome Trust, and Biotechnology and Biological Sciences Research Council published a 

common report on data reproducibility [70] and the World Economic Forum set up a “Code of Ethics 

for Researchers” *71]. Initiatives to improve data reproducibility typically focus on methodological 

issues and data transparency. Journals have also tried to address the problem with publishers 

including the Nature Publishing group and EMBO Press introducing 'publication checklists' [see e.g. 

25,72,73]. Nature has also published a special collection on reproducibility in 2013 [74]. Moreover, 

researcher training and institutional standards including quality management systems have been 

suggested [8,69,75,76]. 

Impact of suggested measures is not clear 

However, limited data are available on the impact of the suggested measures to improve data 

quality and reproducibility. There are recent reports on shortcomings in data sharing in metabolomic 

studies [77] and limited adherence to animal reporting guidelines in Korea [78]. A survey reported 

that psychologists were open to changes to data collection, reporting, and publication practices, but 

less positive about mandatory conditions of publication [79]. 49% of 480 respondents (out of 5,375 

researchers who had published in a Nature journal between July 2016 and March 2017 and who had 

received the survey) of a Nature survey felt that the checklist had improved the quality of research 

published in Nature journals [25]. However, it remains unclear if this cohort is representative. One 

study suggested that reporting of randomisation, blinding, and sample-size estimation in animal 

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/advance-article-abstract/doi/10.1093/gigascience/giz017/5304884 by U

niversity of Kent user on 18 M
arch 2019



 
 

 

experiments had improved in the journal Nature in response to the introduction of the publication 

checklist based on a comparison of articles published in Nature and Cell from 2013 to 2015 [80]. A 

preprint posted on bioRxiv also concluded that the introduction of a checklist by Nature had 

improved study design and the transparency of data [81], but data indicating whether this translated 

into improved reproducibility are not yet available. 

Many authors argue in favour of the standardisation of methods and higher requirements for 

experimental design [5,18-21,82-84]. In the area of drug discovery, clear requirements for the 

generation of reproducible data have been suggested [see e.g. 19,21,22,85]. However, data on the 

implementation of such measures and their efficacy with regard to improved reproducibility are not 

available. In addition, there is not yet a consensus on the correct methodological approach to 

achieve high reproducibility. In animal experiments, batch-to-batch variation was described even 

under highly standardised conditions in the same lab [86]. In this context, experiment 

heterogenisation and a multi-laboratory design were suggested to produce more reliable data [86-

90] instead of increased standardisation. Notably, standardisation is only an option if the 

appropriate procedure that delivers correct results is known. Otherwise, a standardised approach 

may produce flawed results with high reproducibility. 

The availability of appropriate methods does not ensure good practice 

Despite the focus of the debate on research methodology and reporting guidelines, it remains 

unclear whether (and if yes, to what extent) a lack of reproducibility may be caused by a lack of 

(knowledge of) appropriate methods and to what extent the significance of data can be improved by 

tighter guidelines and standardisation.  

With regard to the use of appropriate methodologies, cell line misidentification has been an area of 

concern since the first cell lines were established [91,92]. Although short tandem repeat (STR) 

analysis has been available and promoted as a reliable authentication method since at least 2001 

[93], very recent articles continue to demonstrate that the use of misidentified cell lines remains an 

issue [94-96]. Similar issues have been reported on the use of antibodies that lack specificity [97-

100].  

A meta-analysis considering articles published over a 60-year period indicated that the statistical 

power of behavioural sciences studies has not increased, although the need to increase the 

statistical power was repeatedly discussed and demonstrated [101]. Hence, the availability of 

suitable and reliable methods is not sufficient to guarantee their appropriate and consequent use. 

Additionally, it is often a characteristic of research that both experiments are performed and 

methodologies are used for the first time. Consequently, researcher conduct and the research 

culture are critical to ensure the highest possible reliability of data. Accordingly, 82% of the 480 

Nature survey respondents felt that researchers have the greatest capacity to improve the 

reproducibility of published work. 58% thought that individual researchers and 24% thought that 

laboratory heads were in a crucial position to improve data reliability [25]. Hence, more focus and 

effort need to be invested to understand how researchers report and present their data and why 

they do what they do. In this context, 66% of the respondents stated “selective reporting” as a factor 

that contributes to limited reproducibility [25]. 
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Role of the incentive system 

Research is performed in a competitive environment. Researchers’ careers are driven by 

publications in as highly prestigious research journals as possible to gain visibility and attract 

research funding [19,69,102]. This requires the presentation of novel, significant findings, which 

incentivises the publication of 'positive' findings and discourages the publication of 'negative' 

findings. This may also incentivise smaller (potentially underpowered) studies, because they are 

more likely to produce significant results than larger studies [19,102]. A modelling study indicated 

that the best strategy to produce significant findings and optimise research output is to perform 

small studies that only have 10-40% statistical power, which would result in half of the studies 

reporting false-positive findings [103]. Further, modelling studies suggested that a pressure to 

produce a high number of outputs with a focus on novel findings and positive results undermines 

the rigorousness of science, because it leads to a higher proportion of false positives [101,104]. 

Accordingly, early, highly-cited studies seem to be more likely to present exaggerated findings [50]. 

However, it remains unclear if (and if yes to what extent) such strategies significantly affect 

researcher conduct (consciously or subconsciously) and data reproducibility. 

Contribution of publication bias 

A focus on 'positive' results also favours 'publication bias', i.e. 'positive' results are more likely to be 

published than 'negative' findings. Hence, the available literature does not appropriately represent 

the totality of experiments that have been performed, because many ‘negative’ results remain 

unpublished (“file drawer problem”). Additionally, 'positive' findings are more likely to be published 

in prestigious journals than 'negative’ findings [18,19,105]. 

One study reported the overestimation of the importance of anticipated prognostic factors in 

various types of cancer due to publication bias [106]. A follow-up study, which investigated 1,915 

research articles on prognostic markers in cancer, found that >90% of studies reported positive 

prognostic correlations [107]. Less than 1.5% of the investigated articles provided purely ‘negative’ 

data. Where ‘negative’ findings were presented, this typically happened in the context of other 

significant correlations (‘positive’ findings), or the authors followed up on non-significant trends and 

tried to defend the importance of the investigated markers despite the lack of significance [107]. 

This illustrates that negative results are not commonly published. The evaluation of meta-analyses 

on cancer biomarkers and the analysis of animal studies on stroke and neurological diseases also 

suggested a bias towards the publication of ‘positive results’ [108-110]. 

Further, a similar publication bias was reported for both clinical trials [111,112] and psychological 

studies [113,114]. A survey-based dataset listed replication attempts of implicit Theory of Mind 

paradigms. 28 out of the 54 studies, which were reported by the survey respondents, had been 

published in peer-reviewed scientific journals [48]. The vast majority of published studies (23/ 82%) 

reported successful replications. Four studies (14%) reported partial replications, and only one study 

(4%) reported a failed replication attempt. In sharp contrast, only three of the 26 unpublished 

replication studies (12%) reported successful replication. Eleven unpublished studies (42%) reported 

partial replication, while twelve unpublished studies (46%) were unsuccessful replication attempts 

[48]. Accordingly, a large analysis using US data concluded that there is a general publication bias 

towards the publication of ‘positive’ results across the academic disciplines [115]. This bias seems to 

be more pronounced, the less results are characterised by exact quantitative data [116]. Notably, 
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this topic becomes complicated by findings that suggest that meta-research on publication bias may 

itself be subject to publication bias [117]. Taken together, there is convincing evidence that a bias 

favouring the publication of 'positive' findings exists and that it may affect the reliability of publicly 

available data. However, the scale of the impact is not clear. 

Further determinants of researcher conduct and the impact on data reproducibility 

are unclear 

Researcher conduct defines the reliability of findings beyond publication bias. This is highly relevant 

as original research is typically defined by a significant level of novelty in the absence of established 

standards. Findings are often made using novel (combinations of) approaches together with (novel) 

model systems and/ or (novel) data for the first time, i.e. before tested and standardised approaches 

are available. It is fair to think that the incentives provided in a research environment substantially 

influence researcher behaviour. A substantial meta-analysis based on data from 18 surveys 

concluded that a pooled weighted estimate of 1.97% (crude unweighted mean: 2.59%) of the 

respondents admitted to have fabricated, falsified or modified data or results at least once. 14.12% 

(crude unweighted mean: 16.66%) reported to personally know of a colleague who had done so 

[118]. Hence, there is evidence of questionable research practices, but the actual extent, the 

influence of the research environment and its incentives, and the concrete effect on data reliability 

remain elusive. 

Studies that investigated researcher (mis)conduct in response to the pressures and incentives of the 

research environment are rare. A survey analysing the answers of 3247 early- and mid-career 

scientists suggested that a feeling of injustice may contribute to questionable research practices, 

which may affect reproducibility [119,120]. Focus group discussions involving 51 scientists from 

research universities revealed that the pressure to produce outputs also promotes questionable 

research practices [121], which may affect reproducibility. In a survey among 315 Flemish 

biomedical scientists, 15% of the respondents admitted that they had fabricated, falsified, 

plagiarised, or manipulated data in the past three years. 72% rated the publication pressure as "too 

high" [122]. A follow-up qualitative focus group interview study among Dutch biomedical 

researchers suggested that the current publication culture leads to questionable research practices 

among junior and senior biomedical scientists [123]. Hence, there is some initial evidence that the 

pressure associated with a highly competitive environment affects researcher conduct, which in turn 

affects the reliability and reproducibility of data. Again, however, the actual scale and impact on 

data reliability remain elusive. 

Conclusions 

A reproducibility crisis is widely recognised among researchers from many different fields [24,25]. 

There is no shortage of suggestions on how data reproducibility could be improved [5,8,11,15-

19,21,22,69,72,73,82-85,87,97,113], but quantitative data on the subject (including the scale of the 

problem) are largely missing. Currently, there is a strong focus on methodology. However, ongoing 

issues with the use of misidentified cell lines illustrate that problems may persist, despite effective 

standards being available. Further, it is in the nature of research to do things for the first time before 

established methods are available. Hence, data reliability is primarily defined by the conduct of 

researchers and their rigour and scrutiny in the acquisition, analysis, interpretation, and 

presentation of data. 
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Publication bias favours the publication of 'positive' results. Moreover, there are initial indications 

that the high pressure associated with a competitive environment increases the preparedness of 

researchers to lower their ethical standards, but the available information remains scarce and the 

actual impact unclear. Hence, systematic (meta-)research is needed into the topic in order to 

quantify the issue and generate the knowledge that is necessary to improve data quality and 

reproducibility. Actual fraud seems to be rare and the exception [14]. Consequently, a major focus of 

meta-research on data reproducibility will need to be put on researcher behaviour in areas that are 

not considered to be “fraud” but that still may affect the robustness of data. “Boundary work”, that 

is, the ways researchers draw the boundaries between the permissible and the non-permissible 

[118] will be critical here. Only measures that are based on a detailed understanding of researcher 

behaviour and that are closely monitored for efficacy (and iteratively improved) will make it possible 

to amend our research system in a way that it provides the right incentives to ensure that 

researchers apply the highest possible standards and provide high quality data.  
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Figures 

 

 

Figure 1. Number of articles that are identified by the search terms “replication crisis” (red) or 

“reproducibility crisis” (blue) per year from 1965 to 2017 in PubMed 

(www.ncbi.nlm.nih.gov/pubmed, data accessed on 12th January 2018). 
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Table 1. Replication studies performed as part of the ‘Replication Project: Cancer Biology’ *30], 

presented according to the outcome as interpreted in the ‘Editors’ Summary’. 

First author Title 

Editors' Summary: This Replication Study has reproduced important parts of the original paper. 

Irawati Kandela Replication Study: Discovery and preclinical validation of drug indications 
using compendia of public gene expression data [32]1 

Fraser Aird Replication Study: BET bromodomain inhibition as a therapeutic strategy to 
target c-Myc [31] 

Xiaochuan Shan Replication Study: Inhibition of BET recruitment to chromatin as an effective 
treatment for MLL-fusion leukaemia [33] 

Megan Reed 
Showalter 

Replication Study: The common feature of leukemia-associated IDH1 and 
IDH2 mutations is a neomorphic enzyme activity converting alpha-
ketoglutarate to 2-hydroxyglutarate [34] 

Editors' Summary: This Replication Study has reproduced important parts of the original paper, but 
it also contains results that are not consistent with some parts of the original paper. 

L Michelle Lewis Replication Study: Transcriptional amplification in tumor cells with elevated 
c-Myc [39] 

Editors' Summary: This Replication Study has reproduced some parts of the original paper but 
other parts could not be interpreted. 

John P Vanden 
Heuvel 

Replication Study: Systematic identification of genomic markers of drug 
sensitivity in cancer cells [40] 

Editors' Summary: The results in this Replication Study could not be interpreted. 

Stephen K Horrigan Replication Study: Melanoma genome sequencing reveals frequent PREX2 
mutations [36] 

Stephen K Horrigan Replication Study: The CD47-signal regulatory protein alpha (SIRPa) 
interaction is a therapeutic target for human solid tumors [35] 

Editors' Summary: This Replication Study has reproduced some parts of the original paper but it 
also contains results that are not consistent with other parts of the original paper. 

Kathryn Eaton Replication Study: Intestinal inflammation targets cancer-inducing activity 
of the microbiota [41] 

Editors' Summary: This Replication Study did not reproduce those experiments in the original paper 
that it attempted to reproduce. 

Christine Mantis Replication Study: Coadministration of a tumor-penetrating peptide 
enhances the efficacy of cancer drugs [37] 
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John Repass Replication Study: Fusobacterium nucleatum infection is prevalent in 
human colorectal carcinoma [38] 

 

1 Number in the reference list 
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Table 2. Articles contributing to a dispute on the consistence of the data derived from two large 

pharmacogenomic screens [51,52]. 

First author Title 

In favour of consistence 

JP Mpindi Consistency in drug response profiling. [57] 

M Bouhaddou Drug response consistency in CCLE and CGP. 
[55] 

P Geeleher Consistency in large pharmacogenomic studies. 
[56] 

Cancer Cell Line Encyclopedia Consortium.; 
Genomics of Drug Sensitivity in Cancer 
Consortium. 

Pharmacogenomic agreement between two 
cancer cell line data sets. [54] 

In dispute of consistence 

Z. Safikhani Revisiting inconsistency in large 
pharmacogenomic studies. [62] 

Z. Safikhani Safikhani et al. reply. [58] 

Z. Safikhani Safikhani et al. reply. [59] 

Z. Safikhani Safikhani et al. reply. [60] 

Z. Safikhani Assessment of pharmacogenomic agreement. 
[61] 

B Haibe-Kains Inconsistency in large pharmacogenomic 
studies. [53] 
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