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Predicting Online Invitation Responses with a Competing 

Risk Model Using Privacy-Friendly Social Event Data 

Abstract Predicting people’s responses to invitations is an important issue for social event 

management, as the decision-making process behind member responses to invitations is complicated. 

The purpose of this paper is to suggest a privacy-friendly method to predict whether and when people 

will respond to open invitations. We apply the competing risk model to predict member responses. 

The predictive model uses past social event participation data to infer a network structure among 

people who accept or reject invitations. The inferred networks collectively show the extent to which 

people are likely to accept or reject invitations. Validated using real datasets including 31,230 people 

and 8,885 events, the proposed method not only presents the variables that predict attendance (such as 

past attendance and social network), but also those that predict faster responses. This approach is 

privacy friendly, as it requires no personal information regarding people and social events (such as 

name, age and gender or event content). This work contributes to the predictive modeling literature as 

the first competing risk modeling study developed for the context of replying to a social invitation. 

Our findings will help event organizers predict how many people will attend events, allowing them to 

organize effectively.   

Keywords: decision support systems, social network analysis, survival analysis, predictive modeling 
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1. Introduction 

Social event participation is an essential topic for research (Berridge, 2007). Individuals and 

organizations schedule many events for different purposes. People are generally expected to socialize, 

exchange information and expand their network during these events (Shone & Parry, 2004). Event 

planning is risky and time consuming, with many details to consider such as catering, staffing, and 

venue selection (Allen, 2005). It is almost impossible to arrange successful events without efficient, 

timely planning (Moyle, Kennelly, & Lamont, 2014).  

The increasing use and availability of information technology and social media allows information 

about social events to be shared faster and easier (Weinberg & Williams, 2006). Many people develop 

their peer community through social media. About two billion people use social media today, with 

this number expected to exceed 2.4 billion in 2018 (Statista, 2015). Increasingly, people are using 

social media to manage their daily lives (Liu et al., 2012). Internet users organize meetings and social 

events via social media. Many companies have discovered market potential and also plan their events 

using social media.  

Personal experience at social events will impact future participation, as people prefer to enrich their 

relationships by meeting other people with similar interests (McPherson, Smith-Lovin, & Cook, 

2001). Social media are a valuable research resource, providing interesting insights into user behavior 

in many different domains (Borgatti, Everett, & Johnson, 2013). The main goal of this study is to 

predict whether and when people will respond positively to invitations. We use data from online 

meeting communities to predict event participation. More specifically, we use information regarding 

responses to past events to predict responses to new invitations.  

The literature uses survey-based research to address the issue of participation prediction (Siebenaler, 

2006). For example, an individual’s perceived peer influence and previous experience with the event 

context have been found to be associated with later event participation (Siebenaler, 2006). Such 

studies are limited in terms of event context and sample size. Furthermore, previous studies have not 

fully explored the social network structures existing at these events. Despite these findings, predicting 
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participation is difficult for practical reasons. For example, individual attributes (perceived values) 

may be unavailable due to privacy concerns (Elwood & Leszczynski, 2011). Also, the context of the 

event may be hard to capture, or may change over time. Previous studies (Ladd, Herald‐Brown, & 

Reiser, 2008; Siebenaler, 2006) consider that predicting participation without such information is 

impossible. This paper takes a more practical approach, using only past social event participation data 

without considering personal information or event context. We thus focuses on the past events people 

have attended. Since attendees tend to meet each other at different events, their relationships are likely 

to predict their participation at future events. People are likely to go to social events together with 

friends or acquaintances. Alternatively, they might decide not to attend if certain people are present. 

Furthermore, people may often attend the same events because of their shared interests rather than 

their prior relationship.  We can therefore infer relationships between people based on common social 

events. Data concerning such relationships is valuable in predicting product adoption and customer 

churn (Fang, Hu, Li, & Tsai, 2013), and presumably in predicting responses to event invitations.  

This paper presents an empirical study that predicts member responses to different social invitations, 

and constructs a social network based on past responses. This work contributes to the literature by 

developing a novel survival model to forecast member event participation. We validate the model 

using Area under the Receiver Operator Characteristic (ROC) Curve (AUC) values based on real-life 

datasets of 31,230 people and 8,885 events. The research model adds to the literature by using 

Bayesian networks to account for network variables, and a mixture model for member participation 

decision modeling. Thanks to these techniques, the proposed method outperforms previous methods 

by 24% on average, with a maximum of 52% predictive accuracy. Event organizers could use the 

proposed approach to classify members by participation decision and timing.  

Section 2 describes the background to the study. Then, we detail the data collection procedure and 

research methods, before discussing the results of the study. 
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2. Background 

2.1 Social Event Participation 

Related research mainly focuses on two goals: 1) identifying factors that can help predict event 

participation, and 2) discovering which events people might want to attend as a result of their previous 

attendance. The first type of research is usually grounded in social science theories, and has found that 

social norms and other environmental influences can predict event participation (Ladd et al., 2008). 

Researchers have found that peer relations have an impact on students’ activity participation at school 

(Ladd et al., 2008). For example, negative peer relations (i.e., peer rejection) predict lack of 

participation (Ladd et al., 2008). Prior experience also predicts attendances at future events 

(Siebenaler, 2006). The second type of research develops predictive models to recommend events. 

These models use recommender systems which often appear in the computer science literature. The 

recommender system infers user preference for events by using past event attendance data. These 

methods use the preferences to predict future events that users might like to attend (Purushotham & 

Jay Kuo, 2015). We investigate social event participation from a different angle: event organizers. 

Our research investigate people’s responses to a particular event invitation: When will they decide to 

go to an event? At any given time, who is more likely to accept an invitation? How can we take into 

account the time it takes different people to respond to an invitation? To the best of our knowledge, no 

other studies have made a time-dependent prediction of user responses to an event invitation.  

2.2 Social Network Analysis  

People communicate in different ways. Personal connections between people form network-structured 

data (Leskovec, Huttenlocher, & Kleinberg, 2010). A social network consists of nodes and edges. A 

friendship network is formed when people identify each other as friends. People are presented as the 

nodes. People connect differently to all types of friends. Links between friends are the edges 

connecting the nodes in the network. Communication networks develop when people make phone 

calls and/or send emails to each other. Technical partnerships between companies form a cooperation 

network based on alliances and shared patents (Gilsing, Nooteboom, Vanhaverbeke, Duysters, & van 
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den Oord, 2008). Social network analysis (SNA) focuses on how the network structure between the 

objects (Fang et al., 2013) influences those within the network (Lewis, Gonzalez, & Kaufman, 2011). 

When different object types are in the network, the network is considered to be heterogeneous (J. 

Yang, McAuley, & Leskovec, 2014). Some research articles, describe object types as “modes” 

(Borgatti et al., 2013). A network with two object types is a “two-mode” network. Two-mode network 

analysis techniques are believed to be beneficial when using two-mode data (Borgatti et al., 2013). 

Network information can be quantified in many ways. For example, it is interesting to analyze 

information concerning people’s neighbors, that is, people directly connected to them. Researchers 

have studied the effect of similar behavior among friends (McPherson et al., 2001). Obesity and 

smoking behavior tend to occur more often among friends than others. Even though direct 

relationships are useful for research, connectivity in the neighborhood of a node also reveals 

interesting findings. The (local) clustering coefficient (Fagiolo, 2007) quantifies the extent to which a 

node’s neighboring nodes connect to each other. For instance, in a friendship network, the clustering 

coefficient is used to study how many friends know each other. 

People of different social status might have distinctive patterns in their networks (Borgatti et al., 

2013). Each node in the network has different connections, resulting in a complex network structure. 

Researchers might expect different nodes to have different roles (Borgatti et al., 2013). Some may act 

like a bridge, as other nodes cannot link to each other without passing through it. These nodes are 

more central than others. Betweenness centrality is a measure used to quantify how “central” a node is 

in the network (Gilsing et al., 2008; Marshall & Ghanekar, 2012). Such measures quantify the social 

network and provide input for many quantitative analyses (Baesens, Vlasselaer, & Verbeke, 2015). 

Relationships in a social network can be positive or negative. Both types of relationships are 

important to study how people connect with each other (Leskovec et al., 2010). Other examples can 

be found in political science. Positive and negative relationships can be observed in political 

networks: “a friend’s friend is a friend; an enemy’s enemy is a friend” (Easley & Kleinberg, 2010; 

Stefaniak & Morzy, 2014). Politicians might sponsor a certain bill or vote against each other; this 
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allows researchers to study political alliances and antagonism (Neal, 2014). Previous voting patterns 

can help predict the future. Besides the binary outcome of positive and negative relationships, one can 

quantify the intensity of both positive and negative relationships. 

2.3 Predictive Modeling Using Online Behavior Data  

This study investigates the similarity of member responses to social events. The observed similarity 

helps predict future responses. Influential people in the network, such as celebrities, can influence 

others’ responses.  

The traditional way to collect social network data is through administered surveys. The success of 

social media websites, such as Facebook and Twitter, makes it possible to gather massive amounts of 

data on user behavior through application programming interfaces (API). These data sources help 

examine human behavior that would otherwise have been difficult to study. 

3. Research methods 

This section first describes the data collection, before describing the dependent and independent 

variables from the dataset used in the analysis. Next, it discusses previous methods used and finally, 

explains the proposed method and compares it with these previous methods.    

3.1 Data collection 

This study uses member responses to social event invitations on the website, Meetup 

(www.meetup.com). Meetup is a platform for communities to form social groups, and organize offline 

events. Each group holds many social events at different times. They send invitations (RSVPs) to all 

their members, who can reply yes or no, or can ignore the invitation. Meetup has mechanisms such as 

attendance approval and fees to organize member attendance. 

The data collection procedure started on February 20, 2014 and covered events from February 2006 

until June 2014. We collected data from social groups in three cities: New York, London, and Los 

Angeles. Past studies collect data by crawling the website over three months (Liu et al., 2012). Such a 

time frame is too short to be considered as a longitudinal setting. Longitudinal studies typically 

monitor a number of groups over a period of years (Ransbotham & Kane, 2011; Ren et al., 2012). It is 

http://www.meetup.com/
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not feasible to cover a large number of groups over such a long period. The longitudinal studies we 

refer to above typically monitor between one and ten groups, making a few thousand observations.  

Table 1 gives an example of the invitation responses.  

Table 1 An example of social event history data 

EID MID Event opening time Event starting time  Response Response time 
100001 1001 2014/02/17 1:00:00 PM 02/27/2014 1:00:00 PM Yes 2014/02/20 3:05:30 PM 

100001 1002 2014/02/17 1:00:00 PM 02/27/2014 1:00:00 PM No 2014/02/20 10:30:00 AM 

100001 1003 2014/02/17 1:00:00 PM 02/27/2014 1:00:00 PM Yes 2014/02/18 5:27:45 PM 

100001 1004 2014/02/17 1:00:00 PM 02/27/2014 1:00:00 PM No response / 

100002 1001 2014/03/15 5:30:00 PM 03/22/2014 7:00:00 PM Yes 2014/03/16 11:31:15 PM 

100002 1002 2014/03/15 5:30:00 PM 03/22/2014 7:00:00 PM Yes 2014/03/16 10:31:30 PM 

100002 1003 2014/03/15 5:30:00 PM 03/22/2014 7:00:00 PM No response / 

100002 1004 2014/03/15 5:30:00 PM 03/22/2014 7:00:00 PM No 2014/03/16 10:37:30 PM 

EID: event id 

MID: member id 

Event opening time: The time when an event is created 

Event starting time: The time when an event starts 

 

As indicated in Table 1, different social events are held during specific time slots. Each member’s 

response is recorded with time stamps for each event. Based on the social event history, one can 

predict a member’s participation. Given the social events held at time 𝑡1, 𝑡2, … 𝑡𝑘 , … 𝑡𝑛, where 𝑡1 <

𝑡2 < ⋯ < 𝑡𝑘 < ⋯ < 𝑡𝑛, we split the dataset to use events held at 𝑡1, 𝑡2 … 𝑡𝑘 for model building, and 

the later social events, held at  𝑡𝑘+1, … 𝑡𝑛, for testing the predictive results.  

 

Table 2 Summary of the datasets 

Groups Nr  of events Nr of members Nr of acceptances  Nr of people responded Event time range 

NyGROUP1 379 2259 6783 1582 
2006/03-2014/03 

NyGROUP2 638 1377 6827 988 
2006/10-2014/04 

NyGROUP3 284 2389 8502 1833 
2006/10-2014/04 

NyGROUP4 240 575 3562 449 
2007/10-2014/04 

NyGROUP5 294 757 6578 541 
2008/03-2014/04 

LaGROUP1 262 1007 5453 641 
2006/11-2014/06 

LaGROUP2 1614 3390 10083 1950 
2006/10-2014/06 

LaGROUP3 447 5251 7574 2962 
2007/02-2014/06 

LaGROUP4 685 324 2850 237 
2007/04-2014/06 

LaGROUP5 1866 1951 11878 1399 
2007/06-2014/06 

LdGROUP1 344 5014 12216 3501 
2007/05-2014/04 

LdGROUP2 415 1628 6919 928 
2007/11-2014/04 

LdGROUP3 298 1415 4204 906 
2009/04-2014/04 

LdGROUP4 897 1856 16703 1124 
2009/09-2014/04 

LdGROUP5 222 3043 5079 1852 
2012/02-2014/04 

Total number of events: 8,885 

Total number of unique members: 31,230 
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Total number of acceptances: 115,211 

Percentage of users 

attend 1 event: 38.0% 

attend between 2 and 5 events: 37.8% 

attend more than 5 events: 24.2% 

 

 We collected the datasets by first querying the events held in a city during the last month. For 

example, to obtain event data in New York, we placed a query to gather the events “city=NY” and 

“time window = 1 month from now” (now=February 2014, when the data was first collected). We 

randomly selected 5 events from the query result. Then, we further queried historical events held by 

these event groups. We repeated the process for Los Angeles and London. In this way, this study is 

longitudinal, because it gathers data over an extensive period, while covering a larger number of 

groups and members than traditional longitudinal community studies in management (Ransbotham & 

Kane, 2011; Ren et al., 2012). Table 2 summarizes the dataset for the different groups. 

3.2 Overview of the variables 

We used a survival model to obtain the predictions. Constructing a survival model requires both 

dependent and independent variables–sometimes called covariates in survival analysis (Allison, 

2010). The dependent variables are response outcome and timing. The response outcome can be yes 

(=attend), no (=not attend) or no reply. Timing specifies when the participant responded. 

 Event created  Time  Event start 

  
A -----------● 

B --------------------------------------------------------------------● 

C --------------------------------------------------------------------------------------------- 

D ---------------------○ 

E --------------------------------------------------------------------------------------○ 

F ----------------------------------------------● 
 

Figure 1 Time to respond 

 

In this figure, A–F receive information about an event. They give different responses. A, B, and F, 

with the solid black circle, accept the invitation. D and E decline, and C does not respond. The circle 

indicates the response outcome, while the length of the dash line indicates the response time.  

Censored data, in which the value of a measurement or observation is only partially known, is 

common in survival analysis. For example, people may not respond to some invitations until a certain 
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date. They are considered as censored data until the date they respond. In Figure 1, C never responds. 

C’s response is censored. Censored information is an analytical problem that survival analysis deals 

with (Allison, 2010) since ignoring censored data might introduce bias.  

We developed the independent variables from the event history. It is impossible to use the network 

structure directly. To predict individual responses, we extracted network information for each 

individual in the network. This network information is formally defined as network features. We also 

used individual response rates. We derived individual response rates from the number of past 

invitations the corresponding person accepted or declined.  

The survival model uses individual characteristics such as network information to predict the response 

outcome. To obtain an individual’s network information (sometimes known as the network features), 

we first determined a social network from the social event log. Then, we extracted network features 

for each individual in the dataset. We used these network features in the survival model (eq.9) as 

variables X. 

For this study, we defined social groups “𝑀𝑎” and “𝑀𝑑” as two 𝑛-by-𝑛 adjacency matrices, where 𝑛 

is the total number of people who have attended past social events. In 𝑀𝑎, we aggregated, for each 

pair of people, the number of their responses that agree. In other words, in 𝑀𝑎, the aggregated value 

for person 𝑖 and 𝑗 is the total number of times when 𝑖 and 𝑗 both answered “Yes” or both answered 

“No”. 𝑀𝑎 reflects people’s homophily. 𝑀𝑑  represents heterophily, since it aggregates different 

responses. The higher the value for  𝑀𝑑(𝑖, 𝑗), the more node 𝑖 and 𝑗 disagree. In social network 

analysis, this is considered a projection from a two-mode network to a one-mode network. A two-

mode network with social events and people is reduced into a one-mode network to help infer 

relationships between those people, as illustrated in Figure 2. 

 Building networks using event response history 

1 Start with event history containing user responses, possible values = (Yes or No), total number of 

users = 𝑛, and 𝑛-by-𝑛 adjacency matrices 𝑀𝑎 and 𝑀𝑑. 

2 For i=1 to n 

3        For j=1 to n 
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4              Agree = count the total numbers of events where user i’s response = user j’s response 

5              𝑀𝑎 (i,j) = Agree 

6              Disagree = count the total numbers of events where user i’s response ≠ user j’s response 

7              𝑀𝑑 (i,j) = Disagree 

8         End For 

9 End For 

Figure 2 Network construction 

 

For each individual, we extracted network features, including degree, clustering coefficient, and 

betweenness centrality. 

3.2.1 Degree 

Degree (Borgatti et al., 2013) is the total number of neighbors a node has in the social network. We 

defined the degree of a given node 𝑖 in adjacency matrices 𝑀𝑎 and 𝑀𝑑  in the following way 

(Equations 1 through 4 apply for all member 𝑖): 

𝐷𝑖(𝑀𝑎)= ∑ 𝑀𝑎𝑖𝑗
𝑛
𝑗=1  

 

eq 1 

𝐷𝑖(𝑀𝑑)=  ∑ 𝑀𝑑𝑖𝑗
𝑛
𝑗=1  eq 2 

3.2.2 Clustering coefficient 

The local clustering coefficient denoted as 𝐶𝐶𝑖 (Fagiolo, 2007) quantifies the extent to which a given 

node 𝑖’s neighboring nodes are connected. 𝑁𝑖  is defined as the number of edges observed between 

node 𝑖’s neighbors. We obtained the clustering coefficient by dividing  𝑁𝑖 by the total number of 

possible edges between node 𝑖’s neighbors. In an undirected network, where node 𝑖 has 𝑘 neighbors, 

the total number of possible edges between node 𝑖’s neighbors is 
𝑘∙(𝑘−1)

2
. 

 

𝐶𝐶𝑖 =
𝑁𝑖

𝑘 ∙ (𝑘 − 1)
2

 
eq 3 
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3.2.3 Betweenness centrality 

Betweenness centrality (Marshall & Ghanekar, 2012), as the name suggests, shows how much a node 

is “in between” other nodes. The betweenness centrality 𝐵𝑐𝑖, is calculated as the number of shortest 

paths (geodesics) between node pair 𝑗and 𝑘 that goes through node 𝑖, divided by the total number of 

shortest paths between node pair 𝑗and 𝑘. 

𝐵𝑐𝑖 = ∑
𝑝𝑎𝑡ℎ(𝑖, 𝑗, 𝑘)

𝑝𝑎𝑡ℎ(𝑗, 𝑘)
𝑖≠𝑗≠𝑘

 
eq 4 

  

We provide a detailed discussion of these measures in the Appendix, with a numerical example for 

interested readers. We summarize all the variables in Table 3.  

Table 3 The variables for the analysis technique  

Dependent variables Abbreviation  

Time to respond Continuous time variable  

Response outcome Nominal value 1=yes  2= no   

0=no response 

 

  

Independent variables  

Network features:  

Homophily degree Numerical counts Degree_homo 

Homophily clustering coefficient Continuous variable Ccfs_homo 

Homophily betweenness centrality Continuous variable Bc_homo 

Heterophily degree Numerical counts  Degree_hete 

Heterophily clustering coefficient Continuous variable Ccfs_hete 

Heterophily betweenness centrality Continuous variable Bc_hete 

  

Response rates:  

Number of responses to attend events  Numerical counts Rate_y 

Number of responses not to attend events Numerical counts Rate_n 

Total number of event invitations received Numerical counts Event_nr 

 

3.3 Overview of previous approaches  

Survival analysis, also known as event log history analysis, studies the occurrence of outcomes, and in 

this context it shows if and when a user will respond to an event invitation (Allison, 2010). 

Researchers in different domains might be interested in different problems. For example, whether 

certain medical treatments impact patient longevity; or whether an engineering process influences a 
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product lifetime (Allison, 2010). The survival model studies a dependent variable’s change over time 

(Allison, 2010). Survival analysis takes into consideration the response variable and its timing 

(Allison, 2010). 

3.3.1 Cox proportional hazard model  

The survivor function (also known as the survival function) 𝑺(𝒕) and the hazard function 𝒉(𝒕) are two 

key concepts generally considered in survival analysis, and defined as follows:  

𝑆(𝑡) = Pr (𝑇 > 𝑡) 

 

eq 5 

    ℎ(𝑡) = lim
∆𝑡→0

Pr (𝑡 ≤ 𝑇 < 𝑡 + ∆𝑡|𝑇 ≥ 𝑡)

∆𝑡
 

eq 6 

 

𝑇 stands for survival time, e.g. time taken to accept the invitation. The survivor function 𝑆(𝑡) is 

known as the probability of survival after time 𝑡, thus denoted as Pr (𝑇 > 𝑡). The hazard function ℎ(𝑡) 

is the probability of accepting an invitation in the time interval [𝑡, 𝑡 + ∆𝑡], given that the member 

does not accept the invitation before 𝑡.  Hence, it is defined as a conditional probability distribution. 

The relationship between the survivor function and the hazard function can be formulated as follows: 

𝑆(𝑡) =  𝑒− ∫ ℎ(𝑢)𝑑𝑢
𝑡

0  
eq 7 

 

Or alternatively  

ℎ(𝑡) =  −
𝑑𝑆(𝑡)/𝑑𝑡

𝑆(𝑡)
 

eq 8 

 

The term ∫ ℎ(𝑢)𝑑𝑢
𝑡

0
 is sometimes called the cumulative hazard, as it is an “accumulation” of hazards 

over time. Empirically, ∫ ℎ(𝑢)𝑑𝑢
𝑡

0
 can be computed using the Nelson-Aalen estimator (Borgan, 2005) 

as the sum of the hazards in the interval (0, 𝑡]. At each time point 𝑡𝑖 ∈ (0, 𝑡], the hazard ℎ(𝑡𝑖) is the 

percentage of people accepting invitations at 𝑡𝑖, among those who have not yet accepted at 𝑡𝑖. 
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In this study, we use the Cox proportional hazard model, which is widely considered the most robust 

survival analysis method in different research scenarios (Allison, 2010). In Cox proportional hazard 

model, the hazard function ℎ(𝑡) is based on the baseline hazard ℎ0(𝑡) and the covariates.  

 

ℎ(𝑡) =  ℎ0(𝑡)𝑒𝛽𝑋 eq 9 

 

The covariate vector X represents the individual’s network constructs (e.g., centrality, clustering 

coefficient), 𝛽 are the model coefficients, while ℎ0(𝑡) is a baseline hazard function (Cox, 1972). The 

baseline hazard ℎ0(𝑡) corresponds to the chance of an individual having 0 for all the variables 

(Allison, 2010). In this way, variables 𝑋 are associated with the hazard function ℎ(𝑡), and the survivor 

function 𝑆(𝑡).  

The hazard ratio is given as 𝑒𝛽 .  For instance, a variable with a hazard ratio of 1.2 means that with an 

increase of 1 in that variable (all other variable values remaining the same), a person is 1.2 times more 

likely to accept the invitation. With an increase of 2, it becomes 1.22=1.44 times more likely. In other 

words, the hazard ratio indicates the “speed” with which people accept the invitation. The Cox 

proportional hazard model assumes the proportional hazard is constant over time, and can be extended 

into a time-varying model (Allison, 2010). 

3.3.2 Cox model with penalization  

Previous research suggests that a model using a subset of variables in a dataset sometimes 

outperforms the model with all variables (Aytug, 2015; Mattila & Virtanen, 2015; Miyashiro & 

Takano, 2015). In regression analysis, stepwise model selection is often used to obtain an optimal 

subset of variables. Stepwise selection has been criticized (Derksen & Keselman, 1992) for overfitting 

the data and producing misleading results. 

In the context of survival analysis, alternative methods have been proposed to select variables. 

Considering the partial likelihood of the Cox proportional hazard model below:   
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𝐿(𝛽) = ∏
𝑒𝛽𝑋𝑠

∑ 𝑒𝛽𝑋𝑙𝑙∈𝑅𝑠

𝑘

𝑠=1

 

eq 10 

 

users can respond to the invitation at 𝑘 different time points. For each of these time stamps, a fraction 

is calculated. The numerator is the weight of the individual responses at time 𝑠, denoted as 𝑒𝛽𝑋𝑠 . The 

denominator is the sum of the users’ weights who do not respond before time 𝑠, denoted as the risk 

set 𝑅𝑠. Taking a logarithmic scale, the log likelihood function is defined as: 

𝑙(𝛽) =  ∑(𝛽𝑋𝑠 − log (∑ 𝑒𝛽𝑋𝑙

𝑙∈𝑅𝑠

))

𝑘

𝑠=1

 

eq 11 

 

The coefficients are obtained using numerical optimization techniques such as the Newton-Raphson 

method.  

New algorithms have been proposed to build models that select an optimal set of variables, such as 

Lasso, ridge and elastic net (Simon, Friedman, Hastie, & Tibshirani, 2011). Specifically, instead of 

inferring coefficients 𝛽, these new methods construct different likelihood functions: 

𝑙(𝛽) =
2

𝑛
∑(𝛽𝑋𝑠 − log (∑ 𝑒𝛽𝑋𝑙

𝑙∈𝑅𝑠

))

𝑘

𝑠=1

− 𝑝(𝛽) 

eq 12 

  

The function 𝑝(𝛽) is known as the penalized function.  

𝑝(𝛽) = 𝜆(𝛼 ∑|𝛽𝑖|

𝑝

𝑖=1

+
1

2
(1 − 𝛼) ∑ 𝛽𝑖

2

𝑝

𝑖=1

) 

eq 13 

  

The number 𝑛 is the total number of observations and 
2

𝑛
 scales the likelihood function. The number 𝑝 

is the number of variables. Parameters 𝛼 and 𝜆 are constants used to tune the proposed methods to 

adjust model coefficients for variable selection. Including the penalized function in the partial 
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likelihood function, the algorithm reweights the model coefficients for an optimal set of variables for 

prediction. Interested readers may refer to the penalized regression literature for further information 

(Simon et al., 2011).   

Unlike their regression counterparts, survival models using penalized methods for feature selection 

have not yet been thoroughly investigated in a predictive modeling context (Dirick, Claeskens, & 

Baesens, 2015; Leow & Crook, 2016). In view of this, we include three feature selection techniques in 

this study: stepwise selection and elastic net implementations: “glmnet” (Friedman, Hastie, & 

Tibshirani, 2010), and “fastcox” (Y. Yang & Zou, 2012). The “fastcox” technique is a variation of the 

penalized Cox proportional hazard model, with an approximated likelihood function using the 

principle of majorization-minimization. Three-fold cross validation is used to select the tuning 

parameters for “glmnet” and “fastcox.”  

3.3.3 Competing risks model 

Survival analysis typically concerns the transition between two states with binary outcomes; a person 

either responds or does not. However, in some contexts, it is useful to study multiple outcome types, 

which might “compete” against each other for occurrence (Kleinbaum & Klein, 2006). In this study, 

the response outcomes (accepting or rejecting invitations) are mutually exclusive. This leads to a 

specific problem in survival analysis, known as the competing risk problem. 

Conventional approaches to the analysis of survival data, focus only on one type of competing risk at 

a time, treating other outcome types as censored. In our case, users answering “No” and censored 

users (who provided no answer) are treated the same. This is called the cause-specific competing risk 

model, where the specific causes are responses of “yes” or “no”. 

Fine and Gray (Fine & Gray, 1999) proposed hazard models with sub-distributions as an alternative 

method of analyzing competing risk data. Their approach builds separate models with respect to 

different outcomes. Specifically, Fine and Gray extended the standard Cox proportional hazard model 

with cause-specific sub-models (Fine & Gray, 1999). The likelihood function of the competing risk 

model extends the Cox proportional hazard model. The original risk set 𝑅𝑠 is extended to incorporate 
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two populations: (1) users who have not responded by time 𝑠, and (2) users who have responded 

negatively by time 𝑠. While population 1 remains the same as in the original model in 3.3.1 (𝑤 =

1 𝑤ℎ𝑒𝑛 𝑇 ≥ 𝑠), population 2) includes those who respond “No” before time 𝑠. These users in the risk 

set 𝑅′𝑠 are weighted by the probability of remaining unresponsive until time 𝑠.  

𝐿(𝛽) = ∏
𝑒𝛽𝑋𝑠

∑ 𝑤(𝑇, 𝑦|𝑠)𝑒𝛽𝑋𝑙𝑙∈𝑅′𝑠

𝑘

𝑠=1

 

eq 14 

𝑤(𝑇, 𝑦|𝑠) = {

1, 𝑇 ≥ 𝑠
𝐺(𝑠)

𝐺(𝑇)
,  𝑇 < 𝑠  𝐴𝑁𝐷  𝑦 = 𝑁𝑂

 

eq 15 

G(t) is the Kaplan-Meier estimate of the survivor function of the censoring variable (Kleinbaum & 

Klein, 2006), and 𝑦 is the response. This is the same as saying that if a user hasn't responded 

negatively by time 𝑠, he/she may respond “Yes” after time 𝑠 (probability =  
𝐺(𝑠)

𝐺(𝑇)
) . The population 

consists of “hypothetical” observations that help the survival model to assess the different user 

responses. This is a major difference from conventional approaches, where the competing outcomes 

are treated as censored. We use Fine and Gray’s competing risk model in this study to take account of 

differences in response types.   

3.3.4 Mixture Cure Models 

The mixture cure model is appropriate when the population includes a sub-group that is non-

susceptible to the event of interest (to accept invitations). This sub-group’s survival probability is set 

to one, meaning that members in this sub-group will not respond at all. The mixture cure model treats 

data samples as a mixture of two populations: (1) those who will respond to the events and (2) those 

who will not (Dirick et al., 2015). In a mixture cure model the survivor function is formulated as 

follows: 

 

𝑠(𝑡|𝑋, 𝑍) = 1 − 𝜋(𝑍) +  𝜋(𝑍)𝑆(𝑡|𝑋, 𝑦 = 𝑦𝑒𝑠) 

 

eq 16 
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Here 𝜋(∙) is typically a logistic regression model predicting the probability of whether a user will 

respond, with a set of variables 𝑍. The term 𝑆(𝑡|𝑋, 𝑦 = 𝑦𝑒𝑠) is the survivor function estimating the 

fraction of users that will respond before time 𝑡 with variables 𝑋. The mixture cure model is used to 

segment the studied population to improve the predictions (Dirick et al., 2015).  

3.4 The proposed method - mixture cure modeling with Bayesian networks 

All the survival analysis techniques introduced in the previous sections are of the “frequentist” type, 

where the inference relies on fixed point estimation using the maximum likelihood method. The 

previous “early stage prediction model” suggested using a Bayesian approach to forecast time to event 

problems (Fard, Wang, Chawla, & Reddy, 2016). Let us assume that event data is available until 

time 𝑡𝑐, and the study wants to forecast member response at 𝑡𝑓, a future time point, that is 𝑡𝑓 >  𝑡𝑐. 

The following approach could be used to train a model: 

𝑃(𝑦(𝑡𝑐) = 1|𝑥, 𝑡 ≤ 𝑡𝑐) =  
𝑃(𝑦(𝑡𝑐) = 1, 𝑡 ≤ 𝑡𝑐) ∏ 𝑃(𝑥 = 𝑥𝑗|𝑦(𝑡𝑐) = 1)

𝑝
𝑗=1

𝑃(𝑥, 𝑡 ≤ 𝑡𝑐)
 

 

eq 17 

The probability of observing an event in the training data 𝑃(𝑦(𝑡𝑐) = 1|𝑥, 𝑡 ≤ 𝑡𝑐) is proportional to a 

product of the cumulative failure function 𝑃(𝑦(𝑡𝑐) = 1, 𝑡 ≤ 𝑡𝑐) and the naïve Bayes likelihood 

function ∏ 𝑃(𝑥 = 𝑥𝑗|𝑦(𝑡𝑐) = 1)
𝑝
𝑗=1 . The prediction at a future time point 𝑡𝑓 can then be computed as: 

𝑃(𝑦(𝑡𝑓) = 1|𝑥, 𝑡 ≤ 𝑡𝑓) =  
𝐹(𝑡𝑓) ∏ 𝑃(𝑥 = 𝑥𝑗|𝑦(𝑡𝑐) = 1)

𝑝
𝑗=1

𝑃(𝑥, 𝑡 ≤ 𝑡𝑓)
 

 

eq 18 

It is not difficult to see that the explicit computation of 𝑃(𝑥, 𝑡 ≤ 𝑡𝑐) and 𝑃(𝑥, 𝑡 ≤ 𝑡𝑓) is unnecessary, 

as they stay the same for all classes, to ensure the aggregate of the probabilities is 1.  

Furthermore, the naïve Bayes likelihood function described above assumes conditional independence 

among the variables, which might not hold for network variables. Thus, alternative methods are often 

needed to deliver more robust estimations (Fang et al., 2013). Tree augmented naïve Bayes (TAN) 

and Bayesian networks are popular alternatives (Fard et al., 2016). In the case of a TAN model: 
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𝑃(𝑦(𝑡𝑐) = 1|𝑥, 𝑡 ≤ 𝑡𝑐) =  
𝑃(𝑦(𝑡𝑐) = 1, 𝑡 ≤ 𝑡𝑐) ∏ 𝑃(𝑥𝑗|𝑦(𝑡𝑐) = 1, 𝑥𝑝(𝑗))

𝑝
𝑗=1

𝑃(𝑥, 𝑡 ≤ 𝑡𝑐)
 

 

eq 19 

The conditional independence assumption is relaxed by computing conditional mutual information 

among variables. Each variable  𝑥𝑗 is dependent on another variable 𝑥𝑝(𝑗). For details about TAN and 

Bayesian networks, please refer to (Koller & Friedman, 2009).  

Previous survival model research has a number of limitations:   

1. The Cox regression model likelihood function assumes a linear fixed effect relationship that is 

often not valid in a networked data setting 

2. The “early stage prediction model” estimates the probability of an event happening in the 

future. Such a model lacks a component to distinguish invitees who do not respond.  

To tackle this issue, we have adopted the approach in (Fard et al., 2016) by adding a logistic 

regression model to estimate the fraction of members not responding. Then, the survival model will 

learn from the remaining responding members using a Bayesian network. The result of combining eq 

16, 18, and 19 is an adjusted survival function which computes the joint probability that leverages the 

cure fraction and posterior probability of the Bayesian networks. The adjusted survival function is 

summarized in eq 20, with �̃� =  𝑡𝑐 for model training, and �̃� =  𝑡𝑓 for model prediction.  

𝑠(�̃�|𝑋, 𝑍) = 1 − 𝜋(𝑍) +  𝜋(𝑍)(1 − 𝑃(𝑦(�̃�) = 1|𝑥, 𝑡 ≤ �̃�)) 

 

eq 20 

Equation 20 follows the same structure as equation 16, the only difference is that the survival 

proabilty in equation 16 is replaced by a Bayesian estimation used in equation 19.  

The role of such a logistic regression is often known as the hurdle component in business studies 

(Bardhan, Oh, Zheng, & Kirksey, 2014). It precisely reflects a member’s participation decision in the 

econometrics literature (Wooldridge, 2010). We adopt this component in this research model, which 

is another contribution to the predictive modeling literature on event participation forecasting. The 

survival probability estimates 𝑠(�̃�|𝑋, 𝑍) can be linked to indicate members’ probability of accepting 
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invitations over time. “Survival” means “continue to not respond”, 1 − 𝑠(�̃�|𝑋, 𝑍) indicates the 

probability of responding. We can rank the members with regard to this from the probability estimates 

of member attendances at a specific time. The higher a member’s probability of responding compared 

with other members, the higher the member’s ranking. 

3.5 Experimental Setup and Evaluation Metric 

We conducted experiments to perform predictive tasks using the collected datasets. We divided the 

datasets into training and testing sets. We used 90% of the events to build the model, and the 

remaining 10% as future events for prediction. In other words, among social events held at 

time 𝑡1, 𝑡2, … 𝑡𝑘 , … 𝑡𝑛, where 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑘 < ⋯ < 𝑡𝑛, we chose 𝑡𝑘 so that 90% of the events 

were held prior to 𝑡𝑘 for model training, and used the other 10% events after 𝑡𝑘 to test the model. To 

test the predictive accuracy, we used the AUC metric of the Receiver Operator Characteristic (ROC) 

curve (Fawcett, 2006). AUC  is a common measure used to test time-varying predictions in survival 

analysis (Chen, Kodell, Cheng, & Chen, 2012; Heagerty & Zheng, 2005). To be more specific, the 

survival model outputs the survival score to quantify an individual’s probable response outcome 

(accept or not accept) at the given time. The survival score is the survival probability in most of the 

Cox models (as mentioned in 3.3.1), but can be time-varying probability estimates in Bayesian models 

(discussed in 3.4).   

The AUC value is a single quantity that summarizes predictive accuracy obtained from the ROC 

curve (Fawcett, 2006). AUC values range from 0 to 1, while meaningful prediction ranges from 0.5 to 

1; the higher the AUC, the more accurate the prediction. An AUC value of 1 means a perfect 

prediction.  

To test time-varying predictive performance, we started from the point when the first person responds 

until the point when no one responds. Within this period, we built the survival model based on current 

responses. The survival model then predicts new responses among those who have not yet responded. 

We validated the prediction result every 24 hours within the period. When no new responses occurred 

within a 24 hour window, we did not update the prediction results within that 24 hour range. In such 

cases, the AUC results will be the same as the previous 24 hour period. We eliminated duplicate 
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results when evaluating the model performance to avoid inflated outcomes. We tested the predictive 

performance for each event held by each group. We tested more than 800 events and aggregated the 

results per group. To better understand the model performance over time, we tested the results early, 

mid-term and late, three stages of equal duration. Each stage consists of 1/3 of the total duration, as 

shown in Figure 3.   

Event created  Time                 Event start 

  
 ||---------------1/3--------------||--------------2/3--------------||----------------3/3-------------|| 

                       ↑                  ↑                ↑ 

 

 

                   Early             Middle            Late 

 

Figure 3 early, middle and late stages 

Thus, we could evaluate the model not just at aggregated group level, but rather over different periods 

to see whether the model predictions are consistently good during each period. We included a 

selection of statistical models in the test, and we provide an overview of all the methods below in 

Table 4. 

Table 4 Overview of models tested 

Model specifications  Abbreviation 

Logistic regression  LR 

Cox proportional hazard model coxph 

Elastic-Net Regularized Cox model glmnet 

Elastic-Net Regularized Cox model with majorization-minimization fastcox 

Cox model with stepwise regression coxSW 

Proportional Subdistribution  Hazards Model for Competing Risks cmprsk 

Mixture cure model smcure 

Early stage prediction esp 

Mixture cure model with Bayesian networks bcure 

 

4. Results 

Table 5 shows the AUC values for each dataset, obtained by averaging the AUC values for 

predictions made at different times for the 10% testing data. The proposed bcure model predicts 
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invitation responses accurately, with an average AUC above 0.9. An AUC value higher than 0.9 is 

generally considered excellent (Pittman, Christensen, Caldow, Menza, & Monaco, 2007).  

We used a further statistical test procedure (Benavoli, Corani, & Mangili, 2016; Demšar, 2006) to test 

the significance of the results. A Friedman's test (p value < 0.001) rejected the hypothesis that the 

predictive accuracy of all the methods are identical. We used Wilcoxon rank sum tests to compare the 

best performing “bcure” model with other candidate methods. The Wilcoxon rank sum tests rejected 

the hypotheses that the predictive accuracy of the candidate models were identical to that of “bcure” 

(p value < 0.001). This confirms the significance of the result: the proposed model indeed performs 

better than all the benchmark models.  

Table 5 Summary of prediction results (AUC values)   

Groups LR coxph glmnet fastcox coxSW cmprsk smcure esp bcure 

NyGROUP1 0.854 0.850 0.760 0.726 0.841 0.642 0.883 0.855 0.997 

NyGROUP2 0.843 0.831 0.733 0.733 0.825 0.638 0.860 0.764 0.974 

NyGROUP3 0.823 0.785 0.764 0.765 0.811 0.682 0.812 0.729 0.983 

NyGROUP4 0.892 0.875 0.802 0.810 0.867 0.696 0.903 0.837 0.987 

NyGROUP5 0.842 0.814 0.809 0.813 0.810 0.534 0.871 0.684 0.957 

LaGROUP1 0.875 0.861 0.802 0.824 0.858 0.708 0.893 0.709 0.995 

LaGROUP2 0.878 0.870 0.733 0.733 0.824 0.623 0.889 0.903 0.992 

LaGROUP3 0.831 0.826 0.750 0.707 0.808 0.693 0.854 0.639 0.962 

LaGROUP4 0.843 0.834 0.647 0.706 0.812 0.550 0.856 0.866 0.987 

LaGROUP5 0.875 0.869 0.786 0.752 0.836 0.624 0.886 0.810 0.993 

LdGROUP1 0.880 0.854 0.765 0.774 0.848 0.690 0.880 0.741 0.976 

LdGROUP2 0.886 0.875 0.853 0.818 0.871 0.699 0.909 0.458 0.943 

LdGROUP3 0.850 0.832 0.748 0.769 0.822 0.621 0.860 0.798 0.989 

LdGROUP4 0.844 0.831 0.825 0.835 0.830 0.640 0.882 0.889 0.997 

LdGROUP5 0.763 0.754 0.662 0.680 0.745 0.596 0.801 0.661 0.989 

Average 0.852 0.837 0.763 0.763 0.827 0.642 0.869 0.756 0.981 

 

The feature selection methods, such as the penalized Cox regression models and the stepwise model, 

provide less accurate predictions. The penalized Cox regression models, such as “glmnet” and 

“fastcox,” rely on parameter tuning. As the number of responses changes over time, it is difficult to 

select optimal parameters to find the best subset of variables to predict responses. Nor does the 

stepwise model increase predictive accuracy. The datasets have a higher number of observations than 

variables (n>>p), while feature selection models generally work better when n<< p. Although feature 

selection could be helpful, the added value was limited in this study when using a limited number of 
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variables to make predictions. Additionally, high correlations among network features make feature 

selection difficult. 

The Sub-distribution Hazards Model (“cmprsk”), which specifically includes negative responses in 

the computation, does not provide more accurate predictions than the cause-specific Cox model 

(“coxph”). In fact, members often ignore invitations if they do not want to attend. The number of 

negative responses is fairly small in the population, and they add very little information to increase 

predictive performance.   

The mixture cure model (“smcure”) yields the best results among Cox regression models, with an 

average AUC of 0.869. A Wilcoxon rank sum test (p value = 0.009) shows that the mixture cure 

model is significantly more accurate than the Cox proportional hazard model (Demšar, 2006).  

The best performing model “bcure” uses the mixture cure model structure combined with Bayesian 

networks. Besides the benefit the mixture cure model brings to segment member participation 

decisions, the Bayesian model captures the potential dependence among the variables, against the 

regression counterparts. Although many different types of Bayesian network could be chosen, in this 

study we chose a fairly simple model, Tree augmented naïve Bayes (TAN), and already its results are 

impressive.   

Besides the aggregated results for each group, we assessed the prediction results in early, middle and 

late stages. 

Table 6 Summary of the prediction results 

from bcure over time (AUC values) 

 Early Middle Late 

NyGROUP1 0.9996 0.9983 0.9990 

NyGROUP2 0.9965 0.9975 0.9985 

NyGROUP3 0.9967 0.9977 0.9977 

NyGROUP4 0.9952 0.9973 0.9974 

NyGROUP5 0.9912 0.9971 0.9973 

LaGROUP1 0.9879 0.9969 0.9968 

LaGROUP2 0.9855 0.9964 0.9966 

LaGROUP3 0.9871 0.9963 0.9970 

LaGROUP4 0.9880 0.9966 0.9972 

LaGROUP5 0.9886 0.9963 0.9960 
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LdGROUP1 0.9885 0.9966 0.9962 

LdGROUP2 0.9855 0.9964 0.9961 

LdGROUP3 0.9860 0.9965 0.9962 

LdGROUP4 0.9876 0.9967 0.9962 

LdGROUP5 0.9880 0.9968 0.9961 

Average 0.9901 0.9969 0.9970 

 

All the values are above 0.9. However, at the early stage the predictions were less accurate, since they 

are based on fewer respondents (Table 6). 

We also assessed the variable importance, to show their predictive power (Grömping, 2009). Using 

the events from the fifteen tested groups in Table 2, we permuted each single variable. The variable 

importance is the average decrease in AUC value obtained by comparing the permuted model with the 

original model across all datasets. This method quantifies the importance of each variable in 

predicting responses. We assessed the relative variable importance by scaling all variable importance 

values sum up to 1.The higher the variable importance score, the more important a variable is in 

predicting responses.  

 

Figure 4 Variable importance scores for the proposed model 
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Figure 4 shows that all the variables contribute to the predictive performance. The most predictive 

variables are a member’s previous attendance (rate_y), and the number of event invitations sent 

(event_nr). Positive experience of social events often suggests that members will attend next time. 

The longer a member remains in a social group and is exposed to more social events, the more likely 

he/she is to attend future events. The number of previous rejections (rate_n) also helps predict future 

attendance; rejection could be a sign of member unavailability. The network variables in the 

predictive model significantly improve the prediction results, as they contribute 40.6% of the variable 

importance.  

5. Discussion 

In this study, we propose a survival model with competing risks to predict responses to social event 

invitations. The paper systematically analyzed the Cox regression model and its extension, 

considering variable selections, competing risks, and mixture cure modeling. Based on our 

experiments, the mixture cure model with Bayesian networks achieves the best predictive 

performance. 

While survival analysis has been applied to clinical studies and financial engineering, little is known 

of its applicability to the context of social media. The usefulness of survival analysis in new problem 

areas such as this need careful examination, both empirically and theoretically (Leow & Crook, 2016). 

We adopted the Cox model to achieve accurate predictive performance using the mixture cure 

modeling technique. Our findings extend the predictive modeling literature, as the proposed approach 

not only predicts invitation acceptance, but also when people are likely to respond. The ability to 

predict acceptance is crucial in many managerial areas, such as event management and scheduling. 

Therefore, this investigation could be useful in other areas of research, including scheduling system 

development (Cayirli & Veral, 2003), and general management of events (Harris, May, & Vargas, 

2016).  

Our study provides numerous possibilities for practitioners. Business decisions related to event 

resources planning could be supported by the data-driven approach proposed in this study. Identifying 

early respondents could facilitate event management and further assist corporate marketing campaigns 
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and public relationship management  (Weinberg & Williams, 2006). As the proposed method relies on 

past responses, it could also be used to validate whether a new event still interests previous attendees 

and whether they are still motivated to attend. Organizers could then adapt the event settings if 

necessary.  

If event organizers can accurately predict participation several days before an event, they can make 

appropriate organizational changes to improve the environment. This can contribute to a good 

atmosphere and attendee comfort, preventing last-minute changes. In cases of large numbers of 

members and limited availability, event organizers often have to schedule several events 

consecutively to fulfill their needs. Predicting member responses allows members to be targeted at 

different times for different events. This further adds value to the community, as it improves the user 

experience. More users could attend events to maximize community influence and to share knowledge 

and experience with others. An active community often contains rich information for companies to 

understand potential customers or enhance their product and service development (Ransbotham & 

Kane, 2011). The impact of these communities often extends beyond the business sector and could be 

useful in other fields, such as politics, ecology, and public health.  

Despite the excellent predictive accuracy, this performance might be influenced by many different 

factors. It could be explained by other confounding factors, such as individual incidents (e.g. feeling 

ill, or tight deadlines at work) or specific media messages (e.g. about weather and strikes). Further 

research is needed to explore such phenomena, but the discussion of such confounding factors is 

beyond the scope of this paper.  

We note that the performance of survival models is generally influenced by response times. If 

multiple tied response times occur in the dataset, researchers should consider those tied times in the 

model estimation procedure (Efron, 1977). Modern computer systems record time stamps extremely 

precisely, making ties extremely unlikely. 

6. Limitations 

This paper limits its scope by basing predictions only on online responses to social event invitations. 

We have ignored personal information, such as chatting behavior, group member exchanges, and 
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sociodemographic characteristics. While past work (Liu et al., 2012; Purushotham & Jay Kuo, 2015) 

has shown that individual and geographic group information generate useful insights, we ignored such 

information, taking a generalist approach. In practice, companies may have concerns about using 

more information than the invitation response, due to privacy issues. Including such information 

might be meaningful in particular contexts. Second, our approach does not apply to those with no past 

event participation data for network inference. People may join social events from other social groups 

and have different social event networks. We use a single social group to study the set of interested 

users. This comprises a limitation, as researchers can rarely access the full social network (Borgatti et 

al., 2013). Member participation at any given event is primarily related to the people with whom they 

will socialize at this event. Gathering participation information from other social groups may be 

difficult in real life settings (Knecht, Snijders, Baerveldt, Steglich, & Raub, 2010).  

7. Conclusion 

This paper proposes a competing risk model to predict social event responses using social event data 

and past response rates. Based on past responses, we extract network information for each individual, 

and use that network information to make predictions. We collected datasets from three distinctive 

locations to test our research model. Historical social event data on member responses proves helpful 

in predicting positive responses to invitations. We observe homophily and heterophily to be predictive 

in this study. For privacy reasons, the proposed method does not require geographical or social-

demographic information. It is possible to generate knowledge about which people will respond to a 

social event, and when, using only historical data about other social events. This can contribute to 

effective event management and resource planning.  
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Appendix 

Calculation of the network features 

Let us denote a weighted 4 x 4 matrix M=|

0 1 0 3
1 0 1 2
0 1 0 0
3 2 0 0

|, and the unweighted version of the matrix 

UM =|

0 1 0 1
1 0 1 1
0 1 0 0
1 1 0 0

|, which only considers if there is an edge (=1) or not (=0).  

Degree 

𝐷𝑖(𝑀𝑎)= ∑ 𝑀𝑎𝑖𝑗
𝑛
𝑗=1  

 

eq A.1 

Since the matrix is undirected, the degree is the row/column sum of the matrix M and UM. The 

degree measures for [𝐴 𝐵 𝐶 𝐷 ] are [4 4 1 5 ] for the weighted version and 

[2 3 1 2 ] for the unweighted version, respectively.  

Local clustering coefficient 

CCi = 
𝑁𝑖

𝑘𝑖∙(𝑘𝑖−1)

2

 eq A.2 

 

ki is the number of neighbor(s) a node has. The ki values for [𝐴 𝐵 𝐶 𝐷 ] are [2 3 1 2 ].The 

 𝑁𝑖 for node 𝑖 is the number of observed edges among its neighbors. Using node A as an example in 

the unweighted case (binary), A has two neighbors[𝐵 𝐷 ], and there is one edge between [𝐵 𝐷 ]. 

Thus  𝑁𝑖 = 1 and 𝑘𝑖 = 2, the clustering coefficient becomes 
1

2∙(2−1)

2

= 1. In large graphs, the clustering 

coefficient will often be less than 1, since the neighbors will not establish full connections between 

each other.  𝑁𝑖 is often computed in matrix algebra using the ith diagonal element in the third order 
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matrix A = M*M*M or UA = UM*UM*UM in the unweighted case. Clearly, the diagonal elements 

(i,i) of UM*UM are the number of neighbors, and the diagonal elements (i,i) of UM*UM*UM are the 

number of connections between the neighbors (Ni).  Node C only has one neighbor thus the neighbor 

will not cluster and the clustering coefficient is set to 0. For the weighted case, the weight is 

normalized to the power of 1/3 before computation (Fagiolo, 2007). The M after normalization 

is |

0 1 0 1.44
1 0 1 1.26
0 1 0 0

1.44 1.26 0 0

|, the 𝑁𝑖 will be the (i, i) elements in |

0 1 0 1.44
1 0 1 1.26
0 1 0 0

1.44 1.26 0 0

|

3

. The 

weighted clustering coefficients for [𝐴 𝐵 𝐶 𝐷 ] are respectively: [1.81 0.61 0 1.82 ]. 

Interested readers should refer to (Fagiolo, 2007) for a review of computing local Clustering 

coefficient in different disciplines, such as physics science and social behavior science.  

Betweenness centrality 

Bci= ∑
𝑝𝑎𝑡ℎ(𝑖,𝑗,𝑘)

𝑝𝑎𝑡ℎ(𝑗,𝑘)𝑖≠𝑗≠𝑘  eq A.3 

 

In the case of the Betweenness centrality, we see that [𝐴 𝐵 𝐷 ] connect to each other, thus none of 

them are “between” two others. Hence the Betweenness centrality for [𝐴 𝐷 ] will be 0. The 

Betweenness centrality for node C will be 0 because there is no path going through this node. Node B 

will be the only node with non-zero Betweenness centrality in this case. It is in between C->D, D->C, 

A->C, C->A. Hence the Betweenness centrality for node B is 
1

1
+

1

1
+

1

1
+

1

1
= 4 in the unweighted 

case. Overall the Betweenness centrality will be [0 4 0 0 ]for nodes [𝐴 𝐵 𝐶 𝐷 ]. For the 

weighted case, the shortest path will have to take edge weights into account. In large weighted graphs, 

the computation of the centrality requires Dijkstra's algorithm to find the shortest path.  
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