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Determining the symmetries of difference equations

Pavlos Xenitidis

September 30, 2018

Abstract

We derive the determining equations for the N-th order generalised symmetries of partial difference equations defined

on d consecutive quadrilaterals on the lattice using the theory of integrability conditions. We provide their algebraic for-

mulation and develop the necessary theoretical framework for their analysis along with a systematic method for solving

functional equations of the form T ( f )+ A f +B = 0. Our approach is algorithmic and can be easily implemented in sym-

bolic computations. We demonstrate our approach by deriving the symmetries of various equations and discuss certain

applications and extensions of the theory.

1 Introduction

The theory of the symmetries of differential equations is well developed, its relation to integrability is known and there

is a plethora of corresponding results and applications, see for instance [16, 23, 13]. Moreover the theory provides us the

means to compute the symmetries of a given equation in an algorithmic way and, most importantly, to implement it in

symbolic computations, see for instance the Mathematica package Sym [3].

The corresponding theory for difference equations is relatively new and several methods and approaches have been

proposed recently for the computation of generalised symmetries of partial difference equations [5, 11, 12, 14, 15, 17, 20].

Levi and Yamilov developed the so-called generalised symmetry method for difference equations [11, 12] which has been

used in a classification problem [8], and for the computation of symmetries, e.g. in [19]. Moreover based on this method,

the authors of [5] proposed the use of the characteristic vector fields for the derivation of determining equations and the

computation of symmetries. A different approach is offered by the theory of integrability conditions developed in [14, 15]

which can be used either for the classification of integrable equations or to determine the symmetries of a given equation.

Finally, other approaches have also been used in [20, 17].

All these methods deal with partial difference equations defined on an elementary quadrilateral of the square lattice

(quad equations) and lead essentially to the same conditions for the existence of symmetries of order one or two. But

there do exist difference equations defined on d consecutive quadrilaterals (d-quad equations),

Q(un,m ,un+1,m , . . . ,un+d ,m ,un,m+1,un+1,m+1, . . . ,un+d ,m+1) = 0, d ∈N
∗,

admitting generalised symmetries of order N , see for instance [1, 2, 4] and references therein. Therefore our aim here is

to consider d-quad equations and systematically study their generalised symmetries of any order.

To achieve that we extend the theory of integrability conditions to include d-quad equations and derive corresponding

conditions for the existence of symmetries of order N in the n direction. These conditions can then be used for the

derivation of symmetries. Specifically, the relation between integrability conditions and symmetries stems from the fact

that the latter (viewed as differential-difference equations) and partial difference equations share the same recursion

operator [14]. This allows us to interpret the integrability conditions for the existence of a recursion operator of order

N as determining equations for symmetries of the same order by identifying certain coefficients of the formal recursion

operator R with the first order derivatives of the symmetry generator F [15]. As we have two different ways to replace

a pseudo-difference operator with a formal series (either Taylor or Laurent), we are able to construct a set of 2N linear

functional equations with unknowns all the first order derivatives of F (except ∂un,m F ). But the most important fact is that

these determining equations can be derived algebraically for any d-quad equation and its N -th order symmetry.

Since the determining equations are functional relations of the form T ( f )+ A f +B = 0, where A, B are known func-

tions, operator T is the shift in the m direction, and f = f (n,m,un−N ,m , . . . ,un+N ,m ), we develop the necessary framework
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and tools to solve them. This amounts to defining two sets of dynamical variables based on the arguments of f and T ( f ),

respectively; two elimination maps to eliminate one set of dynamical variables in favour of the other; and appropriate dif-

ferential operators (chain rule) related to those sets of dynamical variables. Using this machinery, we propose a general

algorithmic method to solve functional equations of the above form.

The main advantage of our approach is that all the key elements, like determining equations, differential operators

and elimination maps, can be easily defined for any d-quad equation in a certain class and its N -th order symmetry and

subsequently employed for solving functional equations in any software suitable for symbolic computations. It should be

also emphasised that even though the integrability conditions were originally developed for autonomous quad equations

and their autonomous symmetries, in their interpretation as determining equations they can also be used for the study

of non-autonomous equations and their autonomous and non-autonomous symmetries, e.g. see [22], as well as [6] for a

similar interpretation of the generalised symmetry method for quadrilateral equations.

The paper is organised as follows. Section 2 presents our notation and framework and gives the algebraic formula-

tion of formal series and that of the integrability conditions. Section 3 deals with the dynamical variables and elimination

maps necessary for dealing with functional equations and Section 4 presents our strategy for solving such equations. Sec-

tion 5 implements the proposed method by deriving the symmetries of three difference equations and in the concluding

section 6 we discuss further applications and extensions of the theory.

2 Symmetries and their determining equations

We start this section by introducing our notation. In order to make our presentation self-contained, we give a short

review on symmetries of difference equations, pseudo-difference operators and integrability conditions based on [14,

15].We present the necessary extensions of the theory to cover scalar d-quad equations and derive algebraic formulae

for the computation of formal series. Finally we present the integrability conditions, or in our terminology determining

equations, in a purely algebraic form.

2.1 Notation and the class of difference equations

In what follows we consider scalar partial difference equations for a function u of two independent discrete variables

n and m. The dependence of u on those variables is denoted in the standard way with indices, i.e. u(n + i ,m + j ) =

un+i ,m+ j . The shift operators in the n and m direction are denoted by S and T , respectively, and their action is defined

as S
k (un,m ) = un+k ,m and T

ℓ(un,m ) = un,m+ℓ, respectively

The equations we are going to consider are partial difference equations defined on d consecutive quadrilaterals on

the lattice, i.e. equations of the form

Q(un,m ,un+1,m , . . . ,un+d ,m ,un,m+1,un+1,m+1, . . . ,un+d ,m+1) = 0, d ∈N
∗. (1)

(n,m) (n +d ,m)

(n,m +1) (n +d ,m +1)

Figure 1: d consecutive quadrilaterals where equation (1) is defined.

For simplicity in our notation we will denote the derivatives of Q as

Qi , j :=
∂Q

∂un+i ,m+ j
. (2)
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Throughout our analysis we assume that function Q depends explicitly on the values of u at the corners of the quadrilat-

eral on which the equation is defined. We can state this as

Requirement 1. The defining function Q of equation (1) is such that

Q0,0Qd ,0Q0,1Qd ,1 6= 0. (3)

Moreover, we assume that

Requirement 2. Function Q cannot be factored and represented as a product of functions depending on the same or a

smaller number of variables.

Requirement 3. Equation (1) can be solved uniquely with respect to any of the corner values un,m , un+d ,m , un,m+1 and

un+d ,m+1.

Finally, we want to exclude the case that equation (1) degenerates to one defined on d ′ < d quadrilaterals by a point

transformation of the independent variable n. For instance, we want to exclude equations of the forms

Q(un,m ,un+k ,m , . . . ,un+sk ,m ,un,m+1,un+k ,m+1, . . . ,un+sk ,m+1) = 0 and Q(un,m ,un+d ,m ,un,m+1,un+d ,m+1) = 0,

which clearly can be written as

Q(un′,m ,un′+1,m , . . . ,un′+s,m ,un′ ,m+1,un′+1,m+1, . . . ,un′+s,m+1) = 0 and Q(un′,m ,un′+1,m ,un′ ,m+1,un′+1,m+1)= 0,

respectively, after an appropriate change of the independent variable n. So we have to assume that Q depends explicitly

on at least one of the intermediate shifts of u. We can formulate this as

Requirement 4. Let k > 1 denote the divisors of d > 1. We require that for every divisor k at least one of the derivatives

Qi k+ℓ, j is not identically zero, with i = 0, . . . , d
k
−1, ℓ= 1, . . . ,k −1 and j = 0,1. Equivalently, for every divisor k > 1 of d we

require that
d/k−1
∑

i=0

k−1
∑

ℓ=1

1
∑

j=0

Q2
i k+ℓ, j 6= 0. (4)

Example 2.1. It is easy to check that the quadrilateral equation [19]

un,m un+1,m +un,m+1un+1,m+1 +un+1,m un,m+1(un,m +un+1,m+1 +1)+χ= 0, (5)

satisfies the first three requirements. As in this case d = 1, the last requirement does not apply to (5).

On the other hand, the two-quad equation

un,m un+2,m+1

(

un+1,m+1(un+1,m +un,m+1)+un+1,m un+2,m

)

+α= 0 (6)

satisfies requirements 1–3 (unless α= 0 in which case requirement 2 is not satisfied). For the fourth one, since it is d = 2

and k = 2, relation (4) becomes Q2
1,0 +Q2

1,1 6= 0, which obviously holds. �

2.2 Symmetries and recursion operators

We collect here some necessary definitions to make our presentation self-contained. We also use the notation f ([u]) to

denote that function f depends on un,m and a finite, but otherwise unspecified, number of shifted values of u.

Definition 2.1. The Fréchet derivative of a function f ([u]) is defined as

D f :=
∑

i , j

∂ f

∂un+i ,m+ j
S

i
T

j . (7)

Using the notion of Fréchet derivative, we can define the symmetries of a difference equation in the following way.
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Definition 2.2. A function F (n,m, [u]) is a symmetry of equation Q(n,m, [u]) = 0 if

DQ (F ) = 0 (8)

holds on solutions of Q(n,m, [u]) = 0.

It is also useful to interpret a symmetry as a differential-difference equation compatible with the difference equation.

More precisely,

Definition 2.3. Assume that un,m depends also on a continuous variable t . Then, the differential-difference equation

∂t un,m = F (n,m, [u]) (9)

defines a symmetry of the difference equation Q(n,m, [u]) = 0 if Dt (Q)= 0 on solutions of the difference equation.

It is not difficult to verify that the requirement Dt (Q)= 0 in view of (9) is equivalent to (8).

In what follows we discuss generalised symmetries of equation (1), and more precisely generalised symmetries in the

n direction which are of the form F (n,m,un−N ,m , . . . ,un+N ,m ). We call the positive integer N the order (or length) of

symmetry F . We restrict our analysis to this kind of symmetries because they can be computed systematically. However,

and as far as we are aware, the symmetries in the other lattice direction are of the general form

G =G(un,m−M , . . . ,un,m+M , . . . ,un+d−1,m−M , . . . ,un+d−1,m+M ), M ∈N,

for which, at the moment, there is no systematic way to compute them when d > 1.

The existence of an infinite hierarchy of generalised symmetries of increasing order serves as a definition or criterion

of integrability. In fact to prove integrability in this context is sufficient to find a recursion operator Rwhich maps symme-

tries to (higher order) symmetries. For the symmetries we are interested in recursion operators are S -pseudo-difference

operators [14] which can be formally represented either by their corresponding formal Taylor series

RT =

∞
∑

i=−N

r̂i S
i
= r̂−N S

−N
+ r̂−N+1S

−N+1
+·· ·+ r̂−1S

−1
+ r̂0 + r̂1S +·· · ,

or by their formal Laurent series

RL =

∞
∑

i=−N

r̃−i S
−i

= r̃N S
N
+ r̃N−1S

N−1
+·· ·+ r̃1S + r̃0 + r̃−1S

−1
+·· · .

The positive integer N is also referred to as the order of the recursion operator.

Example 2.2. Consider the discrete potential KdV (or H1) equation

(un,m −un+1,m+1)(un+1,m −un,m+1) =α−β. (10)

Its lowest symmetry in the n direction is of length one and has the form

∂t un,m = Fn,m =
1

un+1,m −un−1,m
. (11)

The corresponding recursion operator is [14]

R= Fn,m (S +1)(S −1)−1 Fn,m

(

S −S
−1

)

.

To represent this operator as a formal series, we have to replace (S − 1)−1 with a formal series and then expand the

resulting expression. If we represent (S −1)−1 with its formal Taylor series (S −1)−1 = −1−S −S
2 − ·· · , then we can

write the recursion operator as

RT = F 2
n,mS

−1
+2Fn,m Fn+1,m +Fn,m (2Fn+2,m −Fn,m )S +·· · . (12)
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If we have employed the formal Laurent series (S −1)−1 =S
−1 +S

−2 +S
−3 +·· · , then we would have ended up with

RL = F 2
n,mS +2Fn,m Fn−1,m +Fn,m (2Fn−2,m −Fn,m )S −1

+·· · . (13)

In both cases we can easily check that (S −1)−1◦(S −1) = (S −1)◦(S −1)−1 = 1 hold when we replace operator (S −1)−1

with either of its formal series.

It should be noted that H1 admits one more symmetry of the same order [20], namely

∂sun,m =
n

un+1,m −un−1,m
+

un,m

2(α−β)
,

which can be derived using our approach based on the integrability conditions and the formal recursion operator. How-

ever the action of R on the above symmetry cannot be defined locally and leads to non-local symmetries [21]. �

2.3 Determining equations

In this section we exploit recursion operators to derive necessary integrability conditions for equation (1) which also serve

as determining equations for the symmetries of the same equation. More precisely, our approach extents the correspond-

ing theory for quadrilateral equations developed in [14, 15] and employs the first few of these conditions as equations to

determine the symmetries of the equation.

We start be presenting the necessary generalisation of Theorem 1 in [14].

Theorem 2.4. Consider the difference equation (1).

1. If there exist S -pseudo-difference operators R and P such that

DQ ◦R=P◦DQ , (14)

where

DQ =

d
∑

i=0

Qi ,0S
i
+

d
∑

i=0

Qi ,1S
i
T , (15)

then R is a recursion operator for equation (1).

2. Relation (14) is satisfied if and only if

T (R)=B
−1

◦A ◦R◦A
−1

◦B, (16)

and the operator P satisfies

P=A ◦R◦A
−1, (17)

where

A :=
d
∑

i=0

Qi ,0S
i and B :=

d
∑

i=0

Qi ,1S
i , (18)

Proof. The proof is omitted here as it is similar to the one given in [14].

Equation (16) is obviously satisfied if we replace A
−1, B

−1 and R with their respective formal series. And we can do

that using either Taylor or Laurent formal series. Even though these two options lead to equivalent integrability conditions

and conservation laws [14], they provide us with two inequivalent sets of determining equations for the symmetry F as they

involve different derivatives of F .

To see that we have to take into account that difference and differential-difference equations share the same recursion

operator. To be more precise, if ∂t un,m = F is a symmetry of equation (1) and R is the corresponding recursion operator,

then R is a recursion operator for this differential-difference equation and the following relation holds.

∂tR= [DF ,R] (19)
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If we replace the recursion operator in the above relation with its formal series, then we can derive the connection among

the derivatives of F and the coefficients in the formal series of R. Specifically, if we employ the Laurent series

RL = r̃N S
N
+ r̃N−1S

N−1
+·· ·+ r̃1S + r̃0 + r̃−1S

−1
+ . . . (20)

or the Taylor series

RT = r̂−N S
−N

+ r̂−N+1S
−N+1

+·· ·+ r̂−1S
−1

+ r̂0 + r̂1S + . . . , (21)

then relation (19) implies that r̃i and r̂−i , with i = 1, . . . , N , are proportional to first order derivatives of F . However, as we

are interested in determining symmetry F and not the formal recursion operator, it is sufficient to consider that

r̃i =
∂F

∂un+i ,m
, r̂−i =

∂F

∂un−i ,m
, i = 1, . . . , N . (22)

So our next target is to extract these determining equations from (16) by exploiting Taylor and Laurent series and formu-

late them algebraically.

Example 2.3. Starting with equation (10), its symmetry (11) and the formal recursion operators given in Example 2.2 we

can readily verify that (i) The leading term in the Taylor series (12) is indeed the derivative of Fn,m (11) with respect to

un−1,m , and (ii) The leading term in the Laurent series (13) is equal to −∂un+1,m Fn,m . �

2.4 Formal series and their algebraic formulation

For the algebraic formulation of (16) we need to compute formal series for pseudo-difference operators. For this purpose

we first define two matrices.

Definition 2.5. For any K ∈N
∗, we define the K ×K matrices L(a) and T(a), where a ∈R

K , as

(L(a))i , j =

{

S
1− j

(

(a)i− j+1

)

, i ≥ j

0 i < j
and (T(a))i , j =

{

S
j−1

(

(a)i− j+1

)

, i ≥ j

0 i < j
, (23)

respectively, where (a)k denotes the k th entry of a.

Moreover, with any difference operator Φ of order d , i.e. Φ= φd S
d + . . .+φ1S +φ0 where d ∈N

∗ and φ0φd 6= 0, we

associate two vectors φL , φT in R
K according to the following rules.

φL =







(φd · · ·φd+1−K )⊺, if K ≤ d +1

(φd · · ·φ0 0 · · ·0)⊺, if K > d +1

, and φT =







(φ0 · · ·φK−1)⊺, if K ≤ d +1

(φ0 · · ·φd+1 0 · · ·0)⊺, if K > d +1

(24)

Using the matrices in Definition 2.5 and the vectors in (24), we can determine algebraically the coefficients of the

formal series of the inverse of operator Φ.

Theorem 2.6. Consider the difference operator Φ=φd S
d + . . .+φ1S +φ0, where d ∈N

∗ and φ0φd 6= 0, and its associated

vectors φL , φT given in (24). Moreover, let e1 denote vector (10 · · · )⊺ of R
K .

1. The formal Laurent series of the inverse of Φ can be written as

Φ
−1
L =

∞
∑

j=d

φ̃ j S
− j

= φ̃d S
−d

+ φ̃d+1S
−d−1

+ . . . , (25)

with the first K coefficients given by

φ̃L = (φ̃d · · · φ̃d+K−1)⊺ =S
−d

(

L(φL)−1
)

e1. (26)
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2. The formal Taylor series of the inverse of Φ can be written as

Φ
−1
T =

∞
∑

j=0

φ̂ j S
j
= φ̂0 + φ̂1S + φ̂2S

2
+ . . . , (27)

with the first K coefficients given by

φ̂T = (φ̂0 · · · φ̂K−1)⊺ = T(φT )−1e1. (28)

Proof. Using Φ and the Laurent series (25) along with Φ
−1 ◦Φ= 1, we end up with

∞
∑

k=0

(

d+k
∑

i=d

φ̃i S
−i (φi−k )

)

S
−k

= φ̃d S
−d (φd )+

(

φ̃d S
−d (φd−1)+ φ̃d−1S

−d−1(φd )
)

S
−1

+ . . . = 1.

We can collect the first K terms in the above relation and write them as













S
−d (φd ) 0 · · · 0 0

S
−d (φd−1) S

−d−1(φd ) 0 · · · 0
...

...
. . .

...
...

S
−d (φd−K+1) S

−d−1(φd−K+2) · · · · · · S
−d−K+1(φd )

























φ̃d

φ̃d+1

...

φ̃d+K−1













=













1

0
...

0













.

Since φd 6= 0, the lower triangular matrix of the system is invertible and thus we can express the first K coefficients in the

Laurent series (25) in terms of the components of operator Φ. Taking into account the definition (23) of matrix L we can

write the solution to the above system as in (26). Working in the same way but employing Taylor series (27), we end up

with a similar linear system for the first K components of the series (27), the solution to which is (28).

Using Theorem 2.6, we can now compute the composition of an S -operator and a formal series according to

Theorem 2.7. Consider the difference operators Φ= φd S
d + . . .+φ1S +φ0 and Ψ=ψd S

d + . . .+ψ1S +ψ0 with d ∈N
∗

and φ0φdψ0ψd 6= 0. Let φL , φT and ψL , ψT be their associated vectors (24). Then

1. The first K coefficients of the formal Laurent series

Φ
−1

◦Ψ= c̃0 + c̃1S
−1

+ c̃2S
−2

+ . . .

are given by

(c̃0 · · · c̃K−1)⊺ =S
−d

(

L(ψL)L(φL)−1
)

e1. (29)

2. The first K coefficients of the formal Taylor series

Φ
−1

◦Ψ= ĉ0 + ĉ1S ++ĉ2S
2
+ . . .

are given by

(ĉ0 · · · ĉK−1)⊺ = T(ψT )T(φT )−1e1. (30)

Proof. Using Theorem 2.6 we replace operator Φ−1 with its formal series. Then we expand the composition Φ
−1 ◦Ψ and

collect coefficients of different powers of the shift operator which yields the above algebraic relations.

2.5 Algebraic formulation of the determining equations

We may now replace in (16) all the pseudo-difference operators with their formal series and use Theorem 2.7 accordingly

to derive the sought algebraic form of the determining equations.
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Theorem 2.8 (Laurent series). Consider relation (16) with operators A , B given in (18) and R being an S -pseudo-

difference operator of order N . Let qL 0 and qL 1 be the vectors associated with A and B, respectively, defined as
(

qL j

)

i
=

Qd+1−i , j , i = 1, . . . ,K and j = 0,1. If

RL = r̃N S
N
+ . . .+ r̃0 + r̃−1S

−1
+ . . .

is the formal Laurent series of R, then the first K integrability conditions following from (16) can be written as

T (r̃ ) =S
N

(

L(x̃)
)

L(r̃ )S −d
(

L(qL 0)L(qL 1)−1
)

e1, (31)

where r̃ = (r̃N r̃N−1 · · · r̃N−K+1)⊺ and x̃ = (x̃0 · · · x̃K−1)⊺ :=S
−d

(

L(qL 1)L(qL0)−1
)

e1.

Proof. If we replace A
−1 ◦B and B

−1 ◦A in (16) according to Theorem 2.7 and R with its formal Laurent series, then

relation (31) follows by employing twice Theorem 2.7.

Using formal Taylor series we end up with

Theorem 2.9 (Taylor series). Consider relation (16) with operators A , B given in (18) andR being an S -pseudo-difference

operator of order N . Let qT 0 and qT 1 be the vectors associated with A and B, respectively, defined as
(

qT j

)

i
= Qi−1, j ,

i = 1, . . . ,K and j = 0,1. If

RT = r̂−N S
−N

+ . . .+ r̂0 + r̂1S + . . .

is the formal Taylor series of R, then the first K integrability conditions following from (16) can be written as

T (r̂ ) =S
−N

(

T(x̂)
)

T(r̂ )T(qT 0)T(qT 1)−1 e1, (32)

where r̂ = (r̂−N r̂−N+1 · · · r̂K−N−1)⊺ and x̂ := (x̂0 · · · x̂K−1)⊺ = T(qT 1)T(qT 0)−1e1.

Proof. It is similar to the proof of Theorem 2.8.

Remark 2.1. Writing equation (16) in the equivalent form R = A
−1 ◦B ◦T (R)◦B

−1 ◦A we can express vectors r̃ , r̂ in

terms of their T shifts. In particular the use of formal Laurent series leads to

r̃ =S
N

(

L(ỹ )
)

L(T (r̃ )) S
−d

(

L(qL 1)L(qL0)−1
)

e1, ỹ :=S
−d

(

L(qL 0)L(qL1)−1
)

e1, (33)

while the use of Taylor series results to

r̂ =S
−N

(

T(ŷ)
)

T(T (r̂ )) T(qT 1)T(qT 0)−1 e1, ŷ := T(qT 0)T(qT 1)−1e1. (34)

The positive integer K appearing in Theorems 2.8 and 2.9 is arbitrary. However, for the derivation of a symmetry of

order N , it is sufficient to choose K = N because of relations (22). Thus, functional equations (31-34) with K = N and in

view of relations (22), along with equation (8), are the determining equations for the N -th order generalised symmetry F in

the n direction of the difference equation (1).

Remark 2.2. We are interested in determining the lowest order generalised symmetries in the n direction. As there is

no criterion for the initial choice of N , we have to start with N = 1 and work successively until we find a non-trivial

generalised symmetry. All the examples we have at our disposal suggest that the lowest order generalised symmetries

admitted by equation (1) are of order N ≤ d +1. �

Now the next step is to try to solve the functional equations (31-34) by reducing them into a system of partial differ-

ential equations for the coefficients r̃ and r̂ of the formal recursion operator. For this purpose, we have first to introduce

a few concepts and tools.

3 Dynamical variables, elimination maps and differentiation

In this section we present the tools we are going to use to solve functional equations like the determining equations

(31), (32). More precisely, we define two different sets of dynamical variables, corresponding elimination maps, and

appropriate total derivatives for the analysis of functional equations. We define these concepts in a way suitable for

symbolic computations.
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3.1 Dynamical variables

The defining equation (8) for symmetries and the integrability condition (16) hold on solutions of the corresponding

difference equation. This means that we must use the latter and its shifts to eliminate some of the values of u appearing

in the former equations. Since Requirements 1 and 3 allow us to solve equation (1) uniquely for any of the corner values

un,m , un,m+1, un+d ,m and un+d ,m+1, we choose to eliminate always values of u which lie on the same horizontal line. More

precisely,

• We use equation (1) and its shifts to eliminate variables un+s,m+1 with s ≥ d or s < 0. Then, any expression involving

those variables, like (31) and (32), will become an expression depending only on {un+i ,m }i∈Z and {un+ j ,m+1}d−1
j=0

.

• Alternatively, we employ equation (1) and its shifts to eliminate variables un+s,m with s ≥ d or s < 0. In this case,

any expression involving these variables will be reduced to one depending only on {un+i ,m+1}i∈Z and {un+ j ,m }d−1
j=0

.

These are the two different sets of dynamical variables which we are going to use in our analysis of functional equa-

tions and we denote them as

U0 =

{

{

un+i ,m

}

i∈Z∪
{

un+ j ,m+1

}d−1

j=0

}

, U1 =

{

{

un+i ,m+1

}

i∈Z∪
{

un+ j ,m

}d−1

j=0

}

. (35)

We also denote the sets of the eliminated variables as

V0 = U0 \ U1 =
{

un+s,m : s ≥ d or s < 0
}

,

V1 = U1 \ U0 =
{

un+s,m+1 : s ≥ d or s < 0
}

.
(36)

In applications we always deal with relations and equations depending on a finite number of the dynamical variables.

Thus, in what follows when we say that a relation depends on U0 or U1 or U0 ∪U1, we mean that it depends on a finite,

but otherwise unspecified, subset of the corresponding set of variables.

U0 U1

un+i ,m

un,m+1

un,m

un+i ,m+1

un+2,m

un+2,m+1

Figure 2: The two sets of dynamical variables U0 (black dots) and U1 (grey dots) with d = 3. In each case two of the eliminated values,

from V1 and V0 respectively, are denoted with circles.

3.2 Elimination maps

The concept of the elimination map was introduced in [14] for quadrilateral equations. In a similar way we introduce

here two elimination maps E0 and E1 which are adapted to our considerations of the dynamical variables U0 and U1 and

the eliminated ones V0 and V1.

3.2.1 Elimination map E0

The elimination of variables V0 requires us to solve equation (1) for un+d ,m or un,m , shift the result appropriately and then

replace all variables V0 recursively. Specifically, if we denote

un+d ,m = X (un,m , . . . ,un+d−1,m ,un,m+1, . . . ,un+d ,m+1),

un,m = Y (un+1,m , . . . ,un+d ,m ,un,m+1 , . . . ,un+d ,m+1),
(37)

then we can describe the elimination of these variables as follows.
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Definition 3.1. The elimination map E0 : U0 ∪U1 → U1 is defined recursively as

for 0 ≤ i < d : E0(un+i ,m ) = un+i ,m ; (38a)

for all i : E0(un+i ,m+1) = un+i ,m+1 ; (38b)

for i ≥ d :

E0(un+i ,m ) = X (E0(un+i−d ,m ), . . . ,E0(un+i−1,m ),un+i−d ,m+1, . . . ,un+i ,m+1); (38c)

for i < 0 :

E0(un+i ,m ) = Y (E0(un+i+1,m ), . . . ,E0(un+d+i ,m ),un+i ,m+1 , . . . ,un+d+i ,m+1). (38d)

3.2.2 Elimination map E1

The elimination of variables V1 in favour of variables U0 can be done in a similar way. Now we solve equation (1) for

un+d ,m+1 or un,m+1, i.e.

un+d ,m+1 = Z (un,m , . . . ,un+d ,m ,un,m+1 , . . . ,un+d−1,m+1),

un,m+1 =W (un,m , . . . ,un+d ,m ,un+1,m+1, . . . ,un+d ,m+1),
(39)

and then we describe this process as follows.

Definition 3.2. The elimination map E1 : U0 ∪U1 → U0 is defined recursively as

for all i : E1(un+i ,m ) = un+i ,m ; (40a)

for 0≤ i < d : E1(un+i ,m+1) = un+i ,m+1 ; (40b)

for i ≥ d :

E1(un+i ,m+1) = Z (un+i−d ,m , . . . ,un+i ,m ,E1(un+i−d ,m+1), . . . ,E1(un+i−1,m+1)); (40c)

for i < 0 :

E1(un+i ,m+1) =W (un+i ,m , . . . ,un+d+i ,m ,E1(un+i+1,m+1), . . . ,E1(un+d+i ,m+1)). (40d)

3.3 Differentiation

Our requirements for the defining function Q of equation (1) allow us to express variables Vℓ as functions of variables

U1−ℓ. In this context, using implicit differentiation, we compute the derivatives of variables un+r,m+ℓ ∈ Vℓ with respect

to un+k ,m+ℓ ∈ U0 ∩U1, where k ∈ I = {0, . . . ,d −1}, r ∉ I and ℓ = 0,1. We also use these expressions to define differential

operators which annihilate any function depending on V1−ℓ∪
{

un,m+1−ℓ, . . . ,un+d−1,m+1−ℓ

}

.

Proposition 3.3. The derivatives of un+r,m+ℓ, d ≤ r ≤ d +N , with respect to un+k ,m+ℓ, with 0 ≤ k < d and ℓ= 0 or 1, are the

solutions of the system

Ãℓ ũ(k ,ℓ) = ṽ (k ,ℓ), (41a)

where the entries of the (N +1)× (N +1) matrix Ãℓ are given by

(

Ãℓ

)

i , j =S
i−1(Qd+ j−i ,ℓ), (41b)

and the vectors ũ(k ,ℓ), ṽ (k ,ℓ) are defined as

(

ũ(k ,ℓ)

)

i =
∂un+d+i−1,m+ℓ

∂un+k ,m+ℓ
,

(

ṽ (k ,ℓ)

)

i =−S
i−1(Qk−i+1,ℓ), i = 1, . . . , N +1. (41c)

Proof. Consider equation (1) and its positive S -shifts. Our requirements for function Q imply that we can solve uniquely

all these equations for variables un+r,m+ℓ, with r ≥ d and ℓ= 0 or 1, and express them as functions of the remaining dy-

namical variables. Using implicit differentiation, we differentiate all the difference equations {S i (Q)= 0}N
i=0

with respect

to un+k ,m+ℓ, with 0 ≤ k < d , to find

∂un+k,m+ℓ

(

S
i (Q)

)

+

d+i
∑

j=d

∂un+ j ,m+ℓ

(

S
i (Q)

) ∂un+ j ,m+ℓ

∂un+k ,m+ℓ
= 0, i = 0, . . . , N
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which can be written also as

i
∑

j=0

S
i (Qd+ j−i ,ℓ)

∂un+d+ j ,m+ℓ

∂un+k ,m+ℓ
=−S

i (Qk−i ,ℓ), i = 0, . . . , N .

These relations can be clearly cast in the form of system (41).

Proposition 3.4. The derivatives of un+r,m+ℓ, −N ≤ r ≤−1, with respect to un+k ,m+ℓ, with 0 ≤ k < d and ℓ= 0 or 1, are the

solutions of the system

Âℓ û(k ,ℓ) = v̂ (k ,ℓ), (42a)

where the entries of the N ×N matrix Âℓ are given by

(

Âℓ

)

i , j =S
−i (Qi− j ,ℓ), (42b)

and the vectors û(k ,ℓ), v̂ (k ,ℓ) are defined as

(

û(k ,ℓ)

)

i =
∂un−i ,m+ℓ

∂un+k ,m+ℓ
,

(

v̂ (k ,ℓ)

)

i =−S
−i (Qk+i ,ℓ), i = 1, . . . , N . (42c)

Proof. Now we consider all the negative S -shifts of equation (1). Our requirements for function Q imply that we can

solve uniquely all these equations for variables un+r,m+ℓ with r < 0 and ℓ = 0 or 1, and express them as functions of the

remaining dynamical variables. Using implicit differentiation, we differentiate all the difference equations {S −i (Q) =

0}N
i=1

with respect to un+k ,m+ℓ, with 0 ≤ k < d , to find

∂un+k,m+ℓ

(

S
−i (Q)

)

+

i
∑

j=1

∂un− j ,m+ℓ

(

S
−i (Q)

) ∂un− j ,m+ℓ

∂un+k ,m+ℓ
= 0, i = 1, . . . , N ,

which can be written also as

i
∑

j=1

S
−i (Qi− j ,ℓ)

∂un− j ,m+ℓ

∂un+k ,m+ℓ
=−S

−i (Qk+i ,ℓ), i = 1, . . . , N ,

which can be written as system (42).

Using the above Propositions we define the differential operators which we employ in our strategy for solving func-

tional equations in the following section.

Definition 3.5. We define the derivative operators D(k ,ℓ) as

D(k ,ℓ) = ∂un+k,m+ℓ
+

(

Ã−1
ℓ ṽ (k ,ℓ)

)

·∆ℓ+
(

Â−1
ℓ v̂ (k ,ℓ)

)

·∇ℓ , 0 ≤ k < d , ℓ= 0,1, (43a)

where the matrices and the vectors involved are given in Propositions 3.3 and 3.4, and

∆ℓ = (∂un+d ,m+ℓ
· · · ∂un+d+N ,m+ℓ

)⊺, ∇ℓ = (∂un−1,m+ℓ
· · · ∂un−N ,m+ℓ

)⊺, (43b)

and the · denotes the usual scalar product of vectors. Moreover, we define the vector operator

Dℓ =
(

D(0,ℓ) · · · D(d−1,ℓ)

)⊺
. (44)

Remark 3.1. When d = 1 there exist only two operators, namely D(0,0) and D(0,1), and they have been used previously in

[20] and in the equivalent form E1−i

(

D(0,i)

)

, i = 0,1, in [5].
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4 Solving functional equations

In this section we present an algorithmic method for solving functional equations, like (31-34), which can be easily im-

plemented in symbolic computations. More precisely we consider equations

E ( f ) :=T ( f ) + A f + B = 0 (45)

which must hold on solutions of (1), where f = f (n,m,un+a,m , . . . ,un+b,m ) is the unknown function, T ( f ) is the shift

of f in the m-direction, i.e. T ( f ) = f (n,m + 1,un+a,m+1, . . . ,un+b,m+1), and the integers a, b are such that a < b. For

our presentation it is convenient to denote the set of values of u appearing as arguments of f and T ( f ) with U f =

{un+a,m , . . . ,un+b,m } and UT ( f ) = T (U f ) = {un+a,m+1, . . . ,un+b,m+1} and consider them as subsets of U0 and U1, respec-

tively. Also, A 6= 0, B are given functions of n, m and of variables U0 ∪U1.

Our aim is, starting from equation (45), to derive differential equations involving only either f or T ( f ) since they

depend on different sets of variables. This last observation implies that we can apply vector operator D0 to equation (45)

to eliminate T ( f ) because it does not depend on variables un,m , . . . , un+d−1,m . This results to a set of d equations for the

first order derivatives of f , namely

D0(E ( f )) = AD0( f )+D0(A) f +D0(B) = 0 (46)

Since f depends only on U f ⊂ U0, and all the other functions in (46) depend on variables from U0 ∪U1, we apply elimi-

nation map E1 to remove all variables belonging in V1 = U1 \ U0.

E1

(

D0(E ( f ))
)

= E1 (AD0) ( f )+E1 (D0(A)) f +E1 (D0(B)) = 0 (47)

But f now depends on U f , a subset of U0, thus variables U0 \ U f can be used as separation variables. In this way, from

(47) we end up with a system R0 for the first order derivatives of f .

R0 :=
{

Coeffients
(

E1

(

D0(E ( f ))
)

,U0 \ U f

)

= 0
}

(48)

Now we consider equation E ( f )/A, i.e.

E ′( f ) :=
1

A
T ( f )+ f +

B

A
= 0. (49)

Since D1( f ) = 0, the application of D1 to (49) yields a system of differential equations only for T ( f ), namely

D1(E ′( f ))= A−1
D1

(

T ( f )
)

+D1(A−1)T ( f )+D1

(

A−1B
)

= 0.

In these equations, T ( f ) depends only on UT ( f ) ⊂ U1, and all the other functions depend on variables from U0 ∪U1.

Thus we apply elimination map E0 to remove variables belonging in V0 = U0 \ U1.

E0

(

D1(E ′( f ))
)

= E0

(

A−1
D1

)(

T ( f )
)

+E0

(

D1(A−1)
)

T ( f )+E0

(

D1

(

A−1B
))

= 0

Proceeding in a similar fashion, we split the above equations using U1 \ UT ( f ) as separation variables. In this way, we

derive a system for the first order derivatives of T ( f ). The resulting system then can be shifted backwards in the m

direction leading to another system R1 for f and its derivatives.

R1 :=
{

Coeffients
(

T
−1

(

E0

(

D1(E ′( f ))
))

,T −1
(

U1 \ UT ( f )

))

= 0
}

. (50)

Having derived two linear first-order systems of partial differential equations for f , namely (48) and (50), it is neces-

sary to check the compatibility among the equations constituting them. If R0 and R1 are inconsistent, then equation (45)

does not have any solution. Otherwise, we have to include any consistency conditions into R0∪R1 and solve the resulting

extended linear system for f . If the system admits a unique solution then we have to check that our original equation (45)

is also satisfied.
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5 Examples

In this section we consider specific quad (d = 1) and two-quad (d = 2) equations and derive their generalised symmetries.

We employ the corresponding determining equations following from (31-34) and apply our strategy from Section 4 to

solve them. Then, we use relations (22) to determine symmetry F (up to an arbitrary function of un,m ) and substitute it

back into (8) to determine the dependence of F on un,m . It should be noted that for quad equations (d = 1), we can easily

rearrange all the formulae so that to compute symmetries in the m direction. Specifically we have to interchange indices

(un+i ,m+ j ,Qi , j ) → (un+ j ,m+i ,Q j ,i ), as well as the shift operators S and T , in the definitions (23) and the determining

equations (31-34).

Example 5.1. Our first illustrative example is about the symmetries of equation

un,m un+1,m +un,m+1un+1,m+1 +un+1,m un,m+1(un,m +un+1,m+1 +1)+χ= 0, (51)

which was first given in [19]. We start our derivations, according to Remark 2.2, with the choice N = d = 1. In this case

(31) and (32) become

T (r̃1)−

(

un−1,m +un−1,m+1 +un−1,m un−1,m+1 +un−1,m+1un,m+1

)(

un,m+1 +un,m+1un+1,m

)

un−1,m+1

(

1+un,m

)(

un,m +un,m+1 +un,m un,m+1 +un,m+1un+1,m+1

) r̃1 = 0, (52)

T (r̂−1)−

(

un,m +un−1,m un,m +un,m+1 +un,m un,m+1

)(

un+1,m +un,m+1un+1,m

)

(

1+un−1,m+1

)

un,m

(

un+1,m+1 +un+1,m

(

1+un,m +un+1,m+1

)) r̂−1 = 0. (53)

To make contact with the set notation of the previous sections, U f = {un−1,m ,un,m ,un+1,m } and it is sufficient to consider

U0 = {un−1,m ,un,m ,un+1,m ,un,m+1} and U1 = {un−1,m+1,un,m+1,un+1,m+1,un,m }.

Following our strategy in the previous section, we apply to (52) operator D0, which in this case is just

D(0,0) = ∂un,m −
un+1,m (un,m+1 +1)

un,m +un,m+1(un,m +un+1,m+1 +1)
∂un+1,m −

un−1,m +un−1,m+1(un−1,m +un,m+1 +1)

un,m (un−1,m+1 +1)
∂un−1,m ,

then the elimination map E1, which boils down to replacing un+1,m+1 and un−1,m+1 using relations

un+1,m+1 =−
un,m un+1,m +un+1,m un,m+1(un,m +1)+χ

un,m+1(un+1,m +1)
, un−1,m+1 =−

un−1,m un,m +χ

un,m+1 +un,m (un−1,m +un,m+1 +1)
,

and finally we use U0 \ U f = {un,m+1} as a separation variable to find

(u(2+3u+2(1+u)x)− (1+2u)χ)r̃1 + (1+u)
(

u(−u+χ)r̃1u +ux(1+ x)r̃1x − (1+ y)χr̃1y

)

= 0,

(1+u(3+2x))r̃1 −u(1+u)r̃1u +ux(1+ x)r̃1x + (y −χ)r̃1y = 0,

where y = un−1,m , u = un,m , x = un+1,m and r̃1 = r̃1(y,u, x).

Next we solve equation (52) for r̃1 (or alternatively we may use (33)). We apply operator D1, which according to Remark

3.1 becomes

D(0,1) = ∂un,m+1 −
un+1,m+1 +un+1,m (un,m +un+1,m+1 +1)

un,m+1(un+1,m +1)
∂un+1,m+1 −

un−1,m+1(un,m +1)

un,m+1 +un,m (un−1,m +un,m+1 +1)
∂un−1,m+1 ,

to the resulting equation, then the elimination map E0, i.e. replace un+1,m and un−1,m using relations

un+1,m =−
un,m+1un+1,m+1 +χ

un,m +un,m+1(un,m +un+1,m+1 +1)
, un−1,m =−

un−1,m+1un,m +un−1,m+1un,m+1(un,m +1)+χ

un,m (un−1,m+1 +1)
,

and finally we shift backwards in the m direction, i.e. we apply T
−1. After that we use T

−1
(

U1 \ UT ( f )

)

= {un,m−1} as

separation variable and this yields the following two equations.

(−u+χ)r̃1 +u(u−χ)r̃1u + (1+ x)χr̃1x −uy(1+ y)r̃1y = 0,

(χ+u(χ+ y(2+u+χ)))r̃1 + (uy +χ)
(

−u(1+u)r̃1u + (x −χ)r̃1x +uy(1+ y)r̃1y

)

= 0.
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So far we have derived a homogeneous system of four linear equations for r̃1 and its three first-order derivatives. The

matrix of this system is invertible which implies that the only solution is r̃1 = 0. Hence the symmetry cannot depend on

un+1,m (see relation (22)).

Then we proceed to the second determining equation (53). Following exactly the same procedure as we did above we

conclude that r̂−1 = 0 as well, and consequently that the symmetry is independent of un−1,m . Hence we have shown that

the equation does not admit any symmetry of order one (i.e. depending only on the first order shifts of u), and we have

to proceed to the N = 2 case.

Now the first two of the four determining equations (equations (31) and (32) with d = 1 and N = 2) involve only r̃2 and

r̂−2, respectively, and have the following forms.

T (r̃2)−

(

un−1,m +un−1,m+1

(

1+un−1,m +un,m+1

))

−
(

un+1,m+1 +un+1,m+1un+2,m

)

r̃2
(

un−1,m+1 +un−1,m+1un,m

)(

un+1,m +un+1,m+1

(

1+un+1,m +un+2,m+1

)) = 0 (54)

T (r̂−2)−

(

un−1,m+1 +un−1,m

(

1+un−2,m +un−1,m+1

))(

un+1,m +un,m+1un+1,m

)

r̂−2
(

un−1,m +u−2+n,1+mun−1,m

)(

un+1,m+1 +un+1,m

(

1+un,m +un+1,m+1

)) = 0. (55)

In this case U f = {un−2,m ,un−1,m ,un,m ,un+1,m ,un+2,m } and U0 = U f ∪ {un,m+1} and U1 =T
(

U f

)

∪ {un,m }.

Starting with equation (54) and applying the same procedure, we end up with the following linear system of four

equations for r̃2 and its first-order derivatives.

y1(χ+u(−1+u(−2+ x1)+ x1 +2(1+u)x1 x2 +2χ))r̃2 +

(1+u)y1

(

u(u−χ)r̃2u −ux1(1+ x1)r̃2x1
+ux1x2(1+ x2)r̃2x2

+ (1+ y1)χr̃2y1

)

−

((y2 −χ)χ+u(χ+ y2(y1 +χ+ y1χ)))r̃2y2
= 0, (56)

y1

(

u2x1(x1 +2x1x2 −2)−χ−2u(x1 + x1x2 +χ)
)

r̃2 +ux1(ux1 −1)x2(1+ x2)y1r̃2x2

+(ux1 +χ)
(

uy1

(

(1+u)r̃2u − x1(1+ x1)r̃2x1

)

+ y1(χ− y1)r̃2y1
− (1+ y2)χr̃2y2

)

= 0, (57)

(χ+u(χ+ x1(2+u+χ)))r̃2 + ((x2 −χ)χ+u(χ+ x2(x1 +χ+ x1χ)))r̃2x2
−

(1+u)x1

(

(1+ x1)χr̃2x1
+u

(

(u−χ)r̃2u − y1(1+ y1)r̃2y1
+ y1 y2(1+ y2)r̃2y2

))

= 0, (58)

(

u(1+u)x1 y1 +u(x1 + y1 + x1 y1)χ+χ2
)

r̃2 +ux1 y1(1−uy1)y2(1+ y2)r̃2y2
−

(uy1 +χ)
(

(−1− x2)χr̃2x2
+ x1

(

u(1+u)r̃2u + (−x1 +χ)r̃2x1
−uy1(1+ y1)r̃2y1

))

= 0, (59)

where yi = un−i ,m , xi = un+i ,m , with i = 1,2, and u = un,m .

The above system can be solved for four of the five first-order derivatives of r̃2, and we have chosen to solve them for

r̃2x2
, r̃2x1

, r̃2u and r̃2y1
. Then one more equation arises from the compatibility of these equations, which is r̃2y2

= 0. Taking

into account the last equation, the resulting system is consistent and has a unique solution. In this way we determine r̃2

up to an arbitrary function of n and m only. Then we substitute this solution into (54) to find that the arbitrary function

must be independent of m. Hence we can write function r̃2 as

r̃2 =
un,m (un,m +1)un+1,m (un−1,mun,m +χ)(un,m un+1,m +χ)

(un−1,mun,m un+1,m −χ)(un,m un+1,m un+2,m −χ)2
R̃n .

Then we focus on equation (55). We can solve this equation in exactly the same way and determine r̂−2 up to an

arbitrary function of n. More precisely we find that

r̂−2 =
un,m (un,m +1)un−1,m (un−1,m un,m +χ)(un,m un+1,m +χ)

(un−1,m un,m un+1,m −χ)(un−2,mun−1,m un,m −χ)2
R̂n .
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Finally, using relations (22) and the above expressions for r̃2 and r̂−2, we can completely determine the dependence

of the symmetry on variables un+2,m and un−2,m . Specifically we find that

F =
(un,m +1)(un−1,m un,m +χ)(un,m un+1,m +χ)

(

R̃nGn−1,m + R̂nGn+1,m

)

Gn−1,mGn,mGn+1,m
+H , (60)

where Gn,m = un−1,m un,m un+1,m −χ and H = H(n,m,un−1,m ,un,m ,un+1,m ) is an arbitrary function.

Next we proceed to the second set of determining equations using the general form of function F (60) and relations

(22). Our strategy to analyse these equations is the same and leads to R̃n =−R̂n = c ∈R and H ≡ 0. Hence the lowest order

symmetry of (51) is1

∂t un,m =
un,m

(

1+un,m

)(

χ+un−1,m un,m

)(

χ+un,m un+1,m

)(

un−2,m un−1,m −un+1,m un+2,m

)

(

un−2,m un−1,m un,m −χ
)(

un−1,m un,m un+1,m −χ
)(

un,m un+1,m un+2,m −χ
) . (61)

Finally, in view of our comments at the beginning of this section, we can easily compute the symmetries in the m direc-

tion for equation (51) which actually follow from (61) by changing shifts un+i ,m to un,m+i and then change (un,m ,χ) to

(−un,m −1,−χ−1). �

Example 5.2. Our second example is provided by the quadrilateral equation2

γ
(

un,m un+1,m+1 −1
)(

un+1,m un,m+1 +1
)

+
(

un,m un,m+1 +1
)(

un+1,m un+1,m+1 +1
)

= 0, γ ∈R+. (62)

The symmetry analysis in the m direction reveals that (62) admits no symmetries of order one. With N = 2, the determin-

ing equations (31-34) lead to

F =
Gn,mGn,m+1

Kn,m

(

rm

Pn,m+1
−

rm−1

Pn,m

)

− β̂
rm − rm−1

4

α̂un,m (un,m+1 +un,m−1)+2

Kn,m
+H(n,m,un,m ), (63a)

where α̂ := 1+γ, β̂ := 1−γ, H is an arbitrary function and

Gn,m := (1+un,m−1un,m )(β̂+ α̂un,m−1un,m ), (63b)

Pn,m := 2α̂un,m−2un,m−1un,m un,m+1 + α̂β̂(un,m−2 +un,m )(un,m−1 +un,m+1)+2β̂, (63c)

Kn,m := 2un,m−1un,m un,m+1 + β̂(un,m+1 +un,m−1). (63d)

Then, using equation (8) we find that H corresponds to point symmetries (hence we can choose H = 0) and rm+1 = rm−1.

Thus, equation (62) admits two generalised symmetries of order two in the m direction generated by

∂s1 un,m =
Gn,mGn,m+1

Pn,mPn,m+1

(

un,m+2 −un,m−2

)

, (64)

∂σ1 un,m = (−1)m Gn,mGn,m+1

Kn,m

(

1

Pn,m
+

1

Pn,m+1
+
β̂

2

α̂un,m (un,m+1 +un,m−1)+2

Gn,mGn,m+1

)

. (65)

On the hand, the lowest order generalised symmetries in the n-direction of equation (62) are generated by

∂t 1 un,m = (−1)m
u2

n,m +un+1,m un−1,m

un+1,m +un−1,m
and ∂t 2 un,m =

(

u2
n,m −u2

n−1,m

)(

u2
n,m −u2

n+1,m

)

(

un+2,m −un−2,m

)

(

un−2,m +un,m

)(

un+1,m +un−1,m

)

2
(

un,m +un+2,m

) , (66)

respectively. See also [8, 7]. �

1The Miura transformation vn,m = (un−1,m un,m + χ)un+1,m /(un−1,m un,m un+1,m − χ) maps symmetry (61) to the Bogoyavlensky lattice, [15],

∂t vn,m = vn,m (vn,m +1)(vn+2,m vn+1,m −vn−1,m vn−2,m ).
2Up to point transformations and renaming of the parameters, this equation was given in [18]. It should also be noted that the particular equation

with γ=−1 and its symmetries were studied in [8, 7]. Here we restrict to γ> 0 since the equations with opposite values of γ are related by the reciprocal

transformation un,m →u−1
n,m .
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Example 5.3. The two-quad equation

un+1,m+1 −un,m

un+1,m+1(un+1,m+1un,m+1 −un+1,m un,m )
−

un+2,m+1 −un+1,m

un+1,m (un+2,m+1un+1,m+1 −un+2,m un+1,m )
= 0 (67)

was derived in [10]. Here we apply our method to compute the first order symmetries of (67), the determining equations

of which are

T (r̃1)−
(un+1,m −un,m+1)(un,m+1 −un−1,m )

(un+1,m+1 −un,m )(un,m −un−1,m+1)
r̃1 = 0, T (r̂−1)−

(un+1,m −un,m+1)(un,m+1 −un−1,m )

(un+1,m+1 −un,m )(un,m −un−1,m+1)
r̂−1 = 0. (68)

In these functional equations, functions r̃1 and r̂1 depend on U f = {un−1,m ,un,m ,un+1,m }, whereas the dynamical vari-

ables are U0 = {un−2,m , . . . ,un+2,m }∪ {un,m+1,un+1,m+1} and U1 = {un−2,m+1, . . . ,un+2,m+1}∪ {un,m ,un+1,m }, since we are

dealing with a two-quad equation (d = 2).

Applying D0 to the first determining equation in (68) and then E1, we end up with two rational expressions. The

coefficients of un,m+1 and un+1,m+1 in the numerators of these expressions lead to ∂un+1,m r̃1 = ∂un−1,m r̃1 = 0 and ∂un,m r̃1 =

2r̃1/un,m , which clearly imply that r̃1 = an,mu2
n,m . Substituting back into the first equation in (68) we find an,m+1 = an,m .

Hence r̃1 = anu2
n,m . In the same fashion, the second equation in (68) yields r̂1 = bnu2

n,m . Finally, taking into account (22),

we conclude that the first order symmetries of (67) must be of the form

F = u2
n,m (anun+1,m +bnun−1,m )+ f (n,m,un,m ).

Then we substitute the above form of the symmetry into (8) and after the use of elimination maps we find that f cor-

responds to point symmetries, an+1 − 2an + an−1 = 0 and bn = −an−2. As we are interested in generalised symmetries

we choose f = 0, whereas the solution of the remaining two difference equations can be written as an = c0 + c1(n +1),

bn =−c0−c1(n−1). This implies that equation (67) admits two symmetries of order one, the modified Volterra equation,

∂t un,m = u2
n,m (un+1,m −un−1,m ), [10], and its master symmetry, ∂τun,m = u2

n,m ((n+1)un+1,m − (n−1)un−1,m ). �

Example 5.4. The last equation to present is

un,m un+2,m+1

(

un+1,m+1(un+1,m +un,m+1)+un+1,m un+2,m

)

+α= 0, (69)

which, as far as we are aware, is new. Starting with symmetries of order one (N = 1), the analysis of the corresponding

determining equations shows that there exist no such symmetries. The same is true for N = 2. It follows then that the

lowest order symmetries in the n direction are of order three, and they are generated by

∂t un,m =
u2

n,m (un+3,m un+2,m un+1,m −un−1,m un−2,m un−3,m )
∏3

k=0
S k

(

un−3,m un−2,m un−1,m un,m −α
) . (70)

6 Applications, extensions and discussion

We presented a systematic and algorithmic way to compute generalised symmetries of difference equations. Our ap-

proach exploits the theory of integrability conditions, employs Laurent and Taylor formal series of pseudo-difference

operators and formulates algebraically the determining equations. We also presented a strategy to solve certain classes

of functional equations. The main advantage of our approach is that all the necessary equations and tools are given in

terms of the defining function Q of the difference equation (1) and the two invertible and lower triangular matrices L, T,

defined in (23), all of which can be easily implemented in a computer algebra software for symbolic computations.

Integrability conditions provide us also the means to construct conservation laws. More precisely, if we determine

the first K coefficients of the N -th order formal recursion operator using equations (31) with K > N , then we can employ

all these coefficients to derive higher order conserved densities by considering powers of the recursion operator and

computing their residues [14, 15]. To be more specific, if Rp = r̃
(p)

pN
S

pN +·· ·+ r̃
(p)
0 + r̃

(p)
−1 S

−1 + . . . is the p-th power of the

formal recursion operator R, with p = 1, . . . ,K , then the vectors r̃ (p) =

(

r̃
(p)

pN
· · · r̃

(p)

(p−K )N

)⊺

are determined recursively by

r̃ (p)
=S

pN
(

L
(

r̃ (1)
))

· r̃ (p−1), p = 2, . . . ,K , (71)
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and the residue of Rp , i.e. the function r̃
(p)
0 , is a conserved density.

We can also use the strategy we presented in Section 4 to compute first integrals T (J ) = J of equation (1), where

J = J (n,m,un,m , . . . ,un+L,m ) and L ≥ d . Indeed, to find J we have to solve the functional equation T (J )− J = 0 which is

the particular case of (45) with A = −1, B = 0 and a = 0, b = L. Since there is no criterion for the choice of L, we have to

start with L = d and work successively as we have done with symmetries (see also Remark 2.2 3). However it would be

interesting to derive necessary and sufficient criteria for the existence of first integrals for d-quad equations.

Here we considered only equations satisfying Requirement 3. This assumption can be relaxed in order to consider

difference equations which can be solved uniquely for at least two values of u not lying on the same horizontal line

and not necessarily at the corners of the stencil on which the equation is defined. In this case we can easily adjust the

definitions of dynamical variables, elimination maps and differentiation to study equations of this kind. However we

cannot remove the second requirement completely as this will lead to difficulties with the elimination of variables.

Finally our framework can be extended straightforwardly to systems of difference equations of the form

Q (i)(un,m ,un+1,m ,un,m+1,un+1,m+1) = 0, i = 0, . . . ,d −1, (72)

where un,m = (u(0)
n,m , . . . ,u(d−1)

n,m ), which satisfy conditions

detJk ,l = det

(

∂
u

( j )

n+k,m+l

Q (i)

)

6= 0, for all (k, l) ∈ {(0,0),(1,0),(0,1),(1,1)} ,

and can be solved uniquely with respect to all values of u involved in (72). Such systems and the d-quad equation (1)

satisfying Requirements 1–4 are related in the following way. Starting with (1) we can set S
j (Q)=Q ( j ) and then apply the

transformation un+ j+pd ,m+q 7→u
( j )

n′+p,m+q
, for j = 0, . . . ,d−1 and p, q ∈Z. Our requirements for function Q guarantee that

the corresponding matrices Jk ,l will be invertible and the system can be solved uniquely with respect to all values of u.

This connection readily provides a way to compute symmetries in the m direction for (1) by studying the corresponding

symmetries of the related d component quad system. It would be also interesting to consider quadrilateral systems

which do not necessarily satisfy all these requirements (see for instance [10]), derive necessary integrability conditions

and employ them in the computation of symmetries and conservation laws.
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