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Abstract

Removal sampling is commonly used to estimate abundance of populations in which
captured individuals are permanently removed from a study area. The classic removal
model (Moran, 1951) assumes a constant capture probability and all animals are
available for detection throughout the study, which results in a simple geometric
decline of counts of removed individuals over time. However, the real data collected
from some species exhibit unexpected fluctuations in the number of captured animals.
The work in this thesis is driven by real data on common lizards, Zootoca vivipara

and great crested newts, Triturus cristatus, where existing approaches may give rise to
misleading conclusions.

When modelling removal data it is crucial to account for imperfect availability
in the population, as individuals could sometimes temporarily become undetectable
at study area, or emerge from an area outside the study. This thesis deals with three
aspects of removal modelling: (i) We develop a robust design multievent removal
modelling (RMER framework) which allows considerable flexibility in estimating
temporary emigration as well as capture probability and the size of populations. We
also consider the effect of sparse data and investigate the use of modelling different
sources of data in conjunction with the removal data (Besbeas et al, 2002). (ii) The
estimation of temporary emigration or population renewal for removal data relies on
the use of the robust design (Zhou et al. 2018). However, there are many removal
data which lack the robust design structure. Motivated by the analysis of a data
set of common lizards collected under standard sampling protocol, we develop and
evaluate the use of penalised maximum likelihood estimation to allow populations to
be open to new individuals via birth/arrival for data sets without the robust design. (iii)
We use four criteria to explore study design aspects of removal data with the robust
design, including the trade-off in survey effort allocation between primary periods and
secondary periods for a fixed level of total sampling effort. The models we propose
can account for temporary emigration or new arrivals of individuals during removal
sampling and represent a step forward with respect to current modelling approaches
and will guide wildlife management.
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Chapter 1

Introduction

Monitoring the abundance of protected species is a crucial task for conservation
management. Various statistical models have been widely used to analyse datasets
collected by ecologists with an aim of estimation of demographic parameters for animal
populations. One of the fundamental parameters of interest in statistical ecology is
the abundance or population size, which is the total number of animals in the study
site. Removal sampling can be used to estimate the abundance of a population, which
involves sequential removals of individuals from a defined study area. In Chapter 1 we
provide a brief overview of removal sampling in Section 1.1 and discuss its relationship
with another common sampling technique called capture-recapture sampling in Section
1.2. The structure of the thesis is given in Section 1.3. General methodology used in
the thesis is described in Section 1.4

1.1 Background on removal sampling

Removal sampling is a sampling technique in which captured animals are removed
from a defined study area. The sampling area is generally visited daily over a short
period of time. During the study, ecologists permanently remove the captured individ-
uals from the study site and relocate them to another new habitat. The removal data
that arise from removal sampling is a vector of counts of individuals removed at each
sampling occasion. The classic removal model was proposed by Moran (1951) and
Zippin (1956, 1958), and the objective of removal modelling is to estimate the number
of animals that remain uncaptured in the study area.

Removal sampling is commonly used for fish populations to measure abundance
in stock assessment over time, see e.g. Otis et al. (1978); Carle and Strub (1978);
Wang (1999) and Peterson et al. (2004). In recent years, removal sampling has been
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used as a conservation management tool called mitigation translocation to prevent the
extinction of species. Species on a study site are often threatened by land development
activities. Therefore human-wildlife conflict can be addressed by human-mediated
translocations of endangered populations from the study area to a new habitat. Over the
past few decades, mitigation translocation has become a popular and widespread animal
management tool due to an exponential increase in the number of land development
projects worldwide (Seddon and Maloney, 2007; IUCN/SSC, 2013; Germano et al.,
2015). In addition, the use of such mitigation translocations is predicted to rise
more rapidly if it is adopted for climate-change mitigation (IUCN/SSC, 2013). The
motivations may differ from historical usage of removal sampling, but the sampling
techniques used are similar, where translocations of protected species involve capture,
relocation and release of species prior to the proposed building starting (IUCN/SSC,
2013).

A wide range of species have benefited greatly through mitigation translocations.
Thousands of threatened land snails were relocated on the west coast of New Zealand
since 2000 because of coal mining on public lands (Morris, 2010). In addition,
amphibians and reptiles are frequently found at development sites in the UK, resulting
in hundreds of such translocation projects annually (Germano et al., 2015). Such
translocations were also carried out for burrowing owls in North America (Sarno et al.,
2012), black rhinoceros in South Africa (Linklater et al., 2011) and kangaroo rats in
California (Tennant and Germano, 2017) before the land clearing begun.

Although millions of pounds have been spent on removing protected animals out
of the pathway of land development annually in the UK, such translocations may not
meet the objective of preserving the target population as intended by legislation, and
numerous reviews mention poor rates of success from these projects (Griffiths et al.,
1989; Linnell et al., 1997; Germano et al., 2015). Failure of such projects can be
a result of insufficient survey effort, resulting in too few animals being captured to
establish a viable population elsewhere. Equally, many animals may go undetected at
the removal site, resulting in the loss of the majority of the population when the site is
developed. This raises questions concerning the amount of survey effort required to
remove a significant proportion of the population. However, few publications highlight
the need for improved statistical removal models to evaluate whether the number of
translocated individuals represent a substantial proportion of total population size in
the study site (Griffiths et al., 2015).

The classic removal model relies on a constant probability of capture and it assumes
that there is no birth, emigration, immigration and death in the population across the
study (Moran, 1951; Zippin, 1956, 1958). The estimation of population size can be
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especially problematic for species that are hard to capture and the current abundance
modelling approaches for removal data may give rise to misleading conclusions, as
the assumptions of the existing models can be violated in various ways. We discuss
recent statistical developments of removal models in Section 2.5.

1.2 Relationship with capture-recapture sampling

A more commonly used method for monitoring wildlife populations is capture-
recapture experiments. The purpose of capture recapture studies is often similar
to removal sampling, i.e. to estimate the total number of individuals in the population.
In capture-recapture studies, we capture and mark each individual upon the first cap-
ture with a unique identification tag, then release the marked individual back to the
population in order to be able to identify it if it is caught on the subsequent sampling
occasions.

Capture-recapture samplings represent perhaps the most popular technique for
studying animal populations. A huge variety of statistical methods have been developed
for capture-recapture data to estimate demographic parameters for wild populations
(Cormack, 1964; Jolly, 1965; Otis et al., 1978; Lebreton et al., 1992; Schwarz and
Arnason, 1996). Both Williams et al. (2002) and McCrea and Morgan (2014) give
a comprehensive overview of the existing capture-recapture models, also see King
(2014) for a review of recent advances.

The data obtained from capture-recapture sampling for each individual is a vector
describing its capture history during the study. It is common to use 1s and 0s to
indicate whether the individual is captured or not respectively in the capture history.
For example, “011”’ indicates that the individual is caught at the second and third
occasions but not at the first sampling occasion. If the study is carried out in the
removal sampling protocol, then an equivalent removal record would be “010”’ as
the captured individual will be permanently removed from the study area. In removal
studies, the collected data are the number of unmarked individuals captured at each
sampling occasion. Once the animals are captured, they are removed permanently
from the population, therefore there is no recapture of individuals. The most common
method of removal is physical removal; for instance, individuals are transplanted to
another isolated pond in a mitigation translocation study or the animals are held in
another area until the study is completed.

Traditionally removal sampling was conducted for assessing the exploitation of
fish populations in fisheries industry Cowx (1983); Wyatt (2002); Rosenberger and
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Dunham (2005). Removal models have been used to estimate the size of fish stocks and
fishery scientists use the estimated population size to manage and restrict commercial
fishing activities so that resources are not overfished. However, capture-recapture
sampling is rarely used in the commercial fisheries industry as such fishing activities
are profit-driven and fishermen are not interested in marking and discarding captured
individuals.

Removal sampling has also been used for the removals of invasive species (Mills
et al., 2004; Sullivan and Sullivan, 2013; Guillera-Arroita et al., 2014). Invasive species
are one of the key causes of biodiversity loss and can cost more than $1.4 trillion
annually (Burgiel and Muir, 2010). Invasive species can pose severe threats to native
species and their habitats when there is a lack of natural predators. Capture-recapture
sampling is illogical for such problems as releasing the captured invasive individuals
back into the ecological system is not a practical management strategy for invasive
species. Therefore removal sampling has been used to reduce the abundance of invasive
species, as physical removal is the only viable control for invasive populations.

In addition, the length of capture-recapture and removal studies is often different.
Capture-recapture sampling is usually conducted every week or month and could last as
long as a few decades for monitoring purposes, as long-term capture-recapture studies
are often required for observing changes in the demographic parameters (Williams
et al., 2002). By contrast, removal sampling is typically carried out for up to a couple
of months. Therefore data collection for capture-recapture can be time-consuming and
expensive compared with removal sampling.

1.3 Structure of the thesis

In this section, we briefly introduce the content of each chapter. In Chapter 2 we
first show how to estimate the population size by two removal samples based on the
assumptions made in the classic removal model. We then present the classic removal
model with more than two removal samples and discuss its assumptions in detail. We
also give the likelihood with time-varying capture probability in terms of covariates.
The models discussed in Chapter 1 are fitted to a great crested newt data set for both
males and females separately. Recent developments for the classic removal model are
discussed at the end of Chapter 2.

In Chapter 3, we propose new removal models accounting for temporary emigration.
The development is motivated by amphibian and reptile populations as they often
temporarily emigrate to an area out of sight of ecologists. In capture-recapture studies,
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the sampling scheme and corresponding modelling approach that allows the estimation
of temporary emigration of a population is called the robust design (Pollock, 1982). We
develop novel removal models that bring together both the robust design (Pollock, 1982;
Kendall et al., 1995) and a multievent structure (Pradel, 2005) where the underlying
movement pattern of individuals between the study area and an area outside of the
study is modelled as a partially hidden process. We use the machinery of hidden
Markov models for the computation of the proposed likelihood function. We explore
the benefits of the proposed approach compared with models without robust design.
We also investigate estimates calculated from the classic removal model for populations
exhibiting temporary emigration by simulations. We apply the new removal models to
juvenile and adult common lizard data using integrated removal models with robust
design and multievent framework.

In Chapter 4, we investigate which parameters in the models proposed in Chapter 3
can be estimated, i.e. whether or not a model is parameter redundant. Symbolic algebra
is used to investigate parameter redundancy and to find the estimable combinations of
parameters if the proposed model is parameter redundant. We demonstrate that the
robust design can enable us to estimate otherwise confounded parameters individually
and produce tables summarising for which models it is possible to estimate all the
parameters. The methods presented in Chapter 4 provide almost identical findings to
Chapter 3, without intensive simulations.

Although we show the benefits of the use of robust design in Chapters 3 and 4,
a lot of removal data are obtained from a standard sampling protocol in which there
is only one survey within each sampling day. In Chapter 5, we propose a penalised
maximum likelihood approach to improve the estimation of open removal models
where individuals could enter the study area during the removal study. We investigate
three types of penalty term which are used in linear regression for our proposed
models. We then illustrate the utility of the models by fitting them to common lizard
data collected from a translocation project in Sandwich, UK.

The estimation of temporary emigration from removal data relies on the use of
the robust design as demonstrated in Chapters 3 and 4, where there are at least two
secondary occasions between primary occasions. Furthermore, the use of penalised
maximum likelihood estimation discussed in Chapter 5 for removal data collected
under the standard sampling protocol can be time-consuming due to the need to
employ cross-validation. Furthermore, its performance relies on fairly large sample
sizes. As the robust design is highly preferred for removal sampling, we look into
the design of removal sampling at a single site while accounting for the availability
of individuals under the robust design in Chapter 6. The aim is to consider how to
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allocate the total sampling effort for the removal sampling under the robust design
sampling protocol. We use both simulations and analytic forms to investigate different
sampling approaches where constant parameters are assumed.

1.4 Preliminary remarks on model implementation

Maximum likelihood estimation is used to estimate parameters throughout the thesis,
unless otherwise stated. The optimisations are carried out in R and Matlab. For
models in Chapters 2 and 3, we write the likelihood functions in R. In addition, we
use a symbolic package LinearAlgebra in Maple to investigate the identifiability of
proposed models in Chapter 4. As results in Chapter 4 are too long to display, we show
Maple code used in this chapter in the electronic appendix. Detail on names of the
files is given in the corresponding Chapter. All the likelihood functions in Chapters 5
were written in Matlab and optimised using its high performance computing facilities.
In chapter 6, we use the Symbolic Math Toolbox in Matlab for calculating the
analytical results and use R for a simulation study. We initialise the optimisation
algorithm in each case using different starting values for both simulated and real data,
in order to ensure the global maximum is obtained.

The parameters are transformed during likelihood optimisations in R and Matlab.
For parameters that are nonnegative (i.e. constrained to [0,∞)) such as population
size, the log transformation θ = log(N) is used in order to carry out unconstrained
optimisation with respect to θ . Once the optmisaton is done, we use exponential
function N = exp(θ) to obtain N. Similarity, the logit transformation p = 1/(1+e−θ )

is applied to those probability parameters that are constrained to [0,1], then optimising
with respect to θ which can take any value in (−∞,∞). The maximum likelihood
estimates are obtained by transforming those unconstrained estimates back to the
original scales using the inverse functions of log or logit.

The standard errors and confidence intervals in Chapters 2, 3 and 5 are obtained
by bootstrapping individual removal records because some parameters reached the
boundaries of the parameter spaces when analysing real data. Non-parametric bootstrap
samples are obtained by sampling with replacement from the original data. We describe
the procedure below.

• Step 1: rewrite the removal data in terms of individual removal records for all
sampling occasions. If we removed nk individuals at the kth sampling occasion,
we rewrite this with nk “k”s individual records. For example, if the first three
observations of a removal data set are 2,3,2. We rewrite them as two “1”, three
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“2”s and two “3”s, i.e. 1,1,2,2,2,3,3 and repeat the same process for all of the
observations.

• Step 2: sample D individual removal records with replacement and rewrite them
in terms of removal count data by calculating the resulting frequency table,
where D is equal to the total number of individuals we observed in the original
data.

• Step 3: repeat Step 2 a large number of times (e.g. 500 resamples) to produce
bootstrap samples.

For example, Figure 1.1 shows 500 bootstrap samples for a juvenile common lizard
data set that is analysed in Chapter 3. The model is fitted to all the samples and the 500
parameter estimates that are computed can be used to construct confidence intervals
and standard errors. For simulations conducted in Chapter 6, we calculate the standard
errors of the transformed parameters by obtaining the square roots of the diagonal
elements of the inverse of the Hessian matrix. Standard errors of the parameters on the
original scales are derived from those calculated on the transformed scale using the
delta method (Morgan, 2008).

Model selection is conducted using the Akaike Information Crierion (AIC). The
AIC of a model is defined as

AIC =−2l +2h

where l is maximised log-likelihood and h is the number of estimated parameters in the
model (Akaike, 1973; Morgan, 2008). AIC is useful for both nested and non-nested
models. The second term 2h can be interpreted as a penalty term for increasing the
number of parameters in the model, so AIC penalises models with large number of
parameters.
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Fig. 1.1 500 bootstrap samples (gray lines) for juvenile common lizard data (black
line).



Chapter 2

Classic Removal Model

2.1 Introduction

In Chapter 2 we review the classic removal model. In Section 2.1.1 and 2.1.2 we
present early research for just one and two removal sampling occasions respectively.
The formulation of the classic removal model with a constant capture probability will
be presented in Section 2.2.1. Then we discuss possible violations of assumptions
in the classic removal model in Section 2.2.2 that motivate the work presented in
the thesis. In Section 2.3 we present a removal model with time-varying capture
probability in terms of covariates. Two examples of data analysis of great crested
newts is demonstrated in Section 2.4. We conclude Chapter 2 with a review of recent
development for removal models in Section 2.5.

2.1.1 One removal sample

Removal sampling involves successive samples in which animals are captured and
removed from the study area. The key question we are interested in is how many
individuals are there in the population. Suppose the population size is denoted by N,
then the estimate of population size is a function of the number of individuals removed
at the first sampling occasion and the probability of an individual being captured.
Suppose that we observe n1 animals at the first sampling occasion, then the estimate
of the population size can be expressed as

N̂ =
n1

p
(2.1)

for 0 < p ≤ 1, where the denominator p is the probability of an individual being
captured and removed, which is often called the capture probability in the capture-
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recapture literature. The capture probability in this example is unknown as there is
no information in the removal data to estimate p for removal sampling with just one
sampling occasion. Therefore, the estimate of the population size cannot be calculated
as Equation (2.1) contains the unknown capture probability p In Section 2.1.2 we
explain how to estimate both N and p using just two removal samples.

2.1.2 Two removal samples

Seber and Whale (1970) derived the maximum likelihood estimator analytically for a
removal model with two removal samples based on the assumption that the propor-
tions of individuals being removed are equal for two sampling occasions in a closed
population. This particular case of two removal samples was also briefly considered
by Nees et al. (1957), Zippin (1958) and Seber and Le Cren (1967).

A closed population model, as the name implies, assumes that no birth/death and
no immigration/emigration occur between sampling occasions. White et al. (1982)
give a good overview of the closure assumption. The assumption of closure is usually
valid for data collected in a relatively short period of time during a nonbreeding season
for a population.

The idea is similar to the Lincoln-Petersen estimator for a closed population using
capture-recapture data (Petersen, 1894; Lincoln, 1930). Note that the proportion of
animals being removed at the first removal sample is p = n1/N which is obtained
by rearranging Equation (2.1) for the capture probability. Before taking the second
removal, there will be N −n1 individuals available for capture in the study area. Let
n2 denote the number of individuals being removed at the second removal sample.
The proportion of individuals being removed is p = n2/(N −n1). As we assume that
the proportion of removed individuals in the first sample is equal to the proportion of
removed individuals in the second sample, the following is formulated

n1

N
=

n2

N −n1
. (2.2)

The estimate of population size can be calculated by rearranging Equation (2.2) as
below

N̂ =
n2

1
n1 −n2

(2.3)

where n1 > n2.
Therefore, the estimated capture probability is calculated as shown in Equation

(2.4) by equating Equation (2.3) and Equation (2.1),
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p̂ = 1− n2

n1
(2.4)

where n1 > n2.
Note that the above maximum likelihood estimators only hold when n1 > n2 be-

cause we expect the number of individuals being removed to decrease over time under
the assumptions mentioned before. If n1 < n2, then the estimates of the population size
and the capture probability as shown in (2.3) and (2.4) respectively would be negative.
If n1 = n2, then p̂ = 1−n2/n1 = 1−1 = 0 and N̂ = n2

1/(n1 −n2) = n2
1/0 = ∞.

2.2 Classic removal model

In Section 2.1 we have introduced the classic removal model for one and two removal
samples. In Section 2.2 we review the classic removal model for multiple removal
samples from a closed population. The classic removal model proposed by Moran
(1951) and Zippin (1956, 1958) is closely related to the Mb model for capture-recapture
studies as discussed in Otis et al. (1978, pages 44-50). The Mb model assumes that
capture probabilities vary by behavioral responses to first capture. It was designed to
deal with situations where individuals become trap happy or trap shy in the subsequent
sampling occasions after the first capture. Carothers (1973) termed this behavioral
response as a “contagion of catchability” in the population. It implies that the behavior
of animals tends to change after the initial capture. For example, if an individual was
alarmed or was hurt in its initial capture, it is more likely that it will not enter a trap
again, therefore it is expected that the recapture probability becomes lower as it is
harder to capture that individual. The classic removal model is a special case of the
Mb model in which the recapture probability becomes zero, as there is no recapture of
animals in removal studies.

2.2.1 Formulation

Assumptions and Notation

Assume that animals are removed from the population of interest on K sampling
occasions. The aim is to estimate the number of individuals we failed to capture within
the study area. The following assumptions are made by the model, as described in
Moran (1951):

• The population is closed to birth, emigration, immigration and death across the
study.
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• The probability of capture is constant across all individuals over sampling occa-
sions.

As described before, the interpretation of the assumption of closure is that there is
no birth, no death and no migration. In other words, all individuals are present and
available for capture and removal throughout the study.

In order to construct the likelihood function, we introduce the following notation:

• nk is the number of individuals being removed from the area at the kth sampling
occasion, where (k = 1,2, . . . ,K).

• xk is the cumulative number of removals conducted prior to the kth sampling
occasion, i.e. xk = ∑

k−1
j=1 n j, where k = 2,3, . . . ,K +1. Because no individuals

are removed before the first sampling occasion, x1 is equal to zero.

• N denotes the population size.

• n0 is the number of animals which fail to be captured and removed from the
population, i.e. n0 = N − xK+1 by the end of the study.

• p is the probability of an individual being removed on a sampling occasion,
assumed to be the same between individuals and constant for the duration of the
study.

Likelihood Function

The probability of an individual being removed at the kth sampling occasions is

Lk(p) = (1− p)k−1 p,

which is the probability mass function of a geometric distribution with the probability
of success being p. Therefore, the expected number of animals being removed in the
classic removal model decreases geometrically over sampling time.

If we assume that the number of individuals being removed, nk, given the total
number of previous removals, xk−1 , is sampled from a binomial distribution with the
capture probability p and N − xk−1 as the number of trials, the vector of observed
removal data (n1,n2, · · · ,nk) can be described by a multinomial distribution. The full
multinomial likelihood function can be formed as a function of n0 and p,
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L(n0, p) =
N!

n0!∏
K
k=1 nk!

{ K

∏
k=1

[
(1− p)k−1 p

]nk
}
(1− p)n0K,

where N = n0 +∑
K
k=1 nk, for k = 1,2, . . . ,K as discussed in Zippin (1958).

The above likelihood function simplifies to give,

L(n0, p) =
N!

n0!∏
K
k=1 nk!

pxK+1(1− p)KN−∑
K+1
k=1 xk . (2.5)

2.2.2 Violation of model assumptions

In ideal situations, the classic model results in a geometric decline of the expected
number of individuals within the closed area as removals take place. Figure 2.1
shows two simulated removal data sets resulting from removal sampling with different
capture probability (p = 0.3 or 0.6) for a population of 500 individuals over 20
sampling occasions. For both simulated data sets we observe all of the individuals
in the population, while when the capture probability is 0.6 there are more zero
observations at the end of the study as individuals are removed more quickly than
those in the removal study with p = 0.3. The decreasing pattern of removal data is
used to infer both the total population size and the capture probability. However, the
assumptions of classical removal models can be easily violated in numerous ways.

Firstly, it is known that the assumption of constant capture probability is often
violated. The classic removal model is often not appropriate for cryptic species, such
as reptiles and amphibians, because trends in catchability often change over time as
animals are fairly sensitive to changes in environmental conditions. All animals may
not have the same probability of capture throughout the whole study. Different cohorts
of individuals with respect to size, age or sex may have different susceptibilities to
capture, causing heterogeneity in detectability among individuals. In such cases, the
more catchable individuals are more likely to be removed at the early stages of the
study, leaving the less catchable animals to comprise the remaining population.

Secondly, the estimates can be biased due to violation of the closure assumption of
the population. For example, a population can be susceptible to losses of population
between occasions, as well as gaining new individuals arriving in the study area.
Populations experiencing fluctuations in terms of gains or losses between sampling
occasions would lead to biased estimates if the classic model is fitted. For example,
for reptiles and amphibians some of them are likely to become less active and remain
undetected underground for a period of time. The assumption that an individual present
within the study area is available for detection throughout the study will be violated if
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(A)

(B)

Fig. 2.1 Simulated counts of removed individuals obtained from the classic removal
model with K = 20 sampling occasions where capture probability is 0.3 (A) or 0.6 (B).

the individual temporarily emigrates outside the study area and becomes undetectable
for a period of time.

Furthermore, translocation projects for reptile and amphibian populations are often
conducted from summer until autumn (Germano and Bishop, 2009) as mating takes
place in the spring after hibernation in the winter and they often give birth from late
summer (Edgar et al., 2010; Rafferty, 2011). As a result we could expect the new
births to become available for capture during the study. Therefore a closed population
is not a suitable assumption under these circumstances.

Simulations in Chapters 3 and 5 show how estimates are biased if the classic
removal model is wrongly used for populations that are not closed.

Overall, the assumptions in the classic removal model can be violated in various
ways. Therefore, more complicated models are needed to take account of those
ecological behaviors and realistic.
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2.3 Covariates in detection probability

In practice, it is expected that capture probability varies in terms of external effects.
Especially for reptiles and amphibians, capture probability is likely to vary with
weather covariates as discussed in Section 2.2.2. In this section, we model time-
dependent capture probability in terms of covariates. Let pk be the capture probability
at time k (k = 1, . . . ,K), then the time-varying capture probability pk can be modelled
using a logistic regression with additive effects for covariates,

logit(pk) = log
(

pk

1− pk

)
= α +β1z1 + · · ·+βuzu (2.6)

where u ≤ K −2, and α and βq for q = 1, · · · ,u are the coefficients to be estimated.
Note that the number of covariates considered should not exceed K − 2, otherwise
there will be more parameters than the number of data points in the model. It is usually
necessary to conduct an assessment of all available combinations of covariates in order
to choose the best subset of covariates for a given dataset.

The likelihood function can be expressed as,

L(n0,α,β ) =
N!

n0!∏
K
k=1 nk!

K

∏
k=1

pnk
k

K−1

∏
k=1

(1− pk)
D−xk+1

K

∏
k=1

(1− pk)
n0 (2.7)

where D is the total number of individuals being observed, D = ∑
K
k=1 nk.

The log-likelihood can be written as,

l(n0,α,β ) = log[Γ(N +1)]−∑
K
k=1 log[Γ(nk +1)]− log[Γ(n0 +1)]+∑

K
k=1 nklog(pk)+

∑
K−1
k=1 (D− xk+1)log(1− pk)+n0 ∑

K
k=1 log(1− pk)

(2.8)
where Γ(Y +1) = Y !.

2.4 Great crested newts examples

In Section 2.3 we have extended the classic removal model to consider time-dependent
capture probability in terms of covariates. In Sections 2.4.1 and 2.4.2, we demonstrate
how the removal model with time-varying capture probability pk can be used in
practice for a real data set. We also compare the results obtained from the classic
removal model with a constant capture probability.
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We analyse a removal data set of great crested newts. Great crested newts were
collected on over 93 sampling occasions from March 2010 to June 2010 with 742 and
699 captured male and female individuals respectively. Four covariates are recorded
for each sampling visit, which are: minimum air temperature (MinAT), maximum air
temperature (MaxAT), minimum ground temperature (MinGT) and maximum ground
temperature (MaxGT).

2.4.1 Modelling climatic covariates

In this section, removal models with time variations in capture probability pk in the
form of Equation (2.7) are fitted to the female and male populations separately, where
pk is modelled using a logistic regression as shown in Equation 2.6.

Results of all the fitted models ranked by AIC are shown in Table 2.1, where “cov”
denotes an additive effect in terms of covariates and “c” denotes a constant parameter.
We observe that all of the top eight performing models ranked by with AIC value
for each gender incorporate MinAT as the covariate in the capture probability using
a logistic regression of the form (2.6). Additionally, for each gender, 14 out of 15
models that considered covariates for the capture probability fit the data better than the
geometric model with constant capture probability. It seems that the covariate MinGT
alone cannot explain the variations in the capture probability well and the model with
MinGT only was ranked last for both males and females as shown in Table 2.1.

In Figure 2.2, the model with lowest AIC, shows a better fit compared to the classic
removal model. This is true for both males and females. Furthermore, the estimated
parameters obtained from the top model with the lowest AIC and the classic removal
model are shown in Table 2.2, where standard errors are computed using 500 bootstrap
samples. We note that the estimates of population size are equal to the observed
number of individuals for both female and male newts, which means that the model
predicts that no individuals were left behind by the end of the study.

In Figure 2.3 we plot 95% confidence intervals calculated empirically from the 500
bootstrap samples for the top model for each gender. We observe that the variability
in the confidence intervals is hardly noticeable in Figure 2.3. The narrowness of the
confidence intervals is because the size of observed individuals (i.e. 742 and 699
for male and female respectively) is relatively large compared with the number of
parameters in the model, and hence the estimated parameters listed in Table 2.2 have
quite small standard errors. Therefore the confidence intervals are narrow for both
male and female populations.
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Table 2.1 Results of fitting the geometric removal model with time variations in pt
and constant p. Minimum and maximum air temperature are denoted by MinAT and
MaxAT respectively. Minimum and maximum ground temperature are denoted by
MinGT and MaxGT respectively. † in the cell indicates that the covariate of that
column is used in the model for p. h is the number of parameters and ML is the value
of the maximised loglikelihood.

Gender Model MinAT MaxAT MinGT MaxGT h ML AIC
p(cov) † † † 5 -218.64 228.64
p(cov) † † † † 6 -218.65 230.65
p(cov) † † 4 -228.90 236.90
p(cov) † † † 5 -228.50 238.50
p(cov) † † 4 -232.78 240.78
p(cov) † † † 5 -232.72 242.72
p(cov) † 3 -240.14 246.14

Male p(cov) † † 4 -240.06 248.06
p(cov) † † † 5 -324.03 334.03
p(cov) † † 4 -328.05 336.05
p(cov) † 3 -336.47 342.47
p(cov) † † 4 -334.87 342.87
p(cov) † † 4 -340.15 348.15
p(cov) † 3 -342.83 348.83
p(c) 2 -357.35 361.35
p(cov) † 3 -357.03 363.03
p(cov) † † † † 6 -206.86 218.86
p(cov) † † † 5 -209.96 219.96
p(cov) † † 4 -219.23 227.23
p(cov) † † † 5 -217.83 227.83
p(cov) † † † 5 -218.14 228.14
p(cov) † † 4 -221.23 229.34
p(cov) † 3 -227.55 233.55

Female p(cov) † † 4 -235.81 233.81
p(cov) † 3 -322.39 328.39
p(cov) † † 4 -320.87 328.87
p(cov) † † † 5 -319.68 329.68
p(cov) † † 4 -321.69 329.69
p(cov) † 3 -336.18 342.18
p(cov) † † 4 -335.91 343.91
p(c) 2 -340.20 344.20
p(cov) † 3 -340.10 346.10
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Table 2.2 Estimated parameters from the model with lowest AIC and the classic
removal model p for each gender in Table 2.1. SEs are calculated by bootstrapping.

Model Estimate (SE) Male Female
α̂ (SE) -2.29 (0.07) -2.28 (0.90)

β̂MinAT (SE) 0.17 (0.01) 0.18 (0.01)
p(cov) β̂MaxAT (SE) - 0.02 (0.01)

β̂MinGT (SE) -0.14 (0.03) -0.12 (0.03)
β̂MaxGT (SE) 0.14 (0.02) 0.14 (0.03)

N̂ (SE) 742.00 (0.02) 699.00 (0.01)
p(c) p̂ (SE) 0.13 (0.06) 0.12 (0.05)

N̂ (SE) 742.00 (1.79×10−8) 699.00 (1.12×10−8)

In this section we have demonstrated how to consider time-varying pt in terms
of covariates for a single population (i.e. male or female) in removal models. We
have shown that the results obtained from the classic removal model with a constant p

show a poor fit to each data set, where the classic model was ranked the second-last
for each gender. This application has demonstrated the importance of accounting for
time-variation within the model set.
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Fig. 2.2 Observed counts are plotted by vertical bars, together with fitted values
obtained by the removal model with time variations in capture probability (dashed
lines) and classical geometric model (solid lines) for males (top) and females (bottom).
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Fig. 2.3 95% bootstrap confidence intervals (dashed lines) of the fitted values (cross
circles) obtained from the model with the lowest AIC value in Table 2.1 for males
(top) and females (bottom). The original data are plotted using gray solid lines.
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2.4.2 Modelling climatic covariates and gender simultaneously

In this section, we consider a removal model that considers time variations in capture
probability pk using both climatic covariates (i.e. MinAT, MaxAT, MinGT and MaxGT)
and gender in the logistic regression as shown in Equation 2.6. We code male and
female individuals as “0” and “1” respectively. The capture probability pk in this
model is

logit(pk) = log
(

pk

1− pk

)
= α +β0g+β1z1 + · · ·+βuzu (2.9)

where u ≤ K −2, and α and βq for q = 1, · · · ,u are the coefficients to be estimated.
The gender covariate is g = 0 (male) or 1 (female).

We adapt the likelihood function (2.7) to accommodate different gender groups
using an integrated population modelling approach (Besbeas et al., 2002). Suppose we
conduct a removal experiment on W categories for a single species with the individual
likelihoods defined as L1,L2, . . . ,LW which are in the form of Equation (2.7). If
we assume there are W groups of individuals that are captured independently, the
full likelihood function L can be written as the product of individual likelihoods, i.e
L = L1×L2×·· ·×LW . Therefore for the newts data set analysed in this section, if we
assume male and female individuals are removed independently the full likelihood is
L = Lmale ×Lfemale.

Results of the fitted models ranked by AIC scores are displayed in Table 2.3.
The top five models include MinAT as a covariate for capture probability. Similar
results are obtained in Table 2.1, where male and female populations are modelled
individually. Additionally, the estimates and standard errors obtained from the top
model with time-varying capture probabilities in terms of MinAT and MinGT are
shown in Table 2.4. Results are similar with those shown in Table 2.1, where both
tables suggest we have captured all individuals in the populations by the end of the
study.

To investigate possible differences between male and female populations, we
explore contingency table in Table 2.5 and use chi-square test for association to
compare males and females. Because both the observed and expected frequencies are
small after the 16th sampling occasion, we present those frequencies as one group
(i.e. ≥ 16) in Table 2.5. The null hypothesis H0 assumes that there is no association
between male and female populations, while the alternative hypothesis Ha claims
that an association does exist. The expected counts of male and female individuals
are shown in the columns Em

k and Efm
k respectively in Table 2.5. The chi-square test
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statistic is calculated as

χ
2 =

16

∑
k=1

(Ok −Ek)
2

Ek

where the square of the differences between the observed and expected counts divided
by the expected count (i.e. (Om

k −Em
k )2/Em

k and (Ofm
k −Efm

k )2/Efm
k ) are shown across

of the cells in Table 2.5 for both male and female individuals.
The test statistic χ2 for this case is calculated as the sum of the last two columns

in Table 2.5, and we obtain χ2 = 252.77. The degrees of freedom are equal to (16−
1)(2−1) = 15. So, the p-value for the chi-square is P(χ2 ≤ 252.77) = 3.34×10−45,
giving strong evidence against the null hypothesis of no association. Therefore the
difference between observed and expected counts of individuals is not negligible
between gender groups.

In this section we have shown how to consider time-varying pt in terms of both
weather covariates and gender simultaneously in the logistic regression. We also
compared males and females using chi-square test for association where grouping
is used to avoid small expected frequencies after the 16th sampling occasion. This
example is useful for demonstrating how to handle gender as a covariate along with
time-varying capture probability.
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Table 2.3 Results of fitting the geometric removal model with time and gender vari-
ations in pt . Minimum and maximum air temperature are denoted by MinAT and
MaxAT respectively. Minimum and maximum ground temperature are denoted by
MinGT and MaxGT respectively. † in the cell indicates the covariate is used. h is the
number of parameters and ML is the value of the maximised loglikelihood.

MinAT MaxAT MinGT MaxGT h ML AIC
† † 6 896.42 908.42
† † † 7 896.14 910.14
† † † 7 904.24 918.24
† 5 935.37 945.37
† † 6 934.37 946.37

† † † 7 1290.92 1304.92
† † † † 8 1290.92 1306.92

† † 6 1300.39 1312.39
† † 6 1313.37 1325.37

† † 6 1313.38 1325.38
† 5 1317.85 1327.85

† † 6 1356.16 1368.16
† 5 1360.78 1370.78

† 5 1394.73 1404.73

Table 2.4 Estimated parameters from the model with lowest AIC in Table 2.3 when
modelling climatic covariates and gender simultaneously. SEs are calculated by 500
bootstrapped samples.

Parameter Estimate (SE)
α̂ -2.37 (0.20)

β̂gender -0.10 (0.01)
β̂MinAT 0.18 (0.01)
β̂MinGT -0.11 (0.03)
N̂male 742.00 (0.02)

N̂female 699.00 (0.01)
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Table 2.5 Grouped observed (Om
k and Ofm

k ) and expected (Em
k and Efm

k ) counts of indi-
viduals are between second and fifth columns. Chi-square test statistics contributions
are shown in the last two columns. The superscripts m and fm represent male and
female respectively. k represents the kth sampling occasion.

k Om
k Ofm

k Em
k Efm

k (Om
k −Em

k )2/Em
k (Ofm

k −Efm
k )2/Efm

k
1 65 41 80.18 69.98 2.87 12.00
2 115 99 88.43 78.04 7.98 5.63
3 185 165 163.89 148.08 2.72 1.93
4 49 44 44.51 40.58 0.45 0.29
5 13 13 28.21 25.88 8.20 6.41
6 51 57 49.64 46.09 0.04 2.58
7 9 9 20.17 18.84 6.19 5.14
8 38 29 29.98 28.26 2.14 0.02
9 50 68 66.61 64.27 4.14 0.22

10 52 55 24.05 23.47 32.48 42.34
11 16 14 14.05 13.82 0.27 0.00
12 7 9 8.62 8.53 0.31 0.03
13 5 3 8.34 8.29 1.34 3.38
14 8 8 29.66 30.13 15.82 16.25
15 22 23 7.27 7.44 29.82 32.55

≥ 16 57 62 78.33 78.33 5.81 3.41
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2.5 Recent developments

Removal models are commonly used to estimate abundance for populations (Pollock,
1991; Hilborn and Walters, 1992), and they have recently been presented as a class
of hierarchical models. Dorazio and Howard (2005) present a hierarchical removal
model where the sampling sites are assumed to have several distinct sub-sites located
spatially. Additionally, Laplanche (2010) compares the performance of 12 hierarchical
models using removal sampling data obtained at multiple locations. As an alternative
to the logistic model presented in Chapter 2, Clair et al. (2013) proposed a hierarchical
removal model using catch effort to account for time variations in capture probability
when removal sampling effort (e.g. number of traps/hunters) is recorded on each
sampling occasion at different survey locations. Chandler et al. (2011) developed a
spatially explicit temporary emigration model permitting the estimation of population
density for point count data such as removal sampling, double-observer sampling, and
distance sampling. However, their model cannot be applied to removal data when
spatial information is unavailable. More recently, Matechou et al. (2016) developed
a Bayesian approach for removal data observed at a single site which allows for
population renewal through birth/immigration as well as for population depletion
through death/emigration in addition to the removal process. In the subsequent chapters
we propose new removal models on a single site motivated by real data and violations
of the assumptions in the classic removal model as described in Section 2.2.2.

Within this thesis we show that the estimation of temporary emigration from
removal data relies on the use of the robust design as demonstrated in Chapters 3
and 4, where there are at least two secondary occasions within a primary occasion.
Furthermore, we develop new penalised maximum likelihood estimation in Chapter
5 for removal data collected under the standard sampling protocol. However, this
approach can be time-consuming due to the need to employ cross-validation and its
performance relies on fairly large sample sizes. As the robust design is highly preferred
for removal sampling, we look into the design of removal sampling at a single site
while accounting for the availability of individuals under the robust design in Chapter
6. The aim is to consider how to allocate the total sampling effort for the removal
sampling under the robust design sampling protocol. We use both simulations and
analytic forms to investigate different sampling approaches where constant parameters
are assumed.





Chapter 3

Removal Models Accounting for
Temporary Emigration

3.1 Introduction

Ecologists working on mitigation projects have devoted a large amount of time to
removal models that assume immigration and emigration are non-existent. However,
these effects are generally quite important, and immigration and emigration often
occurs which results in population dynamics in the population. Models ignoring
immigration and emigration of individuals could produce biased estimates of total
population size if populations of interest do exhibit these ecological behaviors. There-
fore, in Chapter 3 we develop a new removal model that enables the estimation of
emigration and immigration within a population. The work has been published in
Zhou et al. (2018).

All existing removal models assume that any emigration from the population
is permanent during the study, but this assumption will be violated if individuals
temporarily emigrate to an area outside the sampling area. Amphibians and reptiles
exhibit this behavior in practice as they can temporarily hide in shelters resulting in
zero detection probabilities during some sampling occasions for part of the population
(Edgar et al., 2010; Rafferty, 2011). For example, slow-worms, Anguis fragilis, a
legless lizard, primarily live underground or underneath objects lying on the ground
and although they may be detected basking on the ground, most activity takes place
out of the sight of ecologists (Edgar et al., 2010). Such temporary emigration can be
modelled as a partially hidden process between two states that describes the underlying
movement pattern of individuals between the study area and an area outside of the
study.
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The multievent framework, formulated by Pradel (2005), accommodates uncer-
tainty of states for capture-recapture data. However, no approach currently exists for
modelling temporary emigration for removal studies and ignoring such ecological
features of species may result in a biased estimate of the number of individuals left
behind after the end of removal projects and subsequently risk translocation failure if
only existing modelling approaches are used.

Pollock (1982) was the first paper in capture recapture studies to propose an
approach called robust design which allows the estimation of important demographic
parameters including estimates of immigration and emigration as well as population
size. The robust design is a combination of the open Cormack-Jolly-Seber model
(Cormack, 1964; Jolly, 1965; Seber, 1965) and closed population models (Otis et al.,
1978). It accommodates multiple secondary sampling occasions within each primary
sampling period, and enables the estimation of temporary emigration from the study
site (Kendall et al., 1995, 1997; Kendall and Bjorkland, 2001). The population is
assumed to be open for temporary emigration between primary occasions but closed
within each primary sampling period. Such emigration can be modelled as a first-order
Markov process with different transition probabilities for individuals depending on
which state they currently reside. Motivated by real data and ecological features of
amphibians and reptiles, we develop novel removal models that bring together both
the robust design (Pollock, 1982; Kendall et al., 1995) and a multievent structure
(Pradel, 2005) for removal data using maximum likelihood inference. The objective is
to provide an unbiased estimate of the number of animals remaining at the site at the
end of the removal project.

This chapter is structured as follows: in Section 3.2 we describe the parameters, the
robust design multievent removal modelling (RMER) framework and the formulation
of integrated RMER (IRMER) for modelling multiple populations simultaneously.
We also discuss ways of constraining the parameters of RMER and IRMER models
under various ecological scenarios. Section 3.3 presents simulations for the proposed
removal models and explores the benefits of the new modelling approach compared
with multievent removal models (MER) without robust design. We also demonstrate by
simulation that the existing geometric removal models (denoted as GRM) overestimate
the number of individuals remaining at the site at the end of the study for a population
exhibiting temporary emigration. We also investigate the use of a constant survival
probability as an extra parameter in our proposed model in Section 3.4. Within Section
3.5 we present the results obtained from fitting IRMER models to juvenile and adult
data of common lizards, Zootoca vivipara. Conclusions are discussed in Section 3.6.
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3.2 Formulation

3.2.1 Notation

Consider a removal experiment conducted at a site on a population of N individuals,
where N is the total number of animals that become exposed to sampling efforts at
least once during the study. Individuals are permanently removed from the study area
once captured during the study period. Suppose there are two states in the model:
individuals in state 1 are present and available for removal, while individuals in state
2 are absent from the study site and hence unavailable for capture. We assume the
removal study is conducted within a robust design framework comprising T primary
periods and ki secondary sampling occasions within the ith primary period, i= 1, . . . ,T .
Transitions between two states are only allowed between primary sampling periods
and the population is assumed to be closed within a primary session. We denote the
total number of sampling occasions by K(= ∑

T
i=1 ki). The removal data set that arises

is a matrix with entry ni, j representing the number of individuals removed at the jth
secondary sample within the ith primary period, where i = 1, . . . ,T and j = 1, . . . ,ki.
The total number of individuals removed is denoted by D, where D = ∑

T
i=1 ∑

ki
j=1 ni, j.

The parameters in the model are defined below:

• n0: the number of animals that have not been removed by the end of the study,
where n0 = N −D.

• πππ: the initial state matrix, defined as a row vector, (π,1−π), where π represents
the proportion of individuals in state 1 and the complement of π , 1−π , the
proportion of individuals in state 2, at the start of the study.

• ΦΦΦi: the state transition matrix, where φ 12
i and φ 21

i are transition probabilities
from state 1 to state 2, and transition probabilities from state 2 to state 1 respec-
tively, between the ith and (i+1)th primary period, where i = 1, . . . ,T −1.

ΦΦΦi =

(
1−φ 12

i φ 12
i

φ 21
i 1−φ 21

i

)

• BBBi, j: the state-event matrix, where events are “Removed” and “Not Removed”
in the first and second column respectively. States 1 and 2 are in the first and
second row respectively. pi, j is the probability that an individual is captured at
the jth secondary sample within the ith primary period, where i = 1, . . . ,T and
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j = 1, . . . ,ki.

BBBi, j =

(
pi, j 1− pi, j

0 1

)

We define PPPi, j to be the detection probability matrix at the ith primary period
and the corresponding jth secondary sample as a diagonal matrix with diag-
onal elements equal to the first column vector of BBBi, j corresponding to event
“Removed”.

PPPi, j = Diag{BBBi, j(·,1)}=

(
pi, j 0
0 0

)

Similarly, QQQi, j is the diagonal probability matrix of not detecting individuals
with diagonal elements equal to the second column of BBBi, j.

QQQi, j = Diag{BBBi, j(·,2)}=

(
1− pi, j 0

0 1

)

Note that constant parameters are designated by the absence of the subscript
from the corresponding time-specific parameters, e.g. p denotes a constant capture
probability over time.

3.2.2 The likelihood formulation

We adopt a multievent approach (Pradel, 2005) taking into account the robust design
framework (Kendall et al., 1995, 1997; Kendall and Bjorkland, 2001) for the compu-
tation of the likelihood function. Consider a removal model with robust design and
multievent framework for a study with T primary sampling periods and ki secondary
sampling occasions within the ith primary period, where i = 1, . . . ,T .

The probability of an individual being removed at the 1st sample within the 1st
primary period is,

L1,1 = πππQQQ1,0PPP1,11112

where QQQ1,0 = I2 is the 2×2 identity matrix and 1112 is the column vector of two ones
(and thereafter).

The probability of an individual being captured and removed at the jth sample
within the 1st primary period is,

L1, j = πππQQQ1,0QQQ1,1 . . .QQQ1, j−1PPP1, j1112

where j = 1, . . . ,k1.
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Then, the probability of an individual being removed at the 1st sample within the
ith primary period is,

Li,1 = πππQQQ1,0QQQ1,1 . . .QQQ1,k1
ΦΦΦ1QQQ2,0 . . .QQQ2,k2

ΦΦΦ2 . . .ΦΦΦi−1QQQi,0PPPi,11112

where i = 2, . . . ,T , j = 1, . . . ,ki and QQQi,0 = I2 is the 2×2 identity matrix (and there-
after).

The probability of an individual being removed at the jth sample within the ith
primary period is,

Li, j = πππQQQ1,0QQQ1,1 . . .QQQ1,k1
ΦΦΦ1QQQ2,0 . . .QQQ2,k2

ΦΦΦ2 . . .ΦΦΦi−1QQQi,0 . . .QQQi, j−1PPPi, j1112

where i = 2, . . . ,T , j = 1, . . . ,ki.
The probability of not being removed by the end of the study is given by

L0 = πππQQQ1,0QQQ1,1 . . .QQQ1,k1
ΦΦΦ1QQQ2,0 . . .QQQ2,k2

ΦΦΦ2 . . .ΦΦΦT−1QQQT,0 . . .QQQT,kT 1112.

The full product multinomial likelihood is given by

LLL(((πππ,,,φφφ 12
iii ,,,φφφ 21

iii ,,, pppi, j,,,nnn000|||nnni, j))) =
N!

n1,1!n1,2! . . .nT,kT !n0!

( T

∏
i=1

ki

∏
j=1

Lni, j
i, j

)
Ln0

0 . (3.1)

We note that the likelihood function in (3.1) can be easily adapted to accommodate
multiple species or different age/sex groups for a single species using an integrated
population modelling approach (Besbeas et al., 2002; McCrea and Morgan, 2014,
Chapter 12). Consider a removal experiment conducted on W species (or W categories
for a single species) with the individual likelihoods defined as L1,L2, . . . ,LW which
are of the form shown in Equation (3.1). Assuming the W groups of individuals are
removed independently, the full likelihood L can be written as the product of individual
likelihoods, i.e L = L1 ×L2 ×·· ·×LW .

The model belongs to the family of hidden Markov models (Pradel, 2005; Zucchini
et al., 2016), so standard errors can be obtained from the Hessian. When some
parameters lie on the boundary, non-parametric bootstrap can be used instead to
compute standard errors and confidence intervals (Zucchini et al., 2016, Section 3.6).

3.2.3 Constraints

The model that assumes fully time-dependent parameters (π , pi, j, φ 12
i , φ 21

i , n0) has
K + 2T parameters and the number of observations is K. Such a model is termed
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as parameter redundant (Cole et al., 2010) as it can be reparameterised in terms of
a smaller set of parameters, and therefore we cannot estimate all of the parameters
individually without further constraints. We discuss parameter redundancy of various
models in Chapter 4.

One natural way of enabling the estimation of parameters involves assuming
parameters are constant over time (Sandland and Kirkwood, 1981). Furthermore, we
consider a list of alternative forms of constraints for our proposed models, described
below:

• Constraints related to detection probability.

- The time-dependent capture probability pi, j can be modelled using a lo-
gistic regression (North and Morgan, 1979) in terms of covariate zi, j at
the jth secondary occasion within the ith primary period, i.e. logit(pi, j) =

log{pi, j/(1− pi, j)}= α +β zi, j. We label this constraint “Z”.

- If the capture probability is constant over time, then we denote it by “C”.

• Constraints related to the initial state parameter.

- π = {1/(T − 1)}∑
T−1
i=1 {φ 21

i /(φ 12
i + φ 21

i )}, the initial state parameter π

can be constrained using this expression if we assume the population is
initially allocated to two states according to the mean of the stationary
distributions of the transition matrices across time which is {φ 21

i /(φ 12
i +

φ 21
i ),φ 12

i /(φ 21
i +φ 21

i )}, i = 1, . . . ,T −1. We name this constraint “S” to
represent that the stationary distribution is being assumed for π .

• Constraints related to transition probability.

The superscript “t" in the following constraints denotes fully time-dependent
transition probabilities and the absence of the superscript indicates that constant
transition parameters are assumed.

- φ 12
i + φ 21

i = 1. This constraint is equivalent to the random emigration/-
movement model for capture-recapture data sampled with robust design as
described in Kendall et al. (1995, 1997), where they set γ

′
i = γ

′′
i which are

φ 12
i and 1−φ 21

i respectively in our notation. It implies that the probability
of being in the unobservable state between the ith and (i+1)th primary
session is the same for individuals in and individuals outside the study area.
In this case, we treat the transition probability φ 12

i as a free parameter to
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be estimated in the model, and the transition probability φ 21
i is reparam-

eterized using the constraint, i.e. φ 21
i = 1−φ 12

i . This reparameterization
can be simplified as φ 12 +φ 21 = 1 if we assume constant transition proba-
bilities between primary periods. This constraint is labelled “R” and “Rt”
to denote constant and time-dependent random emigration respectively.

- φ 12
i +φ 21

i = v for v ∈ (0,2) where v is an additional free parameter to be
estimated. This constraint is motivated by the constraint of φ 12

i +φ 21
i = 1,

but relaxes the assumption of the sum of two transition probabilities at
primary period i being equal to 1. The free parameters are fully time-
dependent φ 12

i and the constant v. Note that the limits of possible values of
φ 12

i are conditional on v. The upper and lower bounds for φ 12
i are shown

in the following, {
φ 12

i ∈ [v−1,1], for v ∈ [1,2]
φ 12

i ∈ [0,v], for v ∈ [0,1]

We label this constraint “Vt”.

- φ 12
i = φ 21

i . This is an “even flow" model (Kendall et al., 1997), where the
probability of transitioning from the study area to an unobservable state
is the same as the probability of moving back to the study area between
the ith and (i+1)th primary period. This is denoted by “Et” and “E” for
time-varying and constant transition parameters respectively.

- φ 12
T = φ 12

T−1 and φ 21
T = φ 21

T−1; the penultimate and final transition probabili-
ties are assumed to be equal in this case. It is commonly used to overcome
identifiability of the parameters in the first-order Markovian robust design
model for capture-recapture data, as suggested in Kendall et al. (1997). We
label this constraint by “2” as the transition probabilities are equal for the
last two transitions. If constraint “2” is combined with either constraint
“Rt” or “Et”, then “Rt

2” or “Et
2” is used respectively.

- Suppose we have W populations of interest indexed as w = 1, . . . ,W . Time-
dependent transition probabilities for population w, for example φ 12

i,w, can
be modeled using logit(φ 12

i,w) = log{φ 12
i,w/(1−φ 12

i,w)}= η1,i+γw, where η1,i

is the logit of transition probabilities for a baseline population (numbered 1)
and γw represents an additive effect of group w. We denote this constraint by
“Rt

a” or “Et
a” to represent the additive effect for the time-varying transition

probabilities. We demonstrate that our IRMER model for two populations
must be combined together with either “Rt” or “Et”, otherwise there will
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be more parameters in the model than the number of observations. If we
have more than two populations, we can use “Rt

a,w” or “Et
a,w” to represent

the additive effect for φ 12
i,w for population w. In addition, for the IRMER

models the absence of the subscript in “Rt
a” and “Et

a” (i.e “Rt” and “Et”)
denotes that time-dependent transition probabilities are equal for both of
the populations accounting for the same constraint (i.e “Rt” or “Et”).

We propose a model name that is composed of both the model structure and the
different combinations of constraints for all models that we consider. We employ
the structure of “MODEL.XYZ” in Tables 3.2, 3.4, 3.5 and 3.6, where “MODEL”
represents the model we considered (e.g. MER, RMER or IRMER). We also indicate
the constraints used after a dot at the end of the model name. “X” and “Y” respectively
represent the constraint used for the initial state parameter (e.g. “S”) and the transition
probabilities (e.g. “Rt

a”). For the IRMER models, we use the population number
as the subscript in “S” to denote which population is subject to the constraint “S”,
for example, “S1,2” indicates that both initial state distributions for population 1
and 2 are assumed to be stationary. In addition, “N” suggests that no constraint
has been considered. Furthermore, the last letter “Z” indicates whether the capture
probability is constant over time (“C") or time-dependent in term of covariates (“Z”).
For clarity, IRMER.NE2C denotes the IRMER model with no constraint for the initial
state parameter, the constraint “Et

2” for the time-varying transition probabilities and a
constant capture probability.

3.3 Simulation study

The aim of these simulations is to examine the bias and precision of maximum likeli-
hood estimators for RMER, MER and IRMER within the likely range of ecological
applications of the model. Three simulation settings, denoted by Setting 3.3.1, Setting

3.3.2 and Setting 3.3.3 are investigated, where RMER and MER models under Setting

3.3.1 have constant transition probabilities, RMER models under Setting 3.3.2 have
time-varing transition probabilities and Setting 3.3.3 presents results obtained from
IRMER models with time-dependent transition probabilities. Simulations for MER
models are used for comparison with corresponding RMER models with the same
constraint without the use of the robust design in Setting 3.3.1. For Setting 3.3.1 and
Setting 3.3.2, 500 simulations are conducted for a study with N = 500 individuals,
K = 10 or K = 20, with T = 5 or T = 10 primary periods and 2 secondary sampling
occasions within each primary period (i.e. k1 = k2 = · · ·= kT = 2). For Setting 3.3.3,
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we conduct simulations for IRMER, where 500 replicates are simulated for a removal
study with two populations (numbered 1 and 2) where the population sizes are N = 300
and M = 200. We consider eight scenarios because the performance of the models
depends on the relationship between φ 12

i and φ 21
i and on capture probability. Models

with constraint “R” or “Rt” are investigated under Scenarios 1-4, while simulations
are conducted for constraint “E” or “Et” under Scenarios 5-8.

- Scenario 1: high capture probability and individuals tend to stay offsite (φ 12 > φ 21),

- Scenario 2: high capture probability and individuals tend to stay onsite (φ 12 < φ 21),

- Scenario 3: low capture probability and individuals tend to stay offsite (φ 12 > φ 21),

- Scenario 4: low capture probability and individuals tend to stay onsite (φ 12 < φ 21),

- Scenario 5: high capture probability and high mobility (φ 12 = φ 21 > 0.5),

- Scenario 6: high capture probability and low mobility (φ 12 = φ 21 < 0.5),

- Scenario 7: low capture probability and high mobility (φ 12 = φ 21 > 0.5),

- Scenario 8: low capture probability and low mobility (φ 12 = φ 21 < 0.5).

Under Setting 3.3.2 and Setting 3.3.3, φ 12
i > φ 21

i are set for the majority of the
transition times for Scenarios 1 and 3, while φ 12

i < φ 21
i for the majority of transition

times for Scenarios 2 and 4. The true values of parameters used in the simulations are
presented in the subsequent sections (Setting 3.3.1, Setting 3.3.2 and Setting 3.3.3). In
addition, the true values of capture probabilities p and transition probabilities φ 12

i for
simulating the data under Scenarios 5-8 for the constraint “E” or “Et” are the same
with those under Scenarios 1-4 described as below.

3.3.1 Setting 3.3.1 RMER/MER with constant transition proba-
bilities

Results related to constraint “R”

We show results from RMER.NNC, RMER.SNC, RMER.NRC, RMER.SRC and
MER.SRC. We are interested in the precision of the estimators for the constraints
used/not used for the initial state parameter and the transition probability for the RMER
models. In addition, we show the results for the MER.SRC model where both “S” and
“R” are taken into account but without the robust design for comparison.
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The true value of constant capture probability is 0.3 under both Scenarios 3 and
4, and is 0.7 under Scenarios 1 and 2. In addition, we use φ 12 = 0.8, φ 21 = 0.2 in
Scenarios 1 and 3, when individuals tend to move to the unobservable state, while in
Scenarios 2 and 4 we define φ 12 = 0.4, φ 21 = 0.6 so that individuals tend to move to
the observable state. The true value of the initial state parameter π is defined as the
first element of the stationary distribution of the corresponding transition matrix.

Under Scenario 2 we captured nearly all of the individuals in the population
so the estimates of population size are on the boundary of the parameter space as
shown in Figure 3.1(A). As shown in Figures 3.1 and 3.2, it is clear that estimation of
population size N is reliable for all models when K = 20, although long positive tails
are recognised under Scenarios 1 and 3 when individuals tend to emigrate offsite and
capturing them becomes impossible. When K = 10, longer positive tails are observed
and the estimates of population size are biased downwards for models RMER.NNC
and RMER.NRC under Scenarios 1 and 3. The results for detection probability p

show that the use of the robust design considerably improves the performance in
terms of bias, compared with the MER.SRC model that exhibits large bias for p in
all cases. The bias in estimating φ12 is modest for RMER.SRC with both constraints
“S” and “R” for all cases even when we only have K = 10 sampling occasions. In
contrast, estimation of φ12 for MER.SRC without the robust design is not reliable
for any cases. In addition, RMER.NNC yields biased estimates for φ 12 due to near
parameter redundancy. Overall, we conclude that RMER.SRC performs the best.



3.3 Simulation study 37

(A)
Scenario 1

200

400

600

800

1000

1200

1400

1600

E
s
ti
m

a
te

d
 N

Scenario 2 Scenario 1

200

400

600

800

1000

1200

1400

1600

E
s
ti
m

a
te

d
 N

Scenario 2

(B)
Scenario 1

0.0

0.2

0.4

0.6

0.8

1.0

E
s
ti
m

a
te

d
 p

Scenario 2 Scenario 1

0.0

0.2

0.4

0.6

0.8

1.0

E
s
ti
m

a
te

d
 p

Scenario 2

(C)
Scenario 1

0.0

0.2

0.4

0.6

0.8

1.0

E
s
ti
m

a
te

d
 φ

1
2

Scenario 2 Scenario 1

0.0

0.2

0.4

0.6

0.8

1.0

E
s
ti
m

a
te

d
 φ

1
2

Scenario 2

MER.SRC 

RMER.NNC 

RMER.SNC 

RMER.NRC 

RMER.SRC

MER.SRC 

RMER.NNC 

RMER.SNC 

RMER.NRC 

RMER.SRC

Fig. 3.1 Estimated population size N (A), capture probability p (B) and transition
probability φ 12 (C) for simulations with K = 10 and K = 20 sampling occasions
displayed in the first and second columns respectively under Scenarios 1 and 2.
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Fig. 3.2 Estimated population size N (A), capture probability p (B) and transition
probability φ 12 (C) for simulations with K = 10 and K = 20 sampling occasions
displayed in the first and second columns respectively under Scenarios 3 and 4.
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Results related to constraint “E”

In this Section, we show simulation results for models with constraint “E” under
Scenarios 5-8. When the population has high mobility under Scenarios 5 and 7, indi-
viduals are exposed to the study area more frequently, so nearly all of the individuals
are removed from the population by the end of the study. Therefore, we observe
boundary estimates of population size as shown in Figure 3.3(A). In Figure 3.3(B) the
results of estimated capture probabilities are unbiased apart from those obtained from
the MER.NEC model. In Figure 3.3(C), unbiased estimates of φ 12 are only obtained
from the RMER.SEC model when we have K = 20 sampling occasions. However,
the results in Section 3.3.2 suggest that biased estimated transition probabilities are
obtained from the models that incorporate the constraint “Et” when time-dependent
transition probabilities are considered.
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Fig. 3.3 Estimated population size N (A), capture probability p (B) and transition
probability φ 12 (C) for simulations with K = 10 and K = 20 sampling occasions
displayed in the first and second columns respectively.
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3.3.2 Setting 3.3.2 RMER with time-varying transition probabili-
ties

Results related to constraint “Rt”

RMER models with constant transition probabilities may be not realistic for real data
as individuals may tend to stay in one state at times. Here we investigate models
RMER.NRtC, RMER.SRtC, RMER.SRt

2C by simulation under Scenarios 1-4.
The true value of constant capture probability p is 0.55 for Scenarios 1 and 2 and

0.3 for both Scenarios 3 and 4. In addition, the true transition probabilities φ 12
i for

simulating the data for RMER models under Scenario 3 when K = 20 are (0.8, 0.7, 0.8,
0.3, 0.6, 0.7, 0.8, 0.6, 0.6) where individuals tend to stay in the area outside the study
for the majority of times which is more realistic for real data. Furthermore, the vector
of true φ 12

i is defined as (0.4, 0.4, 0.8, 0.4, 0.4, 0.8, 0.4, 0.4, 0.4) when individuals are
more likely to be present onsite. For a study with K = 10 occasions, we specify the
true φ 12

i as (0.7, 0.2, 0.7, 0.7) for Scenario 3, and (0.3, 0.8, 0.3, 0.3) for Scenario 4.
The value of the initial state parameter π is set to be the mean of the first element of
the stationary distributions of transition matrices across time.

Figure 3.4 illustrates that the bias in the estimation of population size N is negative
for the RMER.NRtC model across all scenarios. The estimates of population size N

are slightly biased downwards for RMER.SRtC under Scenario 3 and unbiased for
other Scenarios. The results of the estimated transition probabilities in Figure 3.5
suggest that unbiased estimates are obtained from RMER.SRtC with both constraints
“S” and “Rt”. We also observe that the RMER.NRtC model underestimates most
of the transition probabilities in Figure 3.5. Furthermore, the estimated transition
probabilities φ12 between the last two primary periods obtained from the RMER.NRtC
model are on the boundary across all Scenarios.

We also observe biased estimates for the RMER models with constraint “Et”,
so none of the other of RMER models yields unbiased estimates of time-dependent
transition probabilities apart from RMER.SRt

2C which additionally incorporates the
constraint “Rt

2”.Therefore we conclude that when modelling time-dependent transition
probabilities, we need to consider at least the combination of the constraint “S” and
“Rt”.

Results related to constraint “Et”

In this Section, we present simulation results for the RMER.NEtC, RMER.SEtC and
RMER.SEt

2C models.
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The boundary estimates of population size when K = 20 shown in Figure 3.6 is
because we capture almost all of the individuals in the population during the study
of length K = 20. The results in Figure 3.7 suggest that time-dependent transition
probabilities obtained from the models incorporating the constraint “Et” are not
reliable. Therefore, the use of constraint “Et” is not recommended if we want to model
time-dependent transition probabilities.
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Fig. 3.5 Estimated time-dependent transition probability φ 12
i for simulations with K =

10 and K = 20 sampling occasions displayed in the first and last columns respectively.
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lations with K = 10 and K = 20 sampling occasions displayed in the first and last
columns respectively.
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Fig. 3.7 Estimated time-dependent transition probability φ 12
i for simulations with

K = 10 and K = 20 sampling occasions displayed in the first and last columns respec-
tively. (A) Estimated φ 12

i under Scenario 5. (B) Estimated φ 12
i under Scenario 6. (C)

Estimated φ 12
i under Scenario 7. (D) Estimated φ 12

i under Scenario 8.
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Results related to constraint “Vt”

Here we investigate the generalization of the constraint “Rt” (φ 12
i +φ 21

i = 1) when
K = 10. Simulations are displayed in Figures 3.8 and 3.9. Figure 3.8 show that
unbiased estimates of capture probability are obtained for all values of v we tried
(v = 0.4,1or1.4) under all scenarios. We found that when v = 1.4, all of the estimates
are unbiased under Scenario 2 and Scenario 4. However, the transition probabilities
are overestimated under Scenario 1 and Scenario 3 as shown in Figure 3.9. When
v ≤ 1 the estimated v is biased high for all scenarios and the model overestimates the
majority of time-dependent transition probabilities. This constraint may be useful
when individuals have high mobility.
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3.3.3 Setting 3.3.3 IRMER with time-varying transition probabil-
ities

We have demonstrated that we need to consider at least the combination of the con-
straint “Rt" and “S” in the model to get unbiased estimates of parameter in Section 3.3.2.
Under this setting, we investigate the IRMER models IRMER.NRtC, IRMER.S1,2RtC,
IRMER.S1,2Rt

aC and IRMER.S1Rt
aC. These model are also investigated in Chapter 4

using symbolic algebra. The true values of parameters for population 1 are the same
for those under Setting 3.3.2. We define the true value of the additive effect γ2 for
the population 2 to be −0.5 for IRMER.S1,2Rt

aC and IRMER.S1Rt
aC models when

constraint “Rt
a” is used.

The estimates of population sizes for two populations and the additive effect γ2

obtained from IRMER modelling are displayed in Figure 3.10. In Figures 3.10 the
estimated population sizes N, M and transition probabilities are biased downwards for
the IRMER.NRtC model across all Scenarios. Therefore, we showed that the integrated
modelling approach (Besbeas et al., 2002) cannot improve the biased estimates in
the IRMER.NRtC model with the constraint “Rt" only. Estimation of population size
is unbiased for all models with the initial state constraint when K = 20. When the
study has K = 10 sampling occasions, all of the IRMER.S1,2RtC, IRMER.S1,2Rt

aC
and IRMER.S1Rt

aC models slightly underestimate population sizes under Scenarios 3
and 4. Moreover, the estimation of the additive effect γ2 is unbiased under Scenarios
1 and 3 for both K = 10 and K = 20. However, when we have a small number of
sampling occasions (K = 10) under Scenarios 2 and 4, γ2 is slightly underestimated
and it becomes unbiased for K = 20 sampling occasions. Figure 3.11 shows that
the estimates of capture probability in IRMER.NRtC are biased upwards, while they
are unbiased for all other models. φ 12

i obtained from the IRMER.NRtC model are
underestimated as shown in Figure 3.12. Additionally, the estimated φ 12

i are unbiased
initially from the start of the study but become slightly underestimated for the last few
transitions. This is because removal sampling was conducted over a period of time
and many individuals were removed from the study, so we expect fewer individuals to
become available for capture by the end of the study which provides less information
about transition probabilities.

As we have identified RMER and IRMER models that are able to provide reliable
estimates of fully time-dependent transition probabilities, as discussed in Setting 3.3.2

and Setting 3.3.3, we assume we can also model time-specific transition probabilities as
a logistic function of covariates for RMER and IRMER models (denoted as constraint
“Y” in Table 3.4).
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Fig. 3.10 Estimated population sizes N and M for simulations under Scenarios 1, 2, 3
and 4 with K = 10 and K = 20 sampling occasions displayed in the first and second
columns respectively.
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Fig. 3.11 Estimated capture probability p, initial state parameter π and additive effect γ2
on transition probabilities for simulations with K = 10 and K = 20 sampling occasions
displayed in the first and last columns respectively.
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Fig. 3.12 Estimated transition probabilities φ 12
i for simulations with K = 10 and K = 20

sampling occasions displayed in the first and last columns respectively.
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3.3.4 Results from the GRM model if ignoring temporary emigra-
tion

Setting K param Scenario
Scenario 1 Scenario 2 Scenario 3 Scenario 4

10 N 3.850 43.127 2.915 10.979
3.3.1 20 N 11.674 43.072 4.158 12.976

10 p −1.000 −0.997 −0.996 −0.994
20 p −0.997 −0.997 −0.997 −0.997

Scenario 5 Scenario 6 Scenario 7 Scenario 8

10 N 56.918 26.973 9.069 4.984
3.3.2 20 N 16.866 18.294 17.411 15.315

10 p −0.994 −1.000 −0.992 −0.998
20 p −0.996 −0.998 −0.996 −0.998

Scenario 1 Scenario 2 Scenario 3 Scenario 4

10 N 3.894 3.990 3.186 3.866
20 N 3.763 3.775 3.233 3.708

3.3.3 10 M 9.728 9.226 4.714 6.531
20 M 2.571 2.154 4.350 3.622
10 p −0.995 −0.994 −0.995 −0.995
20 p −0.996 −0.994 −0.995 −0.995

Table 3.1 Median relative bias in N̂ (×104), M̂ (×104) and p̂ under each simulation
setting. K is number of total sampling occasions.

If we ignored temporary immigration we would use the GRM model from Chapter
2. In this section we fit the GRM models to the data simulated under each Scenario.
The median relative bias in the estimated population size and capture probability
are presented in Table 3.1. We observe that under each simulation setting the GRM
models overestimate population sizes and underestimate the capture probability for
the simulated data exhibiting temporary emigration with the robust design sampling
protocol.

3.4 Consider mortality in the RMER.SRtC model

As permanent departure from the population is possible during the study, it may be
useful to model mortality and temporary emigration simultaneously. In this section,
we investigate whether we can estimate a constant survival probability ψ in the
RMER.SRC model. We denote this new model by RMER.SRt

dC as we consider an
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Table 3.2 True parameters are listed in ptrue and ψtrue. True transition probabilities
used are the same (0.8,0.7,0.8,0.3,0.6,0.7,0.8,0.6,0.6) for every scenario.

Scenario ptrue ψtrue
F1 0.3 0.95
F2 0.3 0.8
F3 0.3 0.4
G1 0.55 0.95
G2 0.55 0.8
G3 0.55 0.4

additional death state in the transition matrix, therefore there is a “d" in the subscript
of R in the model notation.

We conducted a simulation study for a population of N = 500 individuals with
K = 20 sampling occasions. We list the true values of parameters we used in Table 3.2.
where φ 12

i are (0.8,0.7,0.8,0.3,0.6,0.7,0.8,0.6,0.6) for each of the scenarios considered,
i.e. individuals are assumed to tend to stay off-site. Median relative bias are sum-
marised in Table 3.3. The estimated population sizes N are negatively biased across
all scenarios and the estimates of survival probability ψ̂ are biased high apart from
those under Scenario F1. The simulation results in Table 3.3 suggest the RMER.SRt

dC
model with a constant survival probability cannot be used in practice.

Therefore, when analysing the real data set in Section 3.5 we assume that all
individuals survive as transolocation studies are usually conducted over a relatively
short period of time (up to months). Improved estimates of survival probability can
be obtained from removal data by collecting ancillary information during removal
sampling, for example, concurrent capture-recapture sampling as suggested in Gould
and Pollock (1997) or a few capture-recapture sampling occasions prior to removal
sampling which is a design we could investigate in the future.
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Table 3.3 Median relative bias (MBias) in estimates p̂, ψ̂ and N̂ from the R-SRt
dC

model under different Scenarios. Simulations are conducted for N = 500 simulated
individuals with K = 20 sampling occasions where there two secondary samples within
each primary period.

Scenario p̂MBias ψ̂MBias N̂MBias
F1 5.53×10−3 -1.41×10−1 -2.04×10−1

F2 2.14×10−1 3.81×10−1 -5.08×10−1

F3 2.72×10−1 5.52×10−1 -3.92×10−1

G1 7.03×10−3 0.83×10−1 -1.28×10−1

G2 1.97×10−2 6.73×10−2 -3.78×10−1

G3 7.64×10−2 1.12 -6.40×10−1

3.5 Data analysis

Removal of common lizards, Zootoca vivipara, was conducted daily in both the
morning and afternoon from the 13th of September to the 29th of October 2010.
There were 94 sampling occasions, with 13 missed visits. 334 common lizards
were captured and permanently removed from the study site over the course of the
removal experiment. The removals consisted of 274 juvenile (denoted as “ju” in the
subscripts in Tables 3.4 and 3.5) and 60 adult (denoted as “ad” in the subscripts in
Tables 3.4 and 3.5) individuals. Eight covariates: mean air temperature, maximum air
temperature, minimum air temperature, precipitation, average humidity, max humidity,
min humidity and season stage, were recorded daily.

Migration and dispersal of reptiles and amphibians are generally limited during
the daytime (Edgar et al., 2010), therefore we used a robust design approach for
our analysis, with days corresponding to primary periods and the repeated samples
within days being the secondary sampling occasions. Hence, there are T = 47 primary
occasions and the number of secondary samples within each primary period are
k1 = k2 = · · ·= k47 = 2. We note that the two secondary samples within each primary
period share the same weather covariates due to the daily recorded schedule.

Given the nature of the available data, we assume juveniles and adults are sampled
independently and hypothesize that their transition probabilities may be related. This
is ecologically sensible since the dynamics exhibited by the population are likely to be
driven by external influences. We use the theory of integrated population modelling
(McCrea et al., 2010) and define the global likelihood to be the product of individual
likelihoods as described in Section 3.2.2, i.e. L = LjuLad where Lju and Lad are the
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Table 3.4 Model selection for models with time-varying transition probabilities fitted
to common lizard data.

Model code Model Covariate h ML ∆AIC

IRMER model
IRMER.Sju,ad Rt

aZ φ 12
ju (t), φ 12

ad (t+γad), p(cov) precipitation 51 −259.53 0
IRMER.Sju Rt

a Z πad, φ 12
ju (t), φ 12

ad (t + γad), p(cov) precipitation 52 −259.85 2.64
IRMER.Sju,adRt Z φ 12

ju (t), p(cov) precipitation 50 −261.94 2.82
IRMER.SjuRt

aZ πad,φ
12
ju (t),φ 12

ad (t + γad), p(cov) average humidity 52 −262.04 7.02
IRMER.Sju,adRt

aC φ 12
ju (t),φ 12

ad (t + γad), p(c) - 50 −269.86 17.46
IRMER.Sju,adRt

aZ φ 12
ju (t),φ 12

ad (t + γad), p(cov) mean air temperature 51 −268.98 18.90
IRMER.SjuRt

aZ πad,φ
12
ju (t),φ 12

ad (t + γad), p(cov) max air temperature 52 −268.09 19.12
IRMER.SjuRt

aC πad,φ
12
ju (t),φ 12

ad (t + γad), p(c) - 51 −269.73 20.39
IRMER.Sju,adRt

aZ φ 12
ju (t),φ 12

ad (t + γad), p(cov) max air temperature 51 −270.71 22.36
IRMER.Sju,adRt

aZ φ 12
ju (t),φ 12

ad (t + γad), p(cov) min air temperature 51 −271.21 23.36
IRMER.Sju,ad Rt C φ 12

ju (t), p(c) - 49 −273.27 23.48
IRMER.Sju Rt

a Z πad, φ 12
ju (t), φ 12

ad (t + γad), p(cov) max humidity 52 −274.03 31.00
IRMER.Sju,adRt Z φ 12

ju (t), p(cov) max humidity 50 −276.55 32.04
IRMER.Sju,adRt Z φ 12

ju (t), p(cov) min air temperature 50 −277.12 33.18
IRMER.Sju,adRt Z φ 12

ju (t), p(cov) max air temperature 50 −277.28 33.50
IRMER.Sju,ad Rt

aZ φ 12
ju (t), φ 12

ad (t+γad), p(cov) average humidity 51 −276.37 33.68
IRMER.Sju,ad Rt

aZ φ 12
ju (t), φ 12

ad (t+γad), p(cov) min humidity 51 −276.72 34.38
IRMER.Sju,adRt Z φ 12

ju (t), p(cov) min humidity 50 −276.75 34.44
IRMER.Sju Rt

a Z πad, φ 12
ju (t), φ 12

ad (t + γad), p(cov) min humidity 52 −278.67 40.28

likelihood for juvenile and adult populations respectively, and are both of the form
described in Equation (3.1).

We also considered incorporating the climatic covariates using a logistic regression
(North and Morgan, 1979) to account for the time variation exhibited within the
transition and capture probabilities. The results from performing model selection
on the integrated data are displayed in Tables 3.4 and 3.5 with φ 12(t) and φ 12(cov)
respectively.

All of the models ranked by AIC in Table 3.4 include fully time-dependent tran-
sition probabilities φ 12

i . The IRMER.Sju,adRt
aZ model with the smallest AIC value

considers the additive effect on transition probabilities for the adult population (con-
straint “Rt

a”), a logistic regression for time-varying capture probabilities pi, j in terms
of precipitation covariates (constraint “Z”), where juveniles and adults share the same
pi, j, and constraint “S” is used for the initial state parameters for both juveniles and
adults. We computed standard errors and confidence intervals empirically using a
non-parametric bootstrap method (Buckland, 1980; Buckland and Garthwaite, 1991).
500 simulated resamples are obtained based on the original counts of removed indi-
viduals. Results of data analysis from the top three models with the lowest AIC are
presented in Table 3.7. The estimate of the number of individuals not captured is 57.74
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Table 3.5 Model selection for models with time-varying transition probabilities in
terms of covariates using logistic regression fitted to common lizard data. ∆AIC is the
AIC difference compared with the model with lowest AIC in Table 3.4.

Model code Model Covariate h ML ∆AIC

IRMER.Sju,adYt
a C φ 12

ju (cov), φ 12
ad (cov+ γad), p(c) min humidity 6 −374.37 139.68

IRMER.Sju,adYt
a C φ 12

ju (cov), φ 12
ad (cov+ γad), p(c) average humidity 6 −374.29 139.52

IRMER.Sju,adYt
a Z φ 12

ju (cov), φ 12
ad (cov+ γad), p(cov) precipitation 7 −373.68 140.30

IRMER.SjuYt
a Z πad, φ 12

ju (cov), φ 12
ad (cov+ γad), p(cov) precipitation 8 −372.98 140.90

IRMER.Sju,adYt
a C φ 12

ju (cov), φ 12
ad (cov+ γad), p(c) precipitation 6 −375.00 140.94

IRMER.SjuYt
a C πad, φ 12

ju (cov), φ 12
ad (cov+ γad), p(c) average humidity 7 −374.12 141.18

IRMER.SjuYt
a C πad, φ 12

ju (cov), φ 12
ad (cov+ γad), p(c) min humidity 7 −374.22 141.38

IRMER.SjuYt
a Z πad, φ 12

ju (cov), φ 12
ad (cov+ γad), p(cov) average humidity 8 −373.30 141.53

IRMER.Sju,adYt
a Z φ 12

ju (cov), φ 12
ad (cov+ γad), p(cov) average humidity 7 −373.68 141.54

IRMER.SjuYt
a Z πad, φ 12

ju (cov), φ 12
ad (cov+ γad), p(cov) min humidity 8 −375.77 141.80

IRMER.Sju,adZt
a Z φ 12

ju (cov), φ 12
ad (cov+ γad), p(cov) min humidity 7 −374.44 141.82

IRMER.SjuYt
a C πad, φ 12

ju (cov), φ 12
ad (cov+ γad), p(c) precipitation 7 −374.88 142.70

IRMER.Sju,adYt
a Z φ 12

ju (cov), φ 12
ad (cov+ γad), p(cov) max air temperature 7 −375.53 144.00

IRMER.SjuYt
a Z πad, φ 12

ju (cov), φ 12
ad (cov+ γad), p(cov) max air temperature 8 −374.83 144.60

IRMER.Sju,adYt
a C φ 12

ju (cov), φ 12
ad (cov+ γad), p(c) max humidity 6 −376.86 144.66

IRMER.Sju,adYt
a C φ 12

ju (cov), φ 12
ad (cov+ γad), p(c) mean air temperature 6 −377.02 144.98

IRMER.SjuYt
a C πad, φ 12

ju (cov), φ 12
ad (cov+ γad), p(c) max air temperature 7 −376.23 145.40

IRMER.Sju,adYt
a Z φ 12

ju (cov), φ 12
ad (cov+ γad), p(cov) mean air temperature 7 −376.54 146.02

IRMER.Sju,adZt
a Z φ 12

ju (cov), φ 12
ad (cov+ γad), p(cov) max humidity 7 −376.56 146.06

IRMER.SjuYt
a C πad, φ 12

ju (cov), φ 12
ad (cov+ γad), p(c) max humidity 7 −376.75 146.44

IRMER.SjuYt
a Z πad, φ 12

ju (cov), φ 12
ad (cov+ γad), p(cov) max humidity 8 −373.43 146.48

IRMER.Sju,adYt Z φ 12
ju (cov), p(cov) precipitation 6 −377.94 146.82

IRMER.SjuYt
a Z πad, φ 12

ju (cov), φ 12
ad (cov+ γad), p(cov) mean air temperature 8 −375.89 146.72

IRMER.SjuYt
a C πad, φ 12

ju (cov), φ 12
ad (cov+ γad), p(c) mean air temperature 7 −376.93 146.80

IRMER.Sju,adYt
a C φ 12

ju (cov), φ 12
ad (cov+ γad), p(c) min air temperature 6 −377.94 146.82

IRMER.Sju,adZt C φ 12
ju (cov), p(c) precipitation 5 −379.10 147.14

IRMER.Sju,adYt
a C φ 12

ju (cov), φ 12
ad (cov+ γad), p(c) max air temperature 6 −378.42 147.78

IRMER.Sju,adYt
a Z φ 12

ju (cov), φ 12
ad (cov+ γad), p(cov) min air temperature 7 −377.83 148.60

IRMER.SjuYt
a C πad, φ 12

ju (cov), φ 12
ad (cov+ γad), p(c) min air temperature 7 −377.84 148.62

IRMER.SjuYt
a Z πad, φ 12

ju (cov), φ 12
ad (cov+ γad), p(cov) min air temperature 8 −377.17 149.28

IRMER.Sju,adYt C φ 12
ju (cov), p(c) min humidity 5 −382.06 153.06

IRMER.Sju,adYt C φ 12
ju (cov), p(c) average humidity 5 −382.34 153.62

IRMER.Sju,adYt Z φ 12
ju (cov), p(cov) min humidity 6 −384.08 154.34

IRMER.Sju,adYt Z φ 12
ju (cov), p(cov) average humidity 6 −382.33 155.60

IRMER.Sju,adYt C φ 12
ju (cov), p(c) max humidity 5 −384.47 157.88

IRMER.Sju,adYt Z φ 12
ju (cov), p(cov) max air temperature 6 −383.94 158.82

IRMER.Sju,adYt C φ 12
ju (cov), p(c) mean air temperature 5 −385.02 158.98

IRMER.Sju,adYt Z φ 12
ju (cov), p(cov) max humidity 6 −384.08 159.10

IRMER.Sju,adYt Z φ 12
ju (cov), p(cov) mean air temperature 6 −384.80 160.54

IRMER.Sju,adYt C φ 12
ju (cov), p(c) min air temperature 5 −385.94 160.82

IRMER.Sju,adYt C φ 12
ju (cov), p(c) max air temperature 5 −386.05 161.04

IRMER.Sju,adYt Z φ 12
ju (cov), p(cov) min air temperature 6 −385.68 162.30
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Table 3.6 Model selection for geometric removal models (GRM) fitted to common
lizard data. ∆AIC is the AIC difference compared with the model with lowest AIC in
Table 3.4.

Model code Model Covariate h ML ∆AIC

GRM.Z p(cov) max air temperature 4 −382.43 151.80
GRM.Z p(cov) mean air temperature 4 −385.06 157.06
GRM.Z p(cov) precipitation 4 −385.78 158.50
GRM.Z p(cov) average humidity 4 −386.96 160.86
GRM.Z p(cov) min air temperature 4 −387.83 162.60
GRM.Z p(cov) max humidity 4 −388.03 162.98
GRM.Z p(cov) min humidity 4 −388.03 163.00
GRM.C p(c) - 3 −390.05 163.84

(SE 146.02, 95% bootstrap CI 31.75, 473.33) for juveniles and 3.36 (SE 49.76, 95%
bootstrap CI 0.02, 180.11) for adults. The precision of both of these is low, as a result
of the sparseness of the observed data. The estimated additive effect of transition
probabilities for adults is -0.97 (SE 1.54, 95% bootstrap CI -1.84, 2.75). The estimate
of the intercept of the logistic regression for capture probability is -1.98 (SE 0.60,
95% bootstrap CI -3.60, -1.46). The estimate of the slope of the logistic regression for
capture probability is 1.61 (SE 0.37, 95% bootstrap CI 0.98, 2.32). The estimates and
95% CI for the transition probabilities are available in Figure 3.14. Standard errors for
the time-specific transition probabilities are large for some primary sessions. The poor
precision is likely due to the small sample sizes.

We also considered the classic geometric removal model in Table 3.6, where
GRM.C and GRM.Z represent the classic removal model with constant and time-
varying capture probabilities in terms of covariates respectively for both juveniles
and adults, where the same capture probability at each sampling occasion for both
populations is assumed. Because the geometric removal model does not take into
account transitions, we skip the notations for the constraints of initial state parameter
and transition probability in the GRM model.

The estimate of the population size obtained by the GRM.Z model is 161.12 (SE
52, 95% bootstrap CI 51.91, 230.41) for juveniles and 34.90 (SE 18.41 , 95% bootstrap
CI 0.01, 71.65) for adults. Furthermore, the estimated population size obtained by the
GRM.C is 131.82 (SE 36.37, 95% bootstrap CI 83.07, 222.14) and 28.47 (SE 7.96,
95% bootstrap CI 17.80, 48.25) for juveniles and adults respectively. We observe
that the GRM models have larger estimates of the population sizes for both of the
populations.
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Table 3.7 Estimates, standard errors (SE) and 95% confidence interval (CI) for the top
three models as identified in Table 3.4.

Model IRMER.Sju,ad Rt
aZ IRMER.Sju Rt

aZ IRMER.Sju,ad RtZ
∆AIC 0 2.62 2.82
n̂0, ju 57.74 48.29 212.12
SE (95% CI) 146.02 (31.75, 474.33) 152.06 (31.23, 480.07) 100.93 (79.39, 458.75)
n̂0,ad 3.34 1.97 45.89
SE (95% CI) 49.76 (0.02, 180.11) 59.39 (0.04, 191.06) 28.87 (18.32, 110.09)
α̂ -1.98 -1.87 -3.03
SE (95% CI) 0.60 (-3.60, -1.46) 0.65 (-3.63 -1.47) 0.32 (-3.53, -2.32)
β̂ 1.61 1.547 0.31
SE (95% CI) 0.37 (0.98, 2.32) 0.47 (-0.09, 2.41) 0.290 (1.37, 2.64)
ˆγad -0.97 -1.059 -

SE (95% CI) 1.525 (-1.84, 2.74) 1.57 (-1.87, 2.78) -
ˆπad - 0.37 -

SE (95% CI) - 0.51 (0.51, 1.00) -

The fitted counts of individuals removed at each occasion for both juvenile and
adult population are displayed in Figure 3.13. A visual assessment of observed and
expected numbers based on the non-parametric bootstrap provided no evidence of
systematic lack of fit of the selected model. Common lizards are diurnal and are
known to spend less time basking on the surface as they can flexibly operate at low
temperatures as described in Edgar et al. (2010). Furthermore, juveniles exhibit
more powers of dispersal than adults as they can rapidly colonize new habitats which
often become available adjacent to already occupied sites. These characteristics are
supported by the results from our top model, suggesting that the transition probabilities
of juveniles are higher than for adults. As seen from Table 3.4, none of the available
climatic covariates collected during the study adequately accounted for the time-
dependent transition probabilities. However, the logistic regression of time-varying
capture probabilities in terms of precipitation is supported by our top model.

3.6 Discussion

Translocation mitigation projects undertaken prior to land development have become
increasingly popular for protected species. Removal models have considerable po-
tential to inform the design and execution of translocations, but need to take into
account temporary emigration to reduce the risk of biased estimates of the number
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of animals not captured. In Chapter 3, we have extended the classic removal model
to accommodate a robust design sampling strategy and multi-event framework with
one unobservable state to allow for individuals to become temporarily unavailable for
capture. Simulations have demonstrated that the RMER models perform better than
the MER models with standard data sampling. Our approaches can yield unbiased
estimates of the number of individuals in the populations residing in the sampling area.
However, simulation is time-consuming if we want to examine all possible model
structures. In Chapter 4 we use symbolic approaches to determine whether parameters
in a model can be estimated individually or not.

The adequate design of sampling protocols is fundamental at the data analysis stage.
Imperfect exposure to sampling for the population of interest is generally hard to deal
with when analyzing the data. The robust design is a well-known sampling technique
for capture recapture data that enables us to estimate otherwise confounded parameters
(Kendall and Bjorkland, 2001; Kendall et al., 1997, 1995; Pollock, 1982). We have
demonstrated that the use of the robust design for removal data enables the estimation
of transition probabilities between observable and unobservable states. In addition,
RMER models result in estimators of population size and capture probability which
have better properties than MER under the standard sampling protocol. Therefore, we
would like to raise the awareness of good study design for removal experiments as
in our experience only a small number of removal studies have repeated samplings
conducted within a day, However if sampling strategies were simply altered to allow
for multiple secondary samples, uncertainty in estimates of detection and transition
probabilities would reduce considerably.

The general RMER model with fully time-specific parameters is not identifiable,
because there are more parameters than the number of removal data points. Although
the assumption of constant parameters across time is the most straightforward way
of constraining models in order to enable estimation, using simulations we have
demonstrated that the best performing models with least bias incorporate at least
two constraints - constraint “Rt” which denotes random emigration (the fully time-
dependent transition probabilities are constrained by φ 12

i +φ 21
i = 1) and constraint

“S” (the initial state parameter π is constrained as the first element of the mean of the
stationary distributions of the transition matrices across time).

Our proposed RMER model is general and can be extended to the IRMER mod-
elling which permits the analysis of multiple data sources, exploiting the relationship
between parameters expected between related populations. Simulations have shown
IRMER models perform well for two populations. Furthermore, we have applied the
IRMER model to two age groups (adults and juveniles) of common lizard data and the
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results align with our understanding of the natural history of the populations of this
species.

Further adaptations of the model could be considered, for example, transition
probabilities may depend on discrete states such as sex, age or breeding status, and it
might be of interest to consider how individual covariates could be incorporated into
the model.

All of the models presented in Chapter 3 are based on the assumption of first-order
Markovian transitions between the observable and unobservable state, such that the
transition from primary period i to i+1 depends only on the state of the individual at
the ith primary period. Future work includes the investigation of modelling temporary
emigration as a second-order Markov chain for removal data building on the work
presented by Kendall and Nichols (2002) where they explored the estimability of state
transition probabilities in a second-order Markov process for capture-recapture data.

Spatial information has been widely used in the capture recapture literature (Royle
et al., 2013), however, there is no spatial information on sampling available for the
real data. Transolcation projects are generally poorly documented globally. In the
UK, less than 10% of submitted reports contain detailed population monitoring data
and one-half of the cases on file lack any type of report (Germano et al., 2015). In
order to optimize the success of translocation studies, we should not only design the
study properly, but also record any informative component which may help evaluate
the sampling methodologies.

We have demonstrated that the estimation of temporary emigration for removal
data relies on the use of the robust design. However, there are many removal data sets
which cannot be analyzed using either the RMER or IRMER model due to the lack
of repeated samples within a primary period during data collection. We investigate
alternative ways of modelling removal data without the robust design in Chapter 5.
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Fig. 3.13 Predicted counts of common lizards (CL) removed at each occasion, shown by
the circle and cross dots. Black solid lines are the real data. 95% confidence intervals
obtained from 500 bootstrap samples are indicated within dotted lines. (A) Results
obtained from the IRMER.Sju,adRt

aZ. (B) Results obtained from the IRMER.SjuRt
aZ

model with ∆AIC=2.62. (C) Results ordained from the IRMER.Sju,adRtZ model with
∆AIC=2.82.
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Fig. 3.14 Estimates of transition probabilities φ 12
i obtained from the top three models

for common lizards, shown by the circle and cross dots. Grey lines are the estimated
φ 12

i from 500 bootstrap samples. 95% confidence intervals are indicated within dotted
lines. (A) Estimates of φ 12

i obtained from the IRMER.Sju,adRt
aZ. (B) Estimates of

φ 12
i obtained from the second top model, IRMER.SjuRt

aZ model with ∆AIC=2.62. (C)
Estimates of φ 12

i ordained from the IRMER.Sju,adRtZ model with ∆AIC=2.82.



Chapter 4

Parameter Redundancy for Removal
Models

4.1 Introduction

As the complexity of ecological models increases, it is sometimes hard to identify
whether we can estimate all the parameters in a model. Numerical simulation is a
common way to investigate the performance of the estimates in a model (Gimenez
et al., 2004). However, it can be time-consuming if we want to explore a diverse range
of parameter spaces. So, efficient methods for examining parameter identifiability are
in demand.

A model is termed parameter redundant if it is impossible to estimate all the
parameters individually, because the model could be reparameterised in terms of a
smaller number of parameters (Catchpole and Morgan, 1997). The techniques for
detecting parameter redundancy have been developed for a wide range of applications
including complex capture-recapture models (see, for example, Catchpole and Morgan,
1997; Cole et al., 2010, 2012; Cole, 2012; Cole et al., 2014; Hubbard et al., 2014).
These provide an efficient and general way to assess whether parametric models are
parameter redundant using symbolic algebra. In Chapter 4 we use these symbolic
methods as tools to investigate the parameter redundancy status of removal models
that are newly developed in this thesis. The work present in Chapters 3 and 4 are
also available in Zhou et al. (2018). All the calculations in this chapter are carried
out in Maple using the symbolic package LinearAlgebra and Maple procedures
developed in Catchpole et al. (2002) and Cole et al. (2010). Maple code is available in
the electronic appendix for all of the examples discussed.
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We describe the methods for detecting parameter redundancy and demonstrate
the use of these tools with illustrative examples for removal models in Section 4.2.
From simulations in Chapter 3, we find that RMER and IRMER models employing the
robust design framework and certain constraints can give unbiased estimates, however
the estimates obtained from MER models without robust design are biased. In this
Chapter, we explore the removal models presented in Chapter 3 symbolically. The
results and their interpretation are summarised in Section 4.3. Chapter 4 finishes with
a discussion in Section 4.4.

4.2 Methods for detecting parameter redundancy

4.2.1 Determining if a model is parameter redundant

Parameters are confounded in a parameter redundant model, so we cannot estimate all
the parameters individually. Certain capture-recapture models can be formed based on
a probability matrix that indicates probabilities of first capture and recaptures for each
sampling occasion. Catchpole and Morgan (1997) showed that parameter redundancy
in a capture-recapture model can be detected by forming a derivative matrix that is
calculated by differentiating each of the non-zero elements in the probability matrix
with respect to each parameter in the model. In this thesis we employ the methods
of Cole et al. (2010) to assess whether a model is parameter redundant by forming a
derivative matrix.

Cole et al. (2010) generalise the method of detecting parameter redundancy dis-
cussed in Catchpole and Morgan (1997) by forming the derivative matrix by differenti-
ating an exhaustive summary with respect to the parameters. An exhaustive summary,
κ(θ) is a vector of parameter combinations that uniquely represent the model. The
probability matrix is an example exhaustive summary that could be used for a capture-
recapture model. For removal models, a suitable exhaustive summary is a vector of
probabilities of individuals being removed at the kth occasion, for k = 1, . . . ,K. The
derivative matrix is then

D =

[
∂κ(θ)

∂θ

]
where θ is a vector of h parameters.

Once the matrix D is formed, the rank of the derivative matrix, r, which is the
number of linearly independent rows of D, is calculated. The deficiency of the model,
d, is calculated as h− r. If d > 0, the model is parameter redundant. Otherwise, if
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d = 0, then the model is termed full rank. For a full rank model, all the parameters can
be estimated in principle.

Maple has a symbolic algebra computer package where we can obtain the rank of D
symbolically (Catchpole et al., 2002). For example, we could load the LinearAlgebra
package within Maple by calling the command with(LinearAlgebra). In addition,
the Rank(D1) function could calculate the rank of a derivative matrix D1 by performing
Gaussian elimination on the rows of D1. However, there are situations where the
symbolic approach fails because the terms in the derivative matrix are algebraically
complicated or the number of terms is too large for the limited computational memory.
As a result, the computation of the rank of the derivative matrix is not feasible for
complex model structures or a large number of terms. Throughout the thesis the total
number of elements in the exhaustive summary is no more than ten, as this is large
enough to determine the structure of the model and small enough to compute the
results algebraically for removal models considered.

Example 4.2.1 for the RMER.SRtC model is shown to demonstrate the method for
detecting parameter redundancy.

Example 4.2.1: RMER.SRtC model

The RMER.SRtC model, which incorporates both the constraint “S” and “Rt”, is
described in Chapter 3. Consider the model with K = 8 sampling occasions with
4 primary periods and 2 secondary samples, then the vector of parameters is θ =

[p φ 12
1 φ 12

2 φ 12
3 ] , where p represents the detection probability and φ 12

i denotes
transition probability from state 1 to state 2 between the ith and (i+ 1)th primary
period. The exhaustive summary is defined by a vector of probabilities of capturing
individuals at the jth secondary period within the ith primary period.

κ(θ) =
[
Li, j
]
=

(1− 1
3φ 12

1 − 1
3φ 12

2 − 1
3φ 12

3 )p

(1− 1
3φ 12

1 − 1
3φ 12

2 − 1
3φ 12

3 )(1− p)p

{(1− 1
3φ 12

1 − 1
3φ 12

2 − 1
3φ 12

3 )(1− p)2(1−φ 12
1 )+(1

3φ 12
1 − 1

3φ 12
2 − 1

3φ 12
3 )(1−φ 12

1 )}p
...

 .
We remove the more complicated probability that an animal is never captured

to make the exhaustive summary simpler. This is possible as we assume that we
observe at least one individual at each occasion, and all the probabilities, including the
probability that an animal is never captured, sum to one. Therefore, as the probability
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that an animal is never captured can be written as a function of the other exhaustive
summary terms it can be removed. This is an identical argument for the one used in
Catchpole and Morgan (1997) for capture-recapture models.

Then, the derivative matrix of the exhaustive summary for the parameters can be
derived as

D =
[

∂κ(θ)

∂θ

]
=

(1− 1
3φ 12

1 − 1
3φ 12

2 − 1
3φ 12

3 ) (1− 1
3φ 12

1 − 1
3φ 12

2 − 1
3φ 12

3 )(1−2p) · · ·
−1

3 p −1
3(1− p)p · · ·

−1
3 p −1

3(1− p)p · · ·
−1

3 p −1
3(1− p)p · · ·


Due to the complexity of terms in the exhaustive summary and the derivative matrix,
we do not show the rest of the terms in this example, the full results are available in
Maple file ex4.2.1.mw instead. We find that the rank of the derivative matrix is r = 4,
which is equal to the number of parameters h = 4 in the model. We conclude that the
RMER.SRtC model has deficiency of zero as d = h− r = 0. Therefore the model is
determined to be full rank when there are 8 sampling occasions. Hence, theoretically
it is possible to estimate all the parameters individually.

4.2.2 Combinations of estimable parameters

As the derivative matrix is a unique representation of a model, it provides more infor-
mation than the rank of D, which only tells us the number of independent parameter
combinations that can be estimated. For a parameter redundant model, it is possible to
show if any of the original parameters are estimable.

Let us suppose we obtain a parameter redundant model with deficiency d > 0,
then the derivative matrix D can be used to determine which original parameters and
combinations of parameters are estimable (Catchpole et al., 1998; Cole et al., 2010).
We can determine if any of the original parameters are independently estimable by
solving for the left null space α of derivative matrix D, i.e. αT D = 0, for a vector α(θ).
As the model has a deficiency of d, there will be d linearly independent solutions
to αT D = 0. If we denote entries of the d solutions by αi, j, for i = 1, . . . ,h and
j = 1, . . . ,d, then for any i for which αi, j = 0 for all j, the ith parameter in the original
parameter vector θ is estimable and is also the ith parameter which respect to which
we are differentiating to form the matrix D.
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To find other estimable parameter combinations, we solve the system of linear
first-order partial differential equations (Catchpole et al., 1998; Chappell and Gunn,
1998; Evans and Chappell, 2000; Cole et al., 2010),

h

∑
i=1

αi j
∂ f
∂θi

= 0, j = 1, . . . ,d

which are known as Lagrange equations (Cox and Miller, 1965).
We demonstrate how this method works using the illustrative Example 4.2.2 below.

Example 4.2.2: MER.NNC model

The MER.NNC model in Chapter 3 considers a multievent framework allowing for
temporary emigration but does not have a robust design structure. It contains a constant
detection probability, constant transition probabilities and an initial state parameter.
Therefore, the parameters in this case are θ = [p φ 12 φ 21 π], where p is the
detection probability, φ 12 and φ 21 represent transition probabilities between state 1
and state 2, and π is the probability of being in state 1 initially. We consider the model
with 8 occasions of removal, and we define the exhaustive summary as a vector of
probabilities of an individual being captured at the the kth occasion as the specification
determines the model. We only show the first three terms in the probability matrix
below as the probabilities of removal dramatically get more complicated as the number
of sampling times increases. Full results are available in the Maple code in the file
ex4.2.2.mw.

κ(θ) =
[
Lk,1
]
=

π p
{π(1− p)(1−φ 12)+(1−π)φ 21}p[

{π(1− p)(1−φ 12)+(1−π)φ 12}(1− p)(1−φ 12)+{π(1− p)φ 12 +(1−π)(1−φ 21}φ 21)
]
p

...


(4.1)

where Lk,1 is the probability of animals being captured at the kth sampling occasion.
The derivative matrix is given by,

D =
[

∂κ(θ)

∂θ

]
=


π −π(1−φ 12)p+π(1− p)(1−φ 12)+(1−π)φ 21 · · ·
0 −π(1− p)p · · ·
0 (1−π)p · · ·
p {(1− p)(1−φ 12)−φ 21}p · · ·

 .
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and is found to have symbolic rank 3. However, there are 4 parameters, therefore the
model is parameter redundant with deficiency 1. In order to find if any of the original
parameter can be estimated, we solve αT D = 0, which gives,

α =
[
− p

π

pφ 12 − p+φ 21

π(p−1)
φ 21

π
1
]
.

As there are no zeros in α , none of the original parameters are individually estimable.
To find the estimable parameter combinations, we solve the partial differential equation,

−∂ f
∂ p

p
π
+

∂ f
∂φ 12

pφ 12 − p+φ 21

π(p−1)
+

∂ f
∂φ 21

φ 21

π
+

∂ f
∂π

= 0,

which shows we can estimate pφ 21, pπ , and p(φ 12 −1)−φ 12 −φ 21.

4.2.3 Generalization of parameter redundancy results

In Sections 4.2.1 and 4.2.2, we demonstrate how to determine the results of parameter
redundancy for a fixed number of K sampling occasions. It is possible to generalize the
results of parameter redundancy to any number of samples as described in Catchpole
and Morgan (1997) and Cole et al. (2010). In this section, we show how to obtain
general parameter redundancy results for our removal models with two secondary
occasions within each primary period. Note that we could theoretically generalize the
results to any number of secondary occasions. We only show two secondary occasions
here as this matches the data used in this thesis.

Extension theorem

Parameter redundancy results can be generalised to any dimension of model using the
extension theorem, first proposed by Catchpole and Morgan (1997) and extended to
any exhaustive summary in Cole et al. (2010).

Suppose we have a full rank model for a fixed total number of sampling occasions,
in which the exhaustive summary is denoted by κ1(θ1) with parameters θ1 and the
derivative matrix is D1,1 = [∂κ1(θ1)/∂θ1]. The model is then extended, by adding an
extra sampling occasion, to give an exhaustive summary κ = [κ1,κ2]. We denote the
extra parameters (if any) by θ2 and let θ = [θ1,θ2]. The extra exhaustive summary
terms are κ2(θ). Furthermore, the new derivative matrix of the extended model is
formed by,
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D =

[
D1,1(θ1) D2,1(θ1)

D1,2(θ2) D2,2(θ2)

]
=

[
D1,1(θ1) D2,1(θ1)

0 D2,2(θ2)

]
,

where D1,2(θ2) = [∂κ1/∂θ2] = 0, D2,1(θ1) = [∂κ2/∂θ1] and D2,2(θ2) = [∂κ2/∂θ2].

Catchpole and Morgan (1997) proved that if both D1,1(θ1) and D2,2(θ2) are full
rank, then the extended model is also full rank. Induction can be used to generalise
this result to any number of sampling occasions.

If there is no extra parameter of the extended model, then the new derivative matrix
can be further simplified to,

D =

[
D1,1(θ1) D2,1(θ1)

0 D2,2(θ2)

]
=
[

D1,1(θ1) D2,1(θ1)
]
,

which is always full rank if D1,1(θ1) is full rank.
Furthermore, if there is only one extra parameter in the extended model, then

D2,2(θ2) is always full rank because it always has rank of one as a row vector. There-
fore the extended model will be full rank if D1,1(θ1) is full rank and there is only
one new parameter in θ2. We demonstrate the use of the extension theorem using the
example of RMER.SRtC model as below.

Example 4.2.1 continued: RMER.SRtC model

Step 1: prove the model is full rank for a certain number of sampling occasions.

This step is done in Example 4.2.1. We have demonstrated the RMER.SRtC model
is not parameter redundant when there are K = 8 sampling occasions with 4 primary
periods and 2 secondary samples. Let κ1 denote the original exhaustive summary and
θ1 = [p φ 12

1 φ 12
2 φ 12

3 ] for the model with K = 8 sampling occasions. Furthermore,
the derivative matrix D1,1(θ1) = [∂κ1(θ1)/∂θ1] is found to be full rank in Section
4.2.1.

Step 2: extend the results in Step 1 to any number of occasions.

Because the derivative matrix D1,1(θ1) is full rank, we can then apply the extension
theorem to prove this model is full rank for any number of sampling occasions K ≥ 4.
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The model can be extended by considering one additional primary period with 2
secondary occasions. Let θ2 = [φ 12

4 ] denote the extra parameter and κ2(θ2) denote
the extra terms in the exhaustive summary. The full set of parameters after the model
extension is θ = [θ1 θ2] = [p φ 12

1 φ 12
2 φ 12

3 φ 12
4 ]. The exhaustive summary of

this extended model is denoted by κ(θ) = [κ1(θ1) κ2(θ2)]. The extension theorem
states that if both D1,1(θ1) and D2,2(θ2) are full rank, we can explicitly conclude that
the extended model is also full rank for any larger number of sampling occasions.
Due to the complexity of κ2(θ2) and D2,2(θ2), we don’t show their exact forms, the
detailed expressions are available in the Maple file 4.2.1.cont.mw. We find D2,2(θ2)

has rank 1 which is full rank as there is only 1 parameter in θ2. Therefore, the extended
model is proved to be explicitly full rank for any K ≥ 10 sampling occasions.

Reparameterisation theorem

If the original model is not full rank, then the extension theorem cannot be used for
that model. Instead, we need to find a reparameterization of the original model that is
full rank to begin with, then we can apply the extension theorem to the reparameterized
model to determine the appropriate general parameter redundancy result (Cole et al.,
2010). We reparameterize our models in terms of the estimable parameter combi-
nations. We demonstrate how to use the reparameterization theorem for the model
RMER.NNtC in the example 4.2.3 below.

Example 4.2.3: RMER.NNtC model

The RMER.NNtC model does not consider any constraint for time-dependent
transition probabilities and initial state, as described in Chapter 3. In this example we
demonstrate how to use the reparametersation theorem to show that the deficiency for
the RMER.NNtC model is K/2−1 for K ≥ 4. Maple code is in the ex4.2.3.mw file.

Step 1: prove the model is parameter redundant

Consider the RMER.NNtC model with time-varying transition probabilities for
K = 4 sampling occasions where there are 2 primary periods and 2 secondary samples.
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The vector of parameters is θ1 = [p π φ 12
1 φ 21

1 ]. The exhaustive summary is

κ1(θ1) =
[
Li, j
]
=


π p

π(1− p)p

{π(1− p)2(1−φ 12
1 )+(1−π)φ 21

1 }p

{π(1− p)2(1−φ 12
1 )+(1−π)φ 21

1 }(1− p)p


where Li, j is the probability of individuals being removed at the jth secondary occasion
within the ith primary period. The derivative matrix is given as

D1,1(θ1) =
[

∂κ1(θ1)

∂θ1

]
=

π −π p+π(1− p) −2π(1− p)(1−φ 12
1 )p+π(1− p)2(1−φ 12

1 )+(1−π)φ 21
1 · · ·

p (1− p)p {(1− p)2(1−φ 12
1 )−φ 21

1 }p · · ·
0 0 −π(1− p)2 p · · ·
0 0 (1−π)p · · ·

 ,
which has rank 3. As there are 4 parameters in θ1, the model is parameter redundant
with deficiency of 1. To find if any of the parameters can be estimated individually and
which combinations of parameters are estimable, we solve αT D1,1 = 0, which gives

α =

[
0 0 − π −1

π(−1+ p)2 1
]
.

We find there are two zeros in α which correspond to the first and second param-
eters in θ1, i.e p and π . So in theory p and π are individually estimable. In order to
find the other estimable combinations of parameters, we solve the following partial
differential equation,

− ∂ f
∂φ 12

1

π −1
π(−1+ p)2 +

∂ f
∂φ 21

1
= 0.

Its solution shows that we can estimate [{(−1+ p)2φ 12
1 +φ 21

1 }π−φ 21
1 ]/(π−1). There-

fore, p, π and [{(−1+ p)2φ 12
1 +φ 21

1 }π −φ 21
1 ]/(π − 1) are the estimable parameter

combinations when there are K = 4 sampling occasions.

Step 2: Reparameterise the model

We have proved that the model with 4 parameters is parameter redundant with
deficiency of 1 for K = 4 occasions. In order to obtain its general results of parameter
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redundancy, we need to find a reparameterisation of the model which is full rank before
we apply the extension theorem to determine the parameter redundancy for general
values of K. Let s be a vector of three combinations of original parameters in the
reparameterised model as shown below.

s =

 s1

s2

s3

=

 p

π

{π(1− p)2(1−φ 12
1 )+(1−π)φ 21

1 }

 .
We can then reparameterise the original model in terms of reparameterised param-

eters s = [s1 s2 s3] and the reparameterised κ1(s) is

κ1(s) =


s1s2

s2(1− s1)s1

s1s3

s1(1− s1)s3

 .

The derivative matrix D1,1(s) = ∂κ1/∂ s for the reparameterised model can be
derived as matrix (4.2) with rank 3. Therefore the reparameterised model is full rank
as there are three parameters in the model.

D1,1(s) =

 s2 −s1s2 + s2(1− s1) s3 (1− s1)s3 − s1s3

s1 (1− s1)s1 0 0
0 0 s1 (1− s1)s1

 (4.2)

Step 3: Use extension theorem on the reparameterised model

As we have derived a full rank reparameterisation of the original model in Step
2, we then could apply the extension theorem for the reparameterised model. If we
consider one additional primary period with 2 secondary occasions to the model,
we will have two new parameters s′ =

[
φ 12

2 φ 21
2
]
. There will be two terms in

the extended part of exhaustive summary after adding one primary period with two
secondary samples. The extended exhaustive summary κ2(s

′
) in terms of the new

parameter s′ is shown below,

κ2(s
′
)=

[
s1[{(1−φ 12

2 )s3 + s2φ 21
2 }s2

1 +{(2φ 12
2 −2)s3 −2s2φ 21

2 }s1 +(−φ 12
2 −φ 21

2 +1)s3 +φ 21
2 ]

s1(1− s1)[{(1−φ 12
2 )s3 + s2φ 21

2 }s2
1 +{(2φ 12

2 −2)s3 −2s2φ 21
2 }s1 +(−φ 12

2 −φ 21
2 +1)s3 +φ 21

2 ]

]
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We can then obtain D2,2(s
′
) by differentiating κ2(s

′
) with respect to s′ = [φ 12

2 φ 21
2 ]

as below,

D2,2(s
′
) =

[
s1(−s2

1s3 +2s1s3 − s3) s1(1− s1)(−s2
1s3 +2s1s3 − s3)

s1(s2
1s2 −2s1s2 − s3 +1) s− s1(−1+ s1)(s2

1s2 −2s1s2 − s3 +1)

]
.

D2,2(s
′
) has a rank of 1. As there are two parameters in s′ , the extended part of the

exhaustive summary has a deficiency of 1 when we consider an additional primary
period with two secondary samples.

For the RMER.NNtC model with 2 secondary samples within each primary occa-
sion, the deficiency of the extended terms in the exhaustive summary is always equal
to the extra number of primary periods considered. This is because when we consider
i additional primary periods, there will always be 2i new transition probabilities φ 12

i

and φ 21
i in the extended model, the rank of D2,2 is always equal to half of the number

of new parameters, i.e. the number of additional primary periods, so the deficiency of
the extended part is always equal to the number of extra primary periods as well. See
Maple file ex4.2.3.mw for proof.

We have proved that the model with K = 4 sampling occasions has rank 3 and
deficiency of 1 in Step 1, then for a removal study of length K with two secondary
samples within each primary period the extended part of the study has length of K −4
with (K − 4)/2 additional primary periods and K − 4 new transition probabilities.
Therefore the rank of D2,2 is equal to (K−4)/2 = K/2−2 and the deficiency is equal
to (K − 4)− (K − 4)/2 = K/2− 2 as well. Bringing together the results in Step 1,
the model with K sampling occasions will have rank of (K/2−2)+3 = K/2+1 and
deficiency of (K/2−2)+1 = K/2−1.

Note that for a removal study with K sampling occasions and two secondary
samples within each primary period, there will be K/2− 1 primary periods, K − 2
transition probabilities for the RMER.NNtC model, one constant capture probability
p and one initial state parameter π , therefore there are a total of K parameters in the
model. Hence, the deficiency can be calculated as K − (K/2+1) = K/2−1, where
K/2+1 is the rank as derived before. Note that results only apply for K ≥ 4, because
the deficiency cannot be less than zero, i.e. K/2−1 ≥ 0

Therefore, the deficiency of the model can be derived explicitly for any number
of K sampling occasions where there are 2 secondary samples within each primary
period.
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4.2.4 The parameter n0

In the exhaustive summaries considered so far we have not included any terms involv-
ing the parameter n0, i.e. the number of individual never captured. This parameter
appears in the multinomial constant of the full likelihood as shown in Equation (3.1)
in Section 3.2.2. That term has been excluded from the exhaustive summary, because
it only provides information on n0 so n0 can always be estimated in theory if other
parameters can be estimated. We demonstrate this in the following example, where we
consider n0 as an extra parameter for the RMER.SRtC discussed in the Example 4.2.1.

Note that the parameter n0 also appears in the term Ln0
0 in Equation (3.1). However,

we never consider the probability that an individual is not captured in the exhaustive
summary because it can be rewritten as a function of other exhaustive summary terms
as mentioned in Example 4.2.1.

Example 4.2.4: consider n0 in the RMER.SRtC model

Similar to the Example 4.2.1, we still consider the model with K = 8 sampling occa-
sions with 4 primary periods and 2 secondary samples. As we consider no as an addi-
tional parameter, the vector of parameters in this case is θ = [n0 p φ 12

1 φ 12
2 φ 12

3 ].
We then include n0 +n1,1 + · · ·+n4,2 as an extra term in the exhaustive summary of a
vector of probabilities of capturing individuals at the jth secondary period within the
ith primary period. Including the term n0 +n1,1 + · · ·+n4,2 is equivalent to consider
the coefficient N! = (n0 +∑

i=4, j=2
i=1, j=1 ni, j)! in the full multinomial likelihood function.

Then, the exhaustive summary in this case is,

κ(θ) =
[
Li, j
]
=

n0 +n1,1 +n1,2 +n2,1 +n2,2 +n3,1 +n3,2 +n4,1 +n4,2

(1− 1
3φ 12

1 − 1
3φ 12

2 − 1
3φ 12

3 )p

(1− 1
3φ 12

1 − 1
3φ 12

2 − 1
3φ 12

3 )(1− p)p

{(1− 1
3φ 12

1 − 1
3φ 12

2 − 1
3φ 12

3 )(1− p)2(1−φ 12
1 )+(1

3φ 12
1 − 1

3φ 12
2 − 1

3φ 12
3 )(1−φ 12

1 )}p
...


.

The derivative matrix of the above exhaustive summary is derived as

D =
[

∂κ(θ)

∂θ

]
=
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1 0 0 · · ·
0 (1− 1

3φ 12
1 − 1

3φ 12
2 − 1

3φ 12
3 ) (1− 1

3φ 12
1 − 1

3φ 12
2 − 1

3φ 12
3 )(1−2p) · · ·

0 −1
3 p −1

3(1− p)p · · ·
0 −1

3 p −1
3(1− p)p · · ·

0 −1
3 p −1

3(1− p)p · · ·


The rank of this derivative matrix is r = 5, which is equal to the number of parameters
h = 5. Therefore the model has deficiency of zero and is determined to be full rank.
The full results are available in Maple file ex4.2.4.mw.

Note that the first row vector in D is (1,0,0,0,0,0,0,0,0), and it contributes to one
rank for the additional n0 parameter, so the deficiency of the model is the same with
that in the Example 4.2.1. Therefore we consider a simpler exhaustive summary
without the term N! = (n0 +∑

i=4, j=2
i=1, j=1 ni, j)! and without n0 in the parameter vector

throughout the thesis.

4.2.5 Near parameter redundancy

Catchpole et al. (2001) found that a full rank model can perform badly in practice,
because the model is close to a nested parameter redundant model; this is known
as near redundancy. It is useful to look at the values of the smallest eigenvalue of
the expected information matrix for the parameter space as shown in Catchpole and
Morgan (1997). Similar methods were used for examining practical identifiability of
mathematical dynamic models (Raue et al., 2009; Chis et al., 2016).

In a parameter redundant model the expected information matrix will be exactly
singular (Rothenberg, 1971), which occurs if and only if the rank of D is less than
the number of original parameters h, which can be tested using symbolic algebra as
described in Section 4.2.1. As a result, the expected information matrix will have at
least one zero eigenvalue. In a near parameter-redundant model the smallest eigenvalue
will be close to zero rather than exactly zero (Catchpole et al., 2001).

Chis et al. (2016) suggested to use a cut-off point of 0.001 in the parameter
sloppiness, which can be calculated as the smallest eigenvalue divided by the largest
eigenvalue of the Hessian of the log-likelihood function. The same threshold of 0.001
for the standardised smallest eigenvalue in the expected information matrix is also
suggested in the concept of near parameter redundancy, i.e. a model is near parameter
redundant if its standardised smallest eigenvalue < 10−3.

We discussed the results of near parameter redundancy for removal models in
Chapter 3 in Section 4.3. We are interested in looking at the standardised smallest
eigenvalue under different scenarios. We observe that for models we discussed in the
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thesis the cut-off of 0.001 for the standardised smallest eigenvalue cannot be used, and
we recommend to compare those eigenvalues obtained from models under the same
scenario to avoid misleading conclusions.

4.3 Results

In this section we present general parameter redundancy results for removal models
presented in Chapter 3. Tables 4.1 and 4.5 are produced to indicate whether the model
is parameter redundant (PR), full rank (FR) or near parameter redundant (NR). An even
number of total sampling occasions is used, as both simulated data and real data used
in Chapter 3 have two secondary samples within each primary periods. In addition
to numbering all the models with model codes, we also denote different models by
their constituent parameters. The results of deficiency are shown in Tables 4.1 and
4.5, where the transition probabilities are assumed to be constant or time-dependent
respectively. In addition, we demonstrate that some of the full rank models can give
biased simulation results as shown in Chapter 3, which is caused by near parameter
redundancy.

4.3.1 φ 12(c) Scenarios

Considering the general results in Table 4.1, it is clear that RMER models are full
rank for all cases. As a result, the robust design improves the estimation of the
models in general, as the secondary samples within each primary period provide an
additional source of information about capture probability. However, MER models
are problematic with only nine out of 12 models being full rank. Three models are
parameter redundant with deficiency of one, where the capture probability p is always
confounded with the rest of the parameters.
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Table 4.1 Generalised parameter redundancy statistics (PRS) of RMER and MER mod-
els with constant transition probabilities in Chapter 3. h is the number of parameters, r
is the rank of the derivative matrix, d = h− r is the deficiency. Models are termed full
rank (FR), parameter redundant (PR), and near parameter redundant (NR).

Model h
RMER MER

Model code r d PRS Model code r d PRS
π,φ 12(c),φ 21(c), p(c) 4 RMER.NNC 4 0 FR, NR MER.NNC 3 1 PR
π,φ 12(c),φ 21(c), p(cov) 5 RMER.NNZ 5 0 FR, NR MER.NNZ 5 0 FR, NR
φ 12(c),φ 21(c), p(c) 3 RMER.SNC 3 0 FR MER.SNC 4 0 FR, NR
π,φ 12(c), p(c) 3 RMER.NRC 3 0 FR MER.NRC 2 1 PR
π,φ 12(c), p(c) 3 RMER.NEC 3 0 FR MER.NEC 3 0 FR, NR
φ 12(c),φ 21(c), p(cov) 4 RMER.SNZ 4 0 FR MER.SNZ 4 0 FR, NR
π,φ 12(c), p(cov) 4 RMER.NRZ 4 0 FR MER.NRZ 4 0 FR, NR
π,φ 12(c), p(cov) 4 RMER.NEZ 4 0 FR MER.NEZ 4 0 FR, NR
φ 12(c), p(c) 2 RMER.SRC 2 0 FR MER.SRC 1 1 PR
φ 12(c), p(c) 2 RMER.SEC 2 0 FR MER.SEC 2 0 FR, NR
φ 12(c), p(cov) 3 RMER.SRZ 3 0 FR MER.SRZ 3 0 FR, NR
φ 12(c), p(cov) 3 RMER.SEZ 3 0 FR MER.SEZ 3 0 FR, NR

Table 4.2 Estimable combinations of parameters (EP) for parameter redundant MER
models in Table 4.1

Model Model code h r d EP
π,φ 12(c),φ 21(c), p(c) MER.NNC 4 3 1 π p

φ 12 p
(φ 12 −1)p−φ 12 −φ 21

π,φ 12(c), p(c) MER.NRC 3 2 1 π p
(φ 12 −1)p

φ 12(c), p(c) MER.SRC 2 1 1 (φ 12 −1)p

Note that we initially use K = 6 sampling occasions to calculate the rank of all
of the models in Table 4.1. If the model is full rank when K = 6, then it remains full
rank for any K ≥ 6 because there is no new parameter in the extended model with
constant parameters according to the extension theorem. If it is not full rank when
K = 6, then we examine the parameter redundancy of the extended model. If the model
is parameter redundant for a fixed value of K, we need to reparamerise the model so
that it becomes full rank and then apply the extension theorem to the reparameterised
model rather than the original model.
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Table 4.3 Results of standardized smallest eigenvalues (S.Eig) for RMER.NNC,
RMER.SNC, RMER.NRC and RMER.SRC models under Scenarios 1-4.

Scenario Model S.Eig
Scenario 1 RMER.NNC 1.34×10−12

RMER.SNC 1.55×10−2

RMER.NRC 8.61×10−2

RMER.SRC 7.85×10−2

Scenario 2 RMER.NNC 1.34×10−12

RMER.SNC 9.96×10−2

RMER.NRC 1.29×10−1

RMER.SRC 2.19×10−1

Scenario 3 RMER.NNC 1.03×10−11

RMER.SNC 3.06×10−3

RMER.NRC 1.67×10−2

RMER.SRC 1.58×10−2

Scenario 4 RMER.NNC 6.25×10−12

RMER.SNC 9.86×10−3

RMER.NRC 1.39×10−2

RMER.SRC 2.24×10−2

Near Parameter Redundancy

We have described near parameter redundancy for a full rank model in Section 4.2.5.
Following the method of detecting near parameter redundancy in Catchpole et al.
(2001), we calculated the expected information matrix in Maple and obtained the
smallest standardized eigenvalue for the full rank RMER models, which can be
computed as the absolute value of the ratio of the smallest eigenvalue and the largest
eigenvalue. The results are shown in Tables 4.3 and 4.4, where we described Scenarios
1-4 and Scenarios 5-8 in Chapter 3. All models are diagnosed with K = 8 sampling
occasions, where there are T = 4 primary periods and k1 = k2 = k3 = k4 = 2 secondary
samples for each primary period. Covariates are simulated from the uniform(10,12)
distribution.

RMER.NNC has extremely small standardized eigenvalues across all scenarios
in Table 4.3, which results in biased parameter estimates in the simulation studies
given in Chapter 3. In Table 4.4 we show that the standardised smallest eigenvalues
for the RMER.SEC model are larger than those in the RMER.NEC model. Also, we
observe similar results in the simulation study in Chapter 3, where the performance of
RMER.SEC is better than RMER.NEC under each scenario.



4.3 Results 81

Table 4.4 Results of standardized smallest eigenvalues (S.Eig) for RMER.NEC and
RMER.SEC models under Scenarios 5-8.

Scenario RMER Model S.Eig
Scenario 5 RMER.NEC 9.10×10−2

RMER.SEC 1.72×10−2

Scenario 6 RMER.NEC 1.35×10−1

RMER.SEC 4.84×10−1

Scenario 7 RMER.NEC 7.47×10−3

RMER.SEC 2.23×10−2

Scenario 8 RMER.NEC 9.48×10−3

RMER.SEC 6.27×10−2

We also notice there is no clear cut-off point between large and small standardized
eigenvalues across all scenarios in the cases we considered. So, we suggest that any
interpretations of standardized eigenvalues have to be made cautiously.

4.3.2 φ 12(t) Scenarios

We have derived the parameter redundancy results for RMER models with constant
transition probabilities in Section 4.3.1. In this section, we determine the results for
RMER models with φ 12(t). The results are summarised in Table 4.5.

Table 4.5 shows that all models with both fully time-dependent transition probabil-
ities φ 12

i and φ 21
i (i.e without any constraint for φ 12

i and φ 21
i ) are parameter redundant

with deficiency greater than one. RMER.NNtC becomes full rank with constraint
“Rt”. Although RMER.NRtC is not parameter-redundant, we find it is near parameter
redundant. Furthermore, the issue of near parameter redundancy for RMER.NRtC is
overcome if constraint “S” is additionally considered in place of “N” for the initial
state parameter.

We also investigate the parameter redundancy of IRMER models using two popula-
tions (numbered 1 and 2) with results shown in the last four models in Table 4.5.
IRMER.NRtC and IRMER.SRtC use the same constraints as RMER.NRtC and
RMER.SRtC respectively and the two populations are assumed to share the same tran-
sition probabilities (i.e. φ 12

i,1 = φ 12
i,2 , i = 1, . . . ,T −1). IRMER.S1,2Rt

aC accommodates
both constraint “Rt

a” and constraint “S” for both of the populations. IRMER.S1Rt
aC

employs constraint “Rt
a”, but constraint “S” is only considered for population 1. All of

these IRMER models are determined to be full rank. However, we find IRMER.NRtC



82 Parameter Redundancy for Removal Models

is near parameter redundant. Hence, we conclude that we need to apply at least
constraints “S” and “Rt” in order to avoid parameter redundancy and near parameter
redundancy.

Table 4.5 Generalised parameter redundancy status (PRS) of RMER and MER models
with time-varying transition probabilities in Chapter 3. h is the number of parameters,
r is the rank of the derivative matrix, d = h− r is the deficiency. Models are termed
full rank (FR), parameter redundant (PR), and near parameter redundant (NR).

Model code Model h r d PRS
RMER model

RMER.NNtC π,φ 12(t),φ 21(t), p(c) K K/2+1 K/2−1 PR
RMER.NNtZ π,φ 12(t),φ 21(t), p(cov) K +1 K/2+2 K/2−1 PR
RMER.SNtC φ 12(t),φ 21(t), p(c) K −1 K/2+1 K/2−2 PR
RMER.NRtC π,φ 12(t), p(c) K/2+1 K/2+1 0 FR, NR
RMER.NEtC π,φ 12(t), p(c) K/2+1 K/2+1 0 FR, NR
RMER.N2tC π,φ 12(t),φ 21(t), p(c) K −2 K/2+1 K/2−3 PR
RMER.SNtZ φ 12(t),φ 21(t), p(cov) K K/2+2 K/2−2 PR
RMER.NRtZ π,φ 12(t), p(cov) K/2+2 K/2+2 0 FR, NR
RMER.NEtZ π,φ 12(t), p(cov) K/2+2 K/2+2 0 FR, NR
RMER.N2tZ π,φ 12(t),φ 21(t), p(cov) K −1 K/2+2 K/2−3 PR
RMER.SRtC φ 12(t), p(c) K/2−1 K/2−1 0 FR
RMER.SEtC φ 12(t), p(c) K/2−1 K/2−1 0 FR, NR
RMER.S2tC φ 12(t),φ 21(t), p(c) K −3 K/2+1 K/2−4 PR
RMER.NRt

2C π,φ 12(t), p(c) K/2 K/2 0 FR, NR
RMER.NEt

2C π,φ 12(t), p(c) K/2 K/2 0 FR, NR
RMER.SRtZ φ 12(t), p(cov) K/2+1 K/2+1 0 FR
RMER.SEtZ φ 12(t), p(cov) K/2+1 K/2+1 0 FR, NR
RMER.S2tZ φ 12(t),φ 21(t), p(cov) K −2 K/2+2 K/2−4 PR
RMER.NRt

2Z π,φ 12(t), p(cov) K/2+1 K/2+1 0 FR, NR
RMER.NEt

2Z π,φ 12(t), p(cov) K/2+1 K/2+1 0 FR, NR
RMER.SRt

2C φ 12(t), p(c) K/2−1 K/2−1 0 FR
RMER.SRt

2Z φ 12(t), p(cov) K/2 K/2 0 FR
IRMER model

IRMER.NRtC π1,π2,φ
12(t), p(c) K/2+2 K/2+2 0 FR, NR

IRMER.S1,2RtC φ 12(t), p(c) K/2 K/2 0 FR
IRMER.S1,2Rt

aC φ 12(t),φ 12(t + γ2), p(c) K/2+1 K/2+1 0 FR
IRMER.S1Rt

aC π2,φ
12(t),φ 12(t + γ2), p(c) K/2+2 K/2+2 0 FR
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Table 4.6 Estimable combinations of parameters (EP) for parameter redundant RMER
models in Table 4.5. d is the deficiency of the derivative matrix.

Model code Model d EP
RMER.NNtC π,φ 12(t),φ 21(t), p(c) K/2−1 p, π

f (p,π,φ 12
1 ,φ 21

1 )
· · ·
f (p,π,φ 12

1 ,φ 21
1 , · · · ,φ 12

K/2−1,φ
21
K/2−1)

RMER.NNtZ π,φ 12(t),φ 21(t), p(cov) K/2−1 α , β , π

f (α,β ,π,φ 12
1 ,φ 21

1 )
· · ·
f (α,β ,π,φ 12

1 ,φ 21
1 , · · · ,φ 12

K/2−1,φ
21
K/2−1)

RMER.SNtC φ 12(t),φ 21(t), p(c) K/2−2 p
f (φ 12

1 ,φ 21
1 , · · · ,φ 12

K/2−1,φ
21
K/2−1)

f (p,φ 12
1 ,φ 21

1 )
· · ·
f (p,φ 12

1 ,φ 21
1 , · · · ,φ 12

K/2−1,φ
21
K/2−1)

RMER.N2tC π,φ 12(t),φ 21(t), p(c) K/2−3 p, π , φ 12
K/2−2, φ 21

K/2−2)

f (p,π,φ 12
1 ,φ 21

1 )
· · ·
f (p,π,φ 12

1 ,φ 21
1 , · · · ,φ 12

K/2−2,φ
21
K/2−2)

RMER.SNtZ φ 12(t),φ 21(t), p(cov) K/2−2 α , β

f (φ 12
1 ,φ 21

1 , · · · ,φ 12
K/2−1,φ

21
K/2−1)

f (α,β ,φ 12
1 ,φ 21

1 )
· · ·
f (α,β ,φ 12

1 ,φ 21
1 , · · · ,φ 12

K/2−1,φ
21
K/2−1)

RMER.N2tZ π,φ 12(t),φ 21(t), p(cov) K/2−3 α , β , π , φ 12
K/2−2, φ 21

K/2−2)

f (α,β ,π,φ 12
1 ,φ 21

1 )
· · ·
f (α,β ,π,φ 12

1 ,φ 21
1 , · · · ,φ 12

K/2−2,φ
21
K/2−2)

Near parameter redundancy

In this section, we show results of standardized eigenvalues for full rank models in
Table 4.5 with constant capture probability. Relatively smaller standardized eigen-
values for RMER.NRtC and RMER.NRt

2C models in Tables 4.7 explain their poor
behaviors in Chapter 3. Although we observe relatively large standardized eigenvalues
for models with constraint “E” in Table 4.8 especially under Scenarios 6 and 8, none
of these models yield unbiased simulation results in the simulation study in Chapter 3.

We notice there is no clear cut-off point between large and small standardized eigen-
values across all Scenarios for these models. So, we suggest that any interpretations of
standardized eigenvalues have to be made cautiously.
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Table 4.7 Results of standardized smallest eigenvalues (S.Eig) for RMER.NRtC,
RMER.SRtC, RMER.S2tC, RMER.NRt

2C and RMER.SRt
2C models under Scenarios

1-4.

Scenario Model S.Eig
Scenario 1 RMER.NRtC 1.12×10−1

RMER.SRtC 1.42×10−1

RMER.NRt
2C 1.04×10−1

RMER.SRt
2C 2.18×10−1

Scenario 2 RMER.NRtC 3.13×10−4

RMER.SRtC 4.52×10−2

RMER.NRt
2C 1.96×10−2

RMER.SRt
2C 7.73×10−2

Scenario 3 RMER.NRtC 2.02×10−2

RMER.SRtC 2.12×10−2

RMER.NRt
2C 1.98×10−2

RMER.SRt
2C 2.61×10−1

Scenario 4 RMER.NRtC 2.82×10−3

RMER.SRtC 5.06×10−3

RMER.NRt
2C 4.42×10−3

RMER.SRt
2C 4.30×10−2

Table 4.8 Results of standardised smallest eigenvalues (S.Eig) for RMER.NEC,
RMER.SEC and RMER.NE2C models under Scenarios 5-8.

Scenario Model S.Eig
Scenario 5 RMER.NEtC 1.09×10−3

RMER.SEtC 4.46×10−3

RMER.SEt
2C 3.70×10−3

Scenario 6 RMER.NEtC 1.84×10−1

RMER.SEtC 2.09×10−1

RMER.SEt
2C 1.67×10−1

Scenario 7 RMER.NEtC 1.37×10−4

RMER.SEC 1.02×10−3

RMER.SEt
2C 1.15×10−3

Scenario 8 RMER.NEtC 2.43×10−2

RMER.SEtC 3.92×10−2

RMER.SEt
2C 2.58×10−2
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Table 4.9 Results of standardized smallest eigenvalues (S.Eig) under different Scenar-
ios, where true parameters are listed in ptrue and ψtrue. True transition probabilities
used are the same (0.8,0.7,0.8,0.3,0.6,0.7,0.8,0.6,0.6) for every scenario. All models
are diagnosed with K = 8 sampling occasions where there are T = 4 primary periods
and two secondary samples within each primary period. ∗ indicates all individuals are
assume to survive during the study.

Scenario Model ptrue ψtrue S.Eig
1 RMER.NRtC 0.3 ∗ 2.02×10−2

1 RMER.SRtC 0.3 ∗ 2.12×10−2

F1 RMER.SRt
dC 0.3 0.95 1.39×10−2

F2 RMER.SRt
dC 0.3 0.8 1.30×10−2

F3 RMER.SRt
dC 0.3 0.4 1.07×10−2

3 RMER.NRtC 0.55 ∗ 1.15×10−1

3 RMER.SRtC 0.55 ∗ 1.42×10−1

G1 RMER.SRt
d C 0.55 0.95 1.14×10−1

G2 RMER.SRt
dC 0.55 0.8 1.10×10−1

G3 RMER.SRt
dC 0.55 0.4 6.05×10−2

The RMER.SRt
dC model

In Section 3.4, we have explored whether we can estimate a constant survival proba-
bility ψ in the model RMER.SRt

dC, where the subscript “d" represents an additional
death state in the transition matrix in the RMER.SRtC model.

This model is determined to be full rank. We also investigate its eigenvalues under
various Scenarios and compare those obtained from the RMER.NRtC and RMER.SRtC
models. We list the true values of parameters we used in Table 4.9. When capture
probability is low its standardized smallest eigenvalue under Scenario F1, F2 or F3 is
smaller than those both RMER.NRtC and RMER.SRtC models under Scenario 1 as
shown in Table 3.2. A similar conclusion is obtained when capture probability is high.
Therefore it is not a reliable model to use as the standardized smallest eigenvalues are
smaller than those from the RMER.NRtC model which is a near parameter redundant
model.

4.4 Discussion

It is vital to check for parameter redundancy of a model before fitting it to the data.
In Chapter 4 we present symbolic methods for detecting parameter redundancy that
provide efficient ways to assess the parameter identification for a model. The purpose
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of this chapter is to identify removal models developed in this thesis that are not
parameter redundant using symbolic methods (Catchpole and Morgan, 1997; Cole
et al., 2010).

We derived results for parameter redundancy for removal models in Chapters 3
and 4 presented in Section 4.3. We showed that the use of robust design with certain
forms of parameter constraints (constraint “S” and “R”) could overcome parameter
redundancy for removal models, which theoretically explains the behavior of the
models in Chapter 3.

All of the parameter redundancy results here are based on the assumption that
at least one animal is removed at every sampling occasion. This ensures that all of
the exhaustive summary terms are present as we are interested in detecting parameter
redundancy in the model itself instead of parameter redundancy due to the lack of data.

Future work could be done considering the missing data points for removal models.
If there are missing data for a specific data set, then the corresponding terms in the
exhaustive summary will be zero. In that case, the estimable parameters could become
non-identifiable for the data set.



Chapter 5

The Use of Penalised Likelihood for
Removal Data

5.1 Introduction

In previous chapters, we developed new removal models to enable the estimation of
temporary emigration for data sampled under the robust design protocol. The main
argument for classic removal modelling is that when the imperfect availability of the
population is not correctly addressed, capture probability is underestimated, which
leads to population size being overestimated. Although removal data sets with the
robust design structure can be analysed using the models accounting for temporary
emigration, as presented in Chapter 3, many data sets do not have such a structure.
Matechou et al. (2016) recently developed a Bayesian framework for modelling new
arrivals of individuals observed under the standard sampling protocol. However, their
approach assumes that new individuals arrive at the study area in an unknown number
of groups. In Chapter 5, we relax this assumption to allow new individuals to become
available for capture according to time-dependent entry parameters as defined in
Section 5.2.1. We develop new removal models in the classic framework that allow
populations to be open to new individuals via birth/arrival for data sets without the
robust design (e.g. a single observation within each primary period). The model
proposed assumes that the population is depleted only via the removal process and
individuals cannot depart from the survey site.

New individuals are an important source of arrivals when estimating abundance and
ignoring them in removal modelling may have substantial consequences. For example,
in removal projects of reptiles and amphibians, most juveniles are born between July
and September and therefore can become available for capture during the translocation



88 The Use of Penalised Likelihood for Removal Data

studies (Edgar et al., 2010). Additionally, hibernation usually occurs from late October
to early March, so adult individuals can potentially disperse from hibernation sites and
migrate to the study area during the course of the spring season. Failing to account for
new arrivals in the study leads to underestimated capture probability and overestimated
population sizes (see Section 5.4.3).

Although entry parameters can be considered for populations in an open popula-
tion removal model accounting for new birth/arrivals of individuals, problems occur
with maximum likelihood estimation of such removal models without further devel-
opment. The issues that arise with maximum likelihood estimation are discussed in
Section 5.2.2, where we demonstrate the capture probability is always estimated on
the boundary.

In order to address the problem of boundary estimates, we employ penalisation
methods considering three different forms of penalty functions. Penalised maximum
likelihood methods, or regularisation methods, are widely used in machine learning
and statistical modelling in order to control the complexity of a model and reduce
the variance of estimators of parameters (Hastie et al., 2009). The idea of penalised
maximum likelihood estimation is to maximise the likelihood function with a penalty
term which penalises the method for complexity and can discard undesirable estimates
by shrinking them towards zero. The estimates of parameters are obtained by max-
imising a new objective function, which brings together both the likelihood function
and the penalty term. This approach has been intensively discussed in the context
of linear regression, and recently it also has become an emerging topic in statistical
ecology such as occupancy models (Moreno and Lele, 2010; Hutchinson et al., 2015)
and capture-recapture models (Viallefont, 2011).

In Chapter 5, we consider three penalty functions. The first penalty is similar to
ridge regression (Hoerl and Kennard, 1970; Hastie et al., 2009), and penalises the sum
of squares of parameters. The second penalty term is an analogue to Lasso (Tibshirani,
1996), and penalises the sum of the absolute values of parameters. The third penalty
is akin to the fused lasso, and penalises the sum of absolute differences between two
consecutive parameters (Tibshirani et al., 2005). We perform a simulation study that
shows that the proposed penalised likelihood estimation considerably improves the
maximum likelihood estimation, which fails completely and gives boundary estimates
of capture probability for all scenarios we considered.

The chapter is structured as follows: Section 5.2 specifies the open population re-
moval models using maximum likelihood estimation and penalised likelihood methods.
In Section 5.3 we use symbolic approaches discussed in Chapter 4 for determining
parameter redundancy status of the new models. Section 5.4 investigates the model
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using simulation. A real example is shown in Section 5.5, and Section 5.6 presents a
discussion and conclusion.

5.2 Open population removal models

In this section, we first introduce the notation in Section 5.2.1 and the formulation
for the open population removal model (denoted by OPR) using maximum likelihood
estimation in Section 5.2.2. We then consider penalised likelihood methods in Section
5.2.3, where the use of three different penalty terms is explored. The first method we
consider is similar to ridge regression or l2 regularsation (denoted by OPR-l2), the
second model to the lasso or l1 regularsation (denoted by OPR-l1), adapted specifically
for removal data, and the third penalty term corresponds to the fused lasso (denoted by
OPR- f l1), where we aim to make the two consecutive entry parameters smooth.

5.2.1 Notation

Suppose the total number of sampling occasions is K. The population size is denoted
by N. nk is the number of individuals being removed at the kth sampling occasion,
where k = 1, ...,K. n0 is the number of individuals we failed to capture by the end of
the study. We assume a constant capture probability p over time. The entry parameters
βk represent the proportion of individuals that become available for removal for the
first time at the kth sampling occasion, where ∑

K
k=1 βk = 1.

5.2.2 Maximum likelihood estimation

The probability an individual is removed at the kth sampling occasion is

Lk =
k

∑
j=1

β j(1− p)k− j p.

The probability an individual is not removed by the end of the study is

L0 =
k

∑
j=1

β j(1− p)k− j+1.

The full multinomial likelihood is

L(n0,βk, p|nk) =
N!

n0!∏
K
k=1 nk!

Ln0
0

K

∏
k=1

Lnk
k . (5.1)
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We observe that this model is near parameter redundant (see Section 5.3) using the
approaches for detecting parameter redundancy discussed in Chapter 4. In Figure 5.1
we illustrate the fitted number of individuals removed obtained from maximising the
Equation (5.1) for a simulated data set with K = 20 sampling occasions, p = 0.3
and N = 1000 individuals in the population. The true values of β are shown in
Figure 5.1(B). It is clear that the model is overfitted to the simulated data set, where the
predicted counts always equal to the observed counts across the study. Furthermore,
the estimates of p and n0 are 0.99 and 1.20× 10−5 respectively, which means the
model produces boundary estimates of p and n0. The results agree with what we found
in a simulation study in Section 5.4.3 for the OPR model, where the estimates of p are
always on the boundary of one for all scenarios we considered.

Therefore the OPR model will not produce reliable estimates in practice. In order
to overcome the issue of near parameter redundancy, we additionally consider a penalty
term for the log of likelihood in the form of Equation (5.1) in Section 5.2.3.
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Fig. 5.1 (A) Fitted counts of individuals (dashed line) removed obtained from the OPR
model for one simulated data set (*) with N = 1000, p = 0.3 and K = 20 sampling
occasions. (B) Estimates of β (dash line) and true values of β (stars).
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5.2.3 Penalty functions for removal data

The use of penalty terms is originally developed in the context of linear regression
with the aims of reducing the prediction errors by penalising the magnitudes of their
coefficients (Hastie et al., 2015). One of the key aims of fitting linear regression models
is to interpret the effect of the explanatory variables on the response variable, so it is
critical to select which set of variables are included in the model. The most widely
used approaches for variable selection include stepwise procedures and criterion-based
selection, such as the AIC and predicted residual sum of squares. However, stepwise
selection only improves prediction accuracy when there are only a few covariates with
strong relationship with the response variable (Hurvich and Tsai, 1990; Harrell, 2001).

In Section 5.2.2 we have discussed the issues of the OPR model using maximum
likelihood estimation. In this Section, we adapt penalised likelihood methods for
removal data and introduce a penalty function in terms of entry parameters β for the
log-likelihood function of the OPR model. The idea is that instead of maximising
log{L(n0,βk, p|nk)}, we use a new objective function in the form of Equation (5.2) for
optimisation (Tibshirani, 1996),

O(n0,β , p|nk) = log{L(n0,βk, p|nk)}−λΩ(β ), (5.2)

where Ω(β ) is a function that penalises some form of the estimates of entry parameters
β . λ ≥ 0 is a tuning (or smoothing) parameter that controls the trade-off between the
fit and the amount of smoothness and plays a crucial role in the penalised likelihood
estimation.

Note that when λ = 0, the penalty term has no effect, and the estimation will pro-
duce the maximum likelihood estimates, where the model is near parameter redundant.
Furthermore, we do not estimate the tuning parameter λ but instead we fix it to a
positive value because β and λ are not individually identifiable and the highest value
of the objective function would be obtained when the smoothing parameter is equal
to zero. This would result in overfitting to the data which is not desirable. Therefore,
we need to select the λ using an alternative criterion, namely cross-validation, where
we use the mean squared error (MSE) as a criterion, which is the average squared
distance between the estimate and the true value. We will give more detail about
cross-validation in the subsequent section.

The inferential theory for models involving the use of penalised likelihood is not
standard. This is because of the presence of the penalty, which undermines the use
of classic asymptotic likelihood results for practical modelling. Instead, bootstrapped
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replicates are used for computing standard errors and confidence intervals (Hastie
et al., 2009).

Ridge for the OPR−l2 model

The first penalty term for β that we considered for the removal data is a ridge penalty
as shown in Equation (5.3). The use of ridge penalty was first proposed by Hoerl and
Kennard (1970) and it is a popular technique for improving prediction accuracy of
regression coefficients. It can improve prediction errors by shrinking large regression
coefficients towards zero.

Ω
ridge(β ) =

K

∑
j=1

β
2
j . (5.3)

Therefore, the new objective function for the OPR−l2 model is penalised by
subtracting a penalty function λΩ = λ ∑

K
j=1 β 2

j as shown in Equation (5.4),

Oridge(n0,β , p|nk) = log{L(n0,βk, p|nk)}−λ

K

∑
j=1

β
2
j , (5.4)

where λ ≥ 0 is a tuning parameter that controls the amount of shrinkage. The larger
the value of λ , the greater the amount of shrinkage. The entry parameters β are shrunk
towards zero which is similar to shrinking coefficients towards zero in ridge regression.

As we mentioned above, we expect the OPR-l2 to shrink the estimates of β towards
zero as λ increases. In Figure 5.2 the estimates of β are shown from modeling a
simulated data set using three different values of λ = 20, 1000 and 30000. It is clear
that the OPR−l2 model is able to shrink the peak estimate of β1 towards zero, therefore
the rest of β gains more weight. In an extreme case of λ = 30000, bigger estimates of
βk in Figure 5.2 (B) move towards zero, and similarly smaller β̂k becomes larger (i.e.
β̂1), which is because the constraint of ∑k βk = 1.

In Figure 5.3 we also demonstrate how the estimate of capture probability changes
with different values of λ for the same simulated data set used in Figure 5.2. When λ

is less than about 90, the estimates of p are still on the boundary of one as the amount
of shrinkage in the model is small. As λ becomes larger, the model is able to recover
reasonable estimates of p which are quite close to the true value of p. When λ gets
sufficiently large, the estimated p first converges to the true value used for simulation
and then remains relatively flat with several p̂s on the boundary of zero. The reason
for obtaining some boundary estimates of p̂ in Figure 5.3(B) is because the maximum
number of iterations allowed is set to be 10000 when the “quasi-newton” algorithm is
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used for optimisation in Matlab. Therefore, it is possible that the numerical algorithm
stops when the maximum number of iterations is reached. We have used different
starting values to initialise the optimisation, however, when λ becomes extremely
large obtaining the global maximum becomes more difficult and optimisations may
still produce boundary estimates of p̂ after 10000 iterations.
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Fig. 5.2 Fitted values of β (dashed lines) obtained from the OPR-l2 model with different
λ values, i.e. (A) λ = 20, (B) λ = 1000 and (C) λ = 30000. Data is simulated using
p = 0.3, N = 1000 for K = 20 sampling occasions. True values of β are indicated by
stars.
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Fig. 5.3 Estimates of p vs. the tuning parameter λ used for the OPR−l1 model.
The black horizontal line is the true value of p used to simulate the data. (A) λ =
(0, . . . ,200). (B) λ = (0, . . . ,10000)
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Lasso for the OPR−l1 model

The Lasso is another shrinkage method that has been widely used to enhance not only
the prediction accuracy but also the interpretability of the regression model. It was
originally formulated by Tibshirani (1996) based on the Leo Breiman’s nonnegative
garrote (Geisser, 1993; Kohavi, 1995) for linear least squares models.

The second penalty we considered for removal data is analogous to the Lasso as
shown in Equation (5.5),

Ω
lasso(β ) =

K

∑
j=2

|β j|=
K

∑
j=2

β j. (5.5)

The Lasso penalises the sum of the absolute values of the coefficients in linear
regression, therefore the absolute values of entry parameters in the first part of Equation
(5.5). As β is a vector of probabilities which are non-negative, we can drop the modulus.
Additionally, the β add up to 1, so we cannot penalise the sum of all of them. So
we choose to leave the first one as a free parameter as the expectation is that a part
of the population will be available at the start of the study by study design. When
λ is sufficiently large, the lasso could penalise some of the β to be exactly zero and
assign more weight to the first entry parameter β1, so the model assumes there are
more individuals available for capture for the first time at the beginning of the study.

The new objective function for the OPR−l1 model is shown in Equation (5.6):

Olasso(n0,β , p|nk) = log{L(n0,βk, p|nk)}−λ

K

∑
j=2

β j, (5.6)

where the λ ≥ 0 is again a fixed value, which controls the shrinkage of the coefficients
towards zero.

Although ridge regression has been popular in reducing prediction error, it does not
perform variable selection as the ridge penalty is less likely to make the coefficients
exactly zero, therefore it does not make the model more interpretable. Tibshirani
(1996) details the nature of shrinkage for Lasso and why in contrast to methods such
as ridge regression, the use of Lasso may improve the interpretation of models by
shrinking coefficients of variables towards exactly zero, in order to select only a subset
of covariates rather than keeping all of them in the model. So Lasso essentially can be
regarded as an alternative to variable selection.

In the case of modelling removal data using the objective function in Equation
(5.6), it can be interpreted as an entry parameter selection, as it potentially can shrink
some of the β j to be exactly zero if λ is large enough. In Figure 5.4 we obtain



98 The Use of Penalised Likelihood for Removal Data

estimates of β from modeling a simulated data set using three different values of λ =,
0 (Figure 5.4.A), 66 (Figure 5.4.B) and 90 (Figure 5.4.C). The estimate of the first
entry parameter β1 becomes larger as we increase the value of λ . This is because
the OPR−l1 model shrinks some of the β with very small values to be exactly zero,
therefore β1 gains more weight. In an extreme case of λ = 90, all of βk, k = 2, . . . ,K
become zero, so β1 is estimated to be one as shown in Figure 5.4 (C), which means all
individuals are available for capture at the first sampling occasion, which is equivalent
to the closure assumption in the classic removal model.

As the motivation of the development of the OPR model is near parameter redun-
dancy and the resulting boundary estimate of capture probability, in Figure 5.5 we
illustrate p̂ obtained from modelling the same simulated data set used in Figure 5.4
for a vector of fixed values of λ . When λ is small, the estimates of p are still on the
boundary of one. As λ increases, we observe some estimates of p which are closer to
the true value used for simulating the data set. When λ is too large, the estimated p are
on the boundary of zero, which matches the simulation results for the classic removal
model in Section 5.4.3. This is because when λ is sufficiently large, β2, . . . ,βK → 0
and β1 → 1 in the OPR−l1 model, so the model equivalently becomes the classic
removal model where all individuals in the population are exposed to removal sampling
effort across the study as we mentioned before. Although it seems that we never hit
the true value of p = 0.3 for this particular simulated data set, in Section 5.4.1 we
show that simulation results suggest we could obtain unbiased estimate of p when
population size is large.
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Fig. 5.4 Fitted values of β (dashed lines) obtained from the OPR-l1 model with
different λ values, i.e. (A) λ = 0, (B) λ = 66 and (C) λ = 90. Data is simulated using
p = 0.3, N = 1000 for K = 20 sampling occasions. The true values of β are indicated
by stars.
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Fig. 5.5 Estimates of p vs. the tuning parameter λ used for the OPR−l1 model. The
black horizontal line is the true value of p for simulating the data.
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Fused lasso for the OPR− f l1 model

The fussed lasso is one of the commonly used Lasso variants, which penalises large
changes with respect to temporal or spatial features (Tibshirani et al., 2005). It is
especially useful for modelling spatial or temporal structures, such as time series or
image based data. One simple example of the fused lasso is to model ordered data, so
the fused lasso is essentially solving the classic change point problem, which has a
wide range of applications.

The last penalty term we considered is motivated by the fussed Lasso for removal
data and is given by:

Ω
fussed-lasso(β ) =

K−1

∑
j=1

|β j −β j+1|. (5.7)

The objective function for the OPR− f l1 model is given in Equation (5.8):

Ofussed-lasso(n0,β , p|nk) = log{L(n0,βk, p|nk)}−λ

K−1

∑
j=1

|β j −β j+1|. (5.8)

The idea of the OPR- f l1 model is to penalise the differences between two consecutive
entry parameters and to force the coefficients to vary as a smooth function. When λ

becomes larger, we expect that the differences between the two adjacent β s tend to be
smaller. Therefore, if λ is extremely large, the estimates of β will become equal in the
OPR− f l1 model (i.e. β̂1 = · · ·= β̂K).

There are also other variants of Lasso that have been developed for different types
of dependencies in the covariates in regression models. For example, the Elastic net
lasso additionally considers a ridge penalty function (Zou and Hastie, 2005) and it
improves the performance of the Lasso when the number of predictors is greater than
the sample size. The Group Lasso allows the selection of strongly correlated covariates
together when variables can be categorised into different groups (Yuan and Lin, 2006).

In Figure 5.6 we obtain estimates of β from modeling a simulated data set using
three different values of λ , 50, 400 and 1896. As expected the estimates of β becomes
flat as we increase the value of λ . When λ is extremely large, all of β become equal as
shown in Figure 5.6 (C). In Figure 5.7 we demonstrate a plot of p̂ against λ obtained
from fitting the same simulated data set used in Figure 5.6. When λ is small, p̂ is on
the boundary of one. As λ becomes larger, the estimates of p steadily move away
from the boundary of one and start getting closer to the true value of p after reaching a
minimum point that the model can produce.
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Fig. 5.6 Fitted values of β (dash lines) obtained from the OPR- f l1 model with different
λ values, i.e. (A) λ = 50, (B) λ = 400 and (C) λ = 1896. Data is simulated using
p = 0.3, N = 1000 for K = 20 sampling occasions. True values of β is indicated by
stars.
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Fig. 5.7 Estimates of p vs. the tuning parameter λ used for the OPR− f l1 model. The
black horizontal line is the true value of p for simulating the data.
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Cross-validation

In previous sections, we discussed the use of penalty terms for removal data and we
demonstrated that the boundary estimate of p can be potentially overcome with some
values of λ in the penalised likelihood estimation, where λ ≥ 0 controls the trade-off
between the penalty and the fit. Therefore, we require a method to determine which of
the models under consideration is the best, thus we need a method determining a fixed
value for the λ . In this section we discuss the cross-validation method for choosing λ .

Cross-validation provides a way to select a value for λ in order to implement
regularisation methods. In short, we first need to choose a grid of possible λ values,
and compute a cross-validation error for each value of λ . We then select the value for
which the cross-validation error is the smallest. Finally, the model is fitted using all of
the observations with the selected value of λ .

In order to obtain the cross-validation error, we need to separate the original data
into the two parts, a training set and a test set. The approach of separating training and
test sets is commonly used for classification and regression tree models (Breiman et al.,
1984). A similar approach is carried out for neural network models (Reed et al., 1993).
Both training and test sets are used for model selection. The training set is used to
maximise the performance of a pre-defined criteria and the test set is used to validate
its performance for the same value of λ used in modelling the training set. The values
of the parameters are chosen not as the ones with optimal criterion on the training test,
but those where the performance of the test set is the best. Therefore, as the model
fitting for the training set proceeds, we need to monitor the performance on the test set
by evaluating the criterion. We could terminate the training when the performance of
the test set begins to deteriorate. It is expected that the performance on the test set will
first improve, then begin to deteriorate beyond a certain model complexity.

Typically mean squared error (MSE) is used for quantitative data sets, where it
is calculated as the average squared difference between the estimated data and the
observed data. Furthermore, misclasssification rate is assessed for the qualitative
responses. Estimates with smaller MSE are preferred.

There are many existing methods of cross-validation with k-fold cross validation
are the most widely used. The idea is to randomly divide the original data into k
equally-sized samples, leave out one of the samples and fit the model to the other parts.
The squared error is obtained from the left-out sample and the procedure is repeated
until all of k samples have been left out once. The MSE is calculated at the end. As
we can see, the cost of k-fold cross validation increases as k gets larger. Most common
choice is k=5 or 10 as it provides a good compromise for the bias-variance trade-off
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(Zhang, 1993). Kohavi (1995) suggested that the 10-fold cross validation is the best
for model selection, even if more folds can be considered for computers with large
computational power. Another usual choice for cross validation is the leave-one-out
method, where the test set consists of a single data point. The cross validation estimate
of MSE is then the average over all possible training sets. Monte Carlo cross validation
(Burman, 1989) is also an option. In this case, the original data set is randomly split
into the training and test sets with replacement. The model is fitted to each training
data set and the predictive accuracy (e.g. mean squared error) is assessed using the test
data sets. Once we fit the model to each resample, the results are averaged over all
the repeated samples. This approach may exhibit Monte Carlo variation, so the results
may vary with a different number of random resamples. As the number of random
resamples gets large, the results of validation tend to be similar. Hastie et al. (2011)
suggested the use of at least 50 Monte Carlo resamples for cross validation is needed .

All the cross-validation approaches mentioned before are not valid for time series
models without adaption due to the inherent serial correlation of the data. Similarly,
the order of removal data we used is critical because of potential peaks of new arrivals
of individuals, standard cross-validations might be problematic. In this chapter, we
adapt the Monte Carlo cross-validation for removal data with 200 resamples. The
algorithm is listed below.

• Step 1: rewrite the removal data in terms of removal records for each observed
individual. For example, if n3 = 5 at k = 3, we rewrite it as five threes, i. e. 3, 3,
3, 3, 3.

• Step 2: randomly split the removal records into a training (70%) and a test (30%)
dataset.

• Step 3: for a given value of λ , fit the model to the training data, save the
estimates of βk.

• Step 4: fit the model to the test data given the estimates of βk obtained from the
training data and regard p and N as free parameters. Calculate its squared error.

• Step 5: repeat Step 2 - Step 4 a large number of times, and calculate the MSE
for the given value of λ .

• Step 6: repeat Step 5 for a vector of values of λ , and choose the λ for which the
resulting MSE is the smallest.
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Since the test and training data sets will give rise to different estimates for N and
N and p are highly correlated. Therefore we need to obtained new estimates for these
two parameters using the test data set.

In Figure 5.8 we show the cross-validation results obtained from fitting the OPR−l1
model to the same simulated data we used in the previous sections. Because we
potentially can observe non-boundary estimates of p for λ within an approximate
range of (55,75), we calculate MSE for 200 resamples from λ = 50 to λ = 90 to
reduce computational costs. We observe that the MSE gradually becomes smaller at
the start, then rapidly gets bigger after the minimum MSE value has been reached.
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Fig. 5.8 Results of mean squared errors (A) and estimates of p (B) obtained from the
OPR-l1 model. The selected estimate of p (red circle cross) is indicated corresponding
to the minimal MSE (red cross).
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5.3 Parameter redundancy

In Chapter 4, we discussed methods for determining whether a model is parameter
redundancy. Recall that we employ the approaches of Cole et al. (2010) by forming a
derivative matrix D = ∂κκκ(((θθθ)))/∂θθθ , where κκκ(((θθθ))) is a vector of parameter combinations
that represents the structure of the model for a set of parameters θθθ of length h. Once
D is formed, we then calculate the rank of D, r, and the deficiency of the model,
d = h− r. If d > 0, the model is parameter redundant, otherwise if d = 0 the model is
not parameter redundant, and termed full rank. Once we obtain the results for a fixed
number of sampling occasions, we obtain the generalised results for any larger number
of samples using the extension theorem or reparameterisation theorem. We investigate
the parameter redundancy status for the removal models we developed in this chapter.
We demonstrate an example for the OPR model in Section 5.3.1. For the penalised
OPR models, we consider the corresponding penalty term as an extra element in the
exhaustive summary. We observe that the OPR, OPR-l1, OPR-l2 and OPR- f l1 models
are full rank. However, the OPR model is near parameter redundant and we discuss its
results in Section 5.3.2. Maple code for deriving the results in this section is available
in the file ex5.3.1.mw in the electronic appendix provided.

5.3.1 Example 5.3.1: the OPR model

We consider the model with K = 10 sampling occasions and we define the exhaustive
summary as a vector of probabilities of an individual being removed at the the kth
occasion. The h = 10 parameters we used for detecting parameter redundancy are
the entry parameters and the constant capture probability, i.e. θ = [p β1 · · · β9],
where we constrain the last β10 = 1−∑

9
j=1 β j.

We only show the first four terms in the exhaustive summary κ(θ) below. Full
results are available in the Maple code in the file ex5.3.1.mw.

κ(θ) = [Lk] =
β1 p

β1(1− p)p+β2 p
β1(1− p)2 p+β2(1− p)p+β3 p

β1(1− p)3 p+β2(1− p)2 p+β3(1− p)p+β4 p
...

, (5.9)

where Lk is the probability of capture an individual on the kth sampling occasion. We
remove the more complicated probability that an animal is never captured to make the
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exhaustive summary simpler, as we assume we observe at least one individual for all
possible other capture histories and all the probabilities sum up to one and (Catchpole
and Morgan, 1997). We also exclude the term for individuals never captured in the
exhaustive summary because it will not affect the result of the deficiency of derivative
matrix for dataset following a multinomial distribution as discussed in Section 4.2.4 in
Chapter 4.

The derivative matrix is given by

D(θ)=
[

∂κ(θ)

∂θ

]
=



β1 β1(1− p)−β1 p+β1 β1(3p2 −4p+1)+β2(1−2p)+β3 · · ·
p (1− p)p (1− p)2 p · · ·
0 p (1− p)p · · ·
0 0 p · · ·
...

...
...

...


,

and is found to have symbolic rank r = 10. Therefore the model is not parameter
redundant as the deficiency is d = h− r = 10−10 = 0.

Because the OPR is determined as full rank for a fixed number of sampling
occasions (K = 10), we can employ the extension theorem to generalise the parameter
redundancy results to any length of the study as discussed in Chapter 4. The model can
be extended by additionally considering one more sampling occasion. Let θ

′
= [β11]

denote the extra parameter and κ
′
(θ

′
) = β1(1− p)10 p+ β2(1− p)9 p+ · · ·+ β11 p

denote the additional extra term in the exhaustive summary. We use the theory of
Catchpole and Morgan (1997) and Cole et al. (2010) that if both D(θ) and D′

(θ
′
) are

full rank, then we can explicitly conclude that the extended model is also full rank for
any larger number of samples.

The extended part of the derivative matrix is D′
(θ

′
) = [p2] and has full rank 1 as

there is only 1 parameter in θ
′
. As a result, the extended model is full rank for any

K ≥ 10 sampling occasions.

5.3.2 Near parameter redundancy

We observe that the OPR model is full rank in theory but it performs badly in practice,
therefore is a near parameter redundant model. Recall that we have discussed near
parameter redundancy in Section 4.2.4. In a near parameter redundant model the
smallest eigenvalue of the expected information matrix will be very close to zero
(Catchpole et al., 2001). The smallest standardised eigenvalues (s.eigen) of the OPR
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Table 5.1 Results of standardized smallest eigenvalues for the OPR model under
different simulation settings in Section 5.4.1.

Simulation setting A
Scenario A1 Scenario A2 Scenario A3 Scenario A4
1.81×10−2 1.39×10−4 9.67×10−3 2.15×10−4

Simulation setting B
Scenario B1 Scenario B2 Scenario B3 Scenario B4
1.94×10−2 2.26×10−4 1.81×10−2 1.39×10−4

model are very small as shown in Table 5.1 for simulations using parameter values in
Table 5.2 when there are K = 10 sampling occasions.

In order to further examine the near parameter redundancy results of the OPR
model, we investigate the flatness of profile likelihood using simulated data, where
optimisation is conducted for a given value of parameter of interest with respect to the
rest of parameters (Venzon and Moolgavkar, 1988; Murphy and van der Vaart, 2000).
Similar approaches were used for assessing the practical identifiability of mathematical
dynamic models (Raue et al., 2009; Chis et al., 2016). In Figure 5.9 we show profile
likelihood plots for p and n0 obtained from the OPR model under various simulation
scenarios. It is clear that the profile likelihood surface of p is very flat under each
scenario, and it reaches a peak on the boundary of one which agrees with what we
discussed before. Similarly, the number of individuals that we failed to to capture
tends to zero, which means that the model infers that all the individuals are captured
during the study.

To investigate whether adding a penalty term to the model can improve near
redundancy, we investigate the smallest standardised eigenvalues obtained from the
penalised models for a vector of λ . Results of the s.eigen against λ for the OPR−l1
and OPR−l2 models under Scenarios A1-A4 are shown in Figures 5.10. They suggest
a potential of improvement over the OPR model with some s.eigen that are larger than
those obtained from the OPR model if we additionally consider the penalty term in
the model. We also show results of s.eigen for the OPR− f l1 model under Scenarios
B1-B4 in Figure 5.11. We observe that the smallest standardised eigenvalues are
smaller than those obtained from the OPR model under Scenarios B1, B3 and B4
for the values of λ considered. Under Scenario B2 there are some s.eigen that are
larger than s.eigen in the OPR model, however simulation results in Section 5.4.2
demonstrate the poor performance of the OPR− f l1 model across all scenarios.
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Table 5.2 True values of parameters used for the different simulation settings.

Model Scenario p β

OPR-l1/OPR-l2

A1 0.3 (0.1, 0.1, 0.1, 0.2, 0.05, 0.1, 0.15, 0.1, 0.05, 0.05)
A2 0.7 (0.1, 0.1, 0.1, 0.2, 0.05, 0.1, 0.15, 0.1, 0.05, 0.05)
A3 0.3 (0.1, 0.25, 0.1, 0.02, 0, 0 , 0.25, 0, 0, 0.1)
A4 0.7 (0.1, 0.25, 0.1, 0.02, 0, 0 , 0.25, 0, 0, 0.1)

OPR- f l1

B1 0.3 (0.1, 0.15, 0.1, 0.2, 0.05, 0, 0.1, 0.015, 0.01, 0.05)
B2 0.7 (0.1, 0.15, 0.1, 0.2, 0.05, 0, 0.1, 0.015, 0.01, 0.05)
B3 0.3 (0.1, 0.1, 0.1, 0.2, 0.05, 0.1, 0.15, 0.1, 0.05, 0.05)
B4 0.7 (0.1, 0.1, 0.1, 0.2, 0.05, 0.1, 0.15, 0.1, 0.05, 0.05)
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Fig. 5.9 Profile likelihood plots for p (left) and n0 (right) obtained from the OPR model
under various simulation scenarios. The black vertical dash lines are the true values of
parameters.
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(A)

(B)

(C)

(D)

Fig. 5.10 The smallest standardised eigenvalues (s.eigen) vs. λ for the OPR−l1 and
OPR−l2 models under simulation scenarios A1(A), A2(B), A3(C) and A4(D). The
black horizontal dashed lines are the s.eigen values obtained from the OPR model.
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(A)

(B)

(C)

(D)

Fig. 5.11 The smallest standardised eigenvalues (s.eigen) vs. λ for the OPR− f l1 mod-
els under simulation scenarios B1(A), B2(B), B3(C) and B4(D). The black horizontal
dash lines are the s.eigen values obtained from the OPR model.
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5.4 Simulation study

In this section we use simulation to assess the performance of the proposed models.
We simulate data sets using two simulation settings, Setting A and Setting B. For
each simulation setting, we simulate 100 data sets with K = 20 sampling occasions to
examine the precision of the estimates obtained from maximising the three penalised
likelihoods. Population size is set equal to 1000 or 300 for each simulation scenario.
The true values of parameters used for the different simulation settings are given in
Table 5.3. For each simulated data, we generate 200 training and validation sets and
calculate the MSE for cross-validation. The estimates with minimum MSE are chosen
for the corresponding simulated data sets. Lists of simulation scenarios and results are
shown in the subsequent subsections.

5.4.1 Setting A

For OPR-l1 and OPR-l2 models, we consider the following simulation scenarios
A1-A4.

• Scenario A1: No zero in β and low capture probability.

• Scenario A2: No zero in β and high capture probability.

• Scenario A3: Six zeros in β and low capture probability.

• Scenario A4: Six zeros in β and high capture probability.

Results of estimated capture probability p and population size N are shown in
Figures 5.12 and 5.13 for N = 1000 and N = 300 individuals respectively. As shown
in Figure 5.12, unbiased estimates of both capture probability and population size
are obtained from the OPR-l1 model when N = 1000. However, when N = 300 the
OPR-l1 model struggles to obtain the true values of parameters used, and instead
obtains biased estimates that are often on the boundary under Scenarios A1 and A2
(Figure 5.13). In contrast, when there are more zeros in β under Scenarios A3 and
A4 when N = 300, the frequency of boundary estimates reduces, as suggested in
Figure 5.13. However, those estimates are negatively biased for capture probability
and hence positively biased for population size.

For the OPR-l2 model, capture probability is slightly overestimated and therefore
population size is underestimated across all scenarios we considered. Figures 5.12
and 5.13 suggest that the variability of the estimates is larger when N = 300 compared
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to the case when N = 1000. However, increasing the population size cannot improve
the accuracy of parameters in the OPR-l2 model.

5.4.2 Setting B

This simulation setting is performed to assess the performance of the OPR- f l1 model.

• Scenario B1: No equal in β and low capture probability.

• Scenario B2: No equal in β and high capture probability.

• Scenario B3: Ten equals in β and low capture probability.

• Scenario B4: Ten equals in β and high capture probability.

Figures 5.14 and 5.15 illustrate that the variability in the estimated capture prob-
abilities is lower when there are N = 1000 individuals in the population compared
to the cases when N = 300. However, the median values of the estimates of capture
probabilities are slightly greater than the true values across all scenarios. Positive tails
in the distribution of estimated p are clearly noticeable when capture probability is
low under Scenarios B1 and B3, where longer tails are observed when population size
is smaller. The estimates of population size are all underestimated and have negative
tails for scenarios with low capture probabilities.

We have explored the performance of the three proposed penalized likelihood
methods using simulations. The new approaches show improvement over the maximum
likelihood estimation for all scenarios we considered. However, we only observe
unbiased estimates for the OPR-l1 model when population size is big enough, and
none of the proposed penalties performs well for small population sizes. We conclude
that the OPR-l1 model can be used when N is large.
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Fig. 5.12 Estimates of capture probability p (left) and population size N (right) obtained
from the OPR-l1 and OPR-l2 models for simulations with N = 1000 individuals and
K = 20 sampling occasions under Scenarios A1 to A4. The black lines indicate the
true values of parameters.
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Fig. 5.13 Estimates of capture probability p (left) and population size N (right) obtained
from the OPR-l1 and OPR-l2 models for simulations with N = 300 individuals and
K = 20 sampling occasions under Scenarios A1 to A4. The black lines indicate the
true values of parameters.
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Fig. 5.14 Estimates of capture probability p (left) and population size N (right) obtained
from the OPR- f l1 model for simulations with N = 1000 individuals and K = 20
sampling occasions under Scenarios A1 to A4. The black lines indicate the true values
of parameters.
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Fig. 5.15 Estimates of capture probability p (left) and population size N (right) ob-
tained from the OPR- f l1 model for simulations with N = 300 individuals and K = 20
sampling occasions under Scenarios A1 to A4. The black lines indicate the true values
of parameters.
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Table 5.4 Median relative bias (MBias) in estimates p̂, ψ̂ and N̂ from the geometric
removal model under different Scenarios. The true values of parameters ptrue and Ntrue
are listed below. The true values for the entry parameters used are shown in Table 5.3.

Scenario ptrue Ntrue p̂MBias N̂MBias
A1 0.3 1000 -0.99 2.06×107

A1 0.3 300 -0.99 2.79×106

A2 0.7 1000 -0.97 2.31×103

A2 0.7 300 -0.97 6.58×102

A3 0.3 1000 -0.99 2.39×109

A3 0.3 300 -0.99 3.24×100

A4 0.7 1000 -0.99 2.04×108

A4 0.7 300 -0.99 7.01×107

B1 0.3 1000 -0.99 1.34×108

B1 0.3 300 -0.99 2.93×107

B2 0.7 1000 -0.97 2.36×103

B2 0.7 300 -0.98 1.25×103

B3 0.3 1000 -0.99 2.06×107

B3 0.3 300 -0.99 2.79×106

B4 0.7 1000 -0.97 2.31×103

B4 0.7 300 -0.97 6.58×102

5.4.3 Results from the geometric and OPR models

In addition to investigating the performance of the OPR−l1, OPR−l2 and OPR− f l1
models using simulation, we also conduct simulations for the geometric removal model
and the OPR model under each simulation setting.

We show median relative bias obtained from the geometric removal models using
data simulated under simulation Settings A and B in Table 5.4. We observe that
population sizes are overestimated and the estimates of constant capture probabilities
are extremely small compare to the true values of parameters across all scenarios. As a
result, we demonstrate that the geometric removal model underestimates the constant
capture probability and yields extremely large estimates of population sizes if new
arrivals of individuals are ignored in the study.

In Table 5.5 we show simulation results of the OPR model for data simulated using
the true parameters in Table 5.3. It is clear that the capture probabilities p are overesti-
mated across all scenarios because the estimates of p are always on the boundary of
one due to near parameter redundancy. Similarly, the OPR model underestimates the
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Table 5.5 Median relative bias (MBias) in estimates p̂, ψ̂ and N̂ from the OPR model
under different Scenarios. The true values of parameters ptrue and Ntrue are listed
below. True entry parameters used are shown in Table 5.3.

Scenario ptrue Ntrue p̂MBias N̂MBias
A1 0.3 1000 2.33 −8.35×10−2

A1 0.3 300 2.34 −8.33×10−2

A2 0.7 1000 0.43 −1.29×10−2

A2 0.7 300 0.42 −1.33×10−2

A3 0.3 1000 2.33 −1.23×10−1

A3 0.3 300 2.33 −1.19×10−1

A4 0.7 1000 0.42 −2.09×10−2

A4 0.7 300 0.43 −2.00×10−2

B1 0.3 1000 2.33 −1.08×10−1

B1 0.3 300 2.33 −1.10×10−1

B2 0.7 1000 4.29 −1.20×10−2

B2 0.7 300 4.28 −1.20×10−2

B3 0.3 1000 2.33 −8.35×10−2

B3 0.3 300 2.34 −8.33×10−2

B4 0.7 1000 0.43 −1.29×10−2

B4 0.7 300 0.42 −1.33×10−2

population sizes as shown in Table 5.5. Therefore, the OPR model cannot be used in
practice.
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5.5 Data analysis

In this section we present results for the real data analysed using the OPR-l1 and
geometric removal models, as simulation results indicate only the OPR-l1 model can
produce unbiased estimates when population size is large enough. Translocation of
common lizards, Zootoca vivipara, was conducted from the 22th of July 2016 to the
17th of October 2016 before a land development project commenced at Discovery park
in Sandwich. 1364 common lizards were captured and removed from the pathway
of the development site over K = 74 removal sampling occasions. As we observed
more than a thousand individuals which is greater than the population size used for
simulation (N=1000), we fit the OPR-l1 model to the real data. Furthermore, there
is no covariate (e.g. temperature or humidity) information collected during the study.
Standard errors and confidence intervals are computed using bootstrap (100 resamples).

The fitted counts of common lizards removed at each sampling occasion and
corresponding 95% confidence intervals are shown in Figure 5.16. The improvement
in model fitting of the OPR-l1 model for the real data we consider is clearly visible
compared with the fitted geometric removal model. In Table 5.6 we present the
estimated capture probabilities and number of individuals that failed to be captured
with standard errors and confidence intervals for both the OPR-l1 and geometric
removal models. The OPR−l1 model suggests that we nearly captured all of the
individuals in the population. However, the geometric removal model produces a
larger n̂0 suggesting there are still many individuals left behind. This is because the
geometric removal model tends to underestimate p and overestimate population size
as we mentioned in Section 5.4.3.

Additionally, the estimates of entry parameters β and the corresponding 95%
confidence intervals are displayed in Figure 5.17. Adult common lizards emerge from
their hibernation sites in early spring. Additionally, birth of common lizard typically
occurs around July and August and most young individuals are born from late June
to early September (Edgar et al., 2010). Therefore, the estimated peaks in the entry
parameter are more likely due to new birth of common lizard rather than emergence
from hibernation.
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Table 5.6 Estimates and their standard errors (SE) and 95% confidence intervals (95%
CI) for the OPR-l1 and geometric removal models for the common lizards data. n̂0 is
the estimate of the number of individuals we failed to capture by the end of the study.
p̂ is the estimated capture probabilities.

Model OPR-l1 Geometric
p̂ 0.793 0.035
SE 0.182 9.703×10−4

95% CI (0.483, 0.980) (0.033, 0.037)
n̂0 2.450 106.923
SE 1.326 8.230
95% CI (2.023, 5.321) (88.696, 119.160)
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Fig. 5.16 Results of predicted counts of individuals removed at each occasion, shown
by the circle line. Stars are the real data. 95% confidence intervals obtained from 100
bootstrap samples are indicated within dotted dashed lines. (A) Fitted counts from the
OPR-l1 model. (D) Fitted counts from the geometric removal model.
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Fig. 5.17 Results of estimated entry parameters β , indicated by the circle lines con-
nected by the solid line. 95% confidence intervals obtained from 200 bootstrap samples
are indicated within the dotted dashed lines.
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5.6 Conclusion

Populations are rarely closed when we conduct sampling in the study area. Previous
studies suggest the estimation of temporary emigration (Zhou et al., 2018) and recruit-
ment (Gould and Pollock, 1997) in the context of removal sampling relies on the use
of robust design. Chapter 5 develops new approaches to model new births/arrivals
in removal sampling without robust design, which consists a possible violation of
the closure assumption in the geometric removal model (Moran, 1951). We show
that penalised maximum likelihood estimation reduces the frequency of boundary
estimates obtained from optimising the likelihood without a penalty term. Additionally,
penalised likelihood estimation provides an alternative to removal models analysed
in a Bayesian framework (Matechou et al., 2016) when modelling new arrivals of
individuals in the classic framework without prior information

We investigate the ways to improve parameter estimates and reduce the incidence
of boundary estimates for both big and small data sets using simulation. When there is
a large number of individuals in the population, the penalised likelihood of the OPR-l1
model produces unbiased estimates. However, both the OPR-l2 and OPR- f l1 models
exhibit biased estimates. The performance of all of the proposed models becomes
worse for populations with small sizes.

Small data sets are not uncommon in ecology due to practical constraints and
limited budgets for fieldwork. Our results show that for small data sets, all three
penalised likelihood methods exhibit positive bias in capture probabilities, which
results in negative bias in population sizes. However, all of the new approaches are
considerably less biased than the non-penalised maximum likelihood estimation. We
conclude that, although the penalised likelihood methods are potentially useful for
removal data, they have to be used with caution in cases of small population sizes.
When population size is expected to be small (e.g. few hundreds), we recommend to
sample individuals using the robust design protocol so that we can use the new robust
design removal models discussed in Chapter 3.

There are also other concerns regarding the use of penalised likelihood methods.
Firstly, they require the use of cross-validation to choose a value for the tuning
parameter λ . Therefore, estimation can be time-consuming if there are a large number
of candidate values for λ . We suggest to start with several λ , then narrow down
the possible intervals of λ based on the MSE criteria and repeat the process until a
minimum MSE is found for the defined accuracy of λ (e.g. single digit). Secondly,
we cannot directly compute standard errors and confidence intervals from penalised
likelihood estimation using standard asymptotic theory, as in maximum likelihood
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estimation. Bootstrapping can be used instead, however, it can be computationally
intensive to perform the cross-validation process for all of the boostrapped resamples,
which may be not feasible without access to high performance computing facilities.

We have discussed the difficulties of fitting the proposed models to data sets
without robust design. However, if the robust design is additionally incorporated in
removal sampling, the observed data can be analysed using the model in Zhou et al.
(2018) where maximum likelihood estimation is much quicker in practice. Therefore,
a study should be designed carefully before data collection begins, as solving issues
with a good study design is always preferable than modelling the way out of it. In
Chapter 6, we will investigate the sampling design aspects of robust design.





Chapter 6

Optimal Design for Robust Design
Removal Sampling

6.1 Introduction

Statistical design has been recognised as a crucial component of animal population
studies (Morrison et al., 2008; Williams et al., 2002). Although many ecologists have
experience with the design of natural resource surveys from a classical perspective
(Thompson, 2002), a lot of them have been in a situation where some problems with
their collected data could be traced back to a flaw in study design. To ensure that
studies provide meaningful results and therefore valuable resources are not wasted,
it is crucial to pay attention to survey design (Legg and Nagy, 2006). It is not only
important to design the study so that biologically significant results can be observed,
but also to ensure that this is achieved in an efficient way.

Bohrmann and Christman (2013) recently explored how to optimally allocate total
sampling effort for multiple depletion sites by maxisiming the Fisher information of
the constant capture probability in the classic removal model. Their optimal design for
removal sampling assumes that all individuals are available for capture throughout the
study. However, this assumption will be violated if individuals temporarily emigrate to
an area outside the survey site during the study. We found that no work has been done
for designing removal surveys taking into account temporary emigration of individuals.

In Chapter 3 we developed new removal models under the robust design for
modelling temporary emigration and we showed that the best performing models
consider at least the combination of constraints “R” (random movement constraint) and
“S” (initial state constraint). In Chapter 6 we will use the structure of the RMER.SRC
model, a robust design removal model with constraints “R”, “S” and a constant capture
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probability, to explore how to plan removal sampling. We assume an equal number of
secondary samples for each primary period and a fixed total sampling effort. The aim
of the research is to consider how to optimally allocate the total sampling effort for the
removal sampling under the robust design sampling protocol, i.e. to determine how
many primary periods and how many repeated samples within each primary period to
include in the sampling for a fixed level of total survey effort.

Optimal design theory provides useful tools to determine the accuracy of statistical
models without additional costs before we conduct the study. Optimal designs have
been developed explicitly for many models (Pukelsheim, 2006; Atkinson et al., 2007).
Several algorithms have been developed for their numerical construction if the optimal
designs in particular cases are not available in explicit form (Yu, 2010; Yang et al.,
2013). We compare several approaches in this chapter where we compare the results
obtained using four criteria, A-optimality, D-optimality, E-optimality and T-optimality.
The results will help ecologists to plan future removal studies with the use of the robust
design, improving the precision of parameters for a fixed level of total survey effort.

We describe the formulation of the likelihood function of the RMER.SRC model
using the machinery of the forward algorithm in hidden Markov models in Section 6.2.
In Section 6.3 we explore four study design criteria analytically and derive theoretical
results for each of those criteria. We evaluate the theoretical results obtained in section
6.3 using simulations and present the results of a simulation study in Section 6.4.
Conclusions and a discussion are given in Section 6.5.

6.2 Formulation

6.2.1 Description and notation

Suppose the total survey effort is K = T k, where T is the number of primary periods
and k is the number of secondary samples within each primary period. The population
size at a depletion site is denoted by N, which represents the number of individuals that
are exposed to sampling effort at least once during the removal study. The removal data
set is a matrix with entry ni, j representing the number of individuals removed at the jth
secondary sample within the ith primary period, where i = 1, . . . ,T and j = 1, . . . ,k.
Once the individuals are caught, they are permanently removed from the study area.
The total number of individuals removed is denoted by n†, where n† = ∑

T
i=1 ∑

k
j=1 ni, j.

Furthermore, n0 denotes the number of individuals that are missed and never captured
during the study, where n0 = N −n†.
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We suppose there are two states in the model, denoted by s: individuals in state 1
(s = 1) are present and available for removal, while individuals in state 2 (s = 2) are
absent from the study area and therefore unavailable for removal. Transitions between
the two states are only allowed between primary sampling periods and the population
is assumed to be closed within each primary occasion.

We only consider constant parameters in the removal model accounting for tem-
porary emigration in this derivation, because we want to minimise the number of
parameters considered in the model and simplify the complexity of the chosen design
criterion. Although in practice this simplification may not always be reasonable, it is
convenient to provide general study design guidelines. We define π to be the propor-
tion of individuals in state 1 at the beginning of the study and its complement, 1−π , as
the proportion of the population in state 2. The probability of individuals transitioning
from state 1 to state 2 is denoted by φ 12 in Chapter 3. In this chapter we use φ for
simplicity. Similarly, the transition probability from state 2 to state 1 is denoted by φ

′
.

Let p denote a constant capture probability over time. Note that individuals can only
be captured and removed if they are in state 1, so p = 0 when individuals stay in state
2.

6.2.2 Constraints

In addition to assuming parameters are constant over time, we consider the following
parameter constraints in order to reduce the number of parameters in the model and
ease the derivation of the Fisher information in Section 6.3:

• π = φ
′
/(φ +φ

′
), the initial state parameter π is constrained using this expression

if we assume that the initial state distribution π = (π,1−π) is the stationary
distribution of the chain.

• φ +φ
′
= 1. This constraint is equivalent to the random emigration/movement

model for capture-recapture data sampled with robust design as described in
Kendall et al. (1995, 1997). It suggests that the probability of being in the
unobservable state between the ith and (i+ 1)th primary session is the same
for individuals in and individuals outside the study area. In this case, we treat
the transition probability φ as a free parameter to be estimated in the model,
and the transition probability φ

′
is reparameterized using the constraint, i.e.

φ
′
= 1−φ . We note that with this constraint, the state that individuals stayed

in at the i+1th primary period is independent of the state individuals resided
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in at the ith primary period. Therefore, the model becomes a special case of an
independent mixture model.

The use of these constraints for removal models with robust design is discussed
in Chapter 3 and Zhou et al. (2018), where it has been demonstrated that we need to
consider at least the combination of these two constraints to obtain unbiased estimates
of parameters.

6.2.3 The likelihood function

We adopt the forward algorithm for hidden Markov models for removal data (Lystig
and Hughes, 2002; Turner, 2008) and calculate the likelihood function recursively
as shown below. When deriving sampling design criteria in Section 6.3, we use
symbolic calculation in Matlab. As symbolic computation is slow and the likelihood
is complicated, obtaining the likelihood function recursively can reduce the execution
times and memory requirement for the limited computational memory.

The probability of individuals being removed at the jth secondary sample within
the ith primary period is denoted by ααα i, j. The forward algorithm for hidden Markov
models is implemented for the removal data to calculate the likelihood ααα i, j recursively
in terms of p and φ .

We can define the probability of an individual being removed at the first secondary
occasion in the first primary period to be,

ααα1,1 = π p.

Define βββ i, j(s) to be the probability of an individual in state s but not removed at
the jth secondary sample within the ith primary period. Then, βββ 1,1(s) are formed as

βββ 1,1(s = 1) = ααα1,1
1− p

p
= π(1− p)

βββ 1,1(s = 2) = 1−
ααα1,1

p
= 1−π.

Similarly, ααα1, j and βββ 1, j for the second and subsequent secondary samples within
the first primary period, can be computed by

ααα1, j = ααα1, j−1
1− p

p
p = ααα1, j−1(1− p)

βββ 1, j(s = 1) = βββ 1, j−1(s = 1)(1− p)
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βββ 1, j(s = 2) = βββ 1, j−1(s = 1) = 1−π

for j = 2, . . . ,k.
Then ααα i,1 and βββ i,1 for the first secondary sample within the second and subsequent

primary periods, can be calculated recursively using,

ααα i,1 =
{ 2

∑
r=1

βββ i−1,k(s = r)φ r1
}

p =
{ 2

∑
r=1

βββ i−1,k(s = r)(1−φ)
}

p

βββ i,1(s = 1) = ααα i,1
1− p

p

βββ i,1(s = 2) =
2

∑
u=1

βββ i−1,k(s = u)φ u2 =
2

∑
u=1

βββ i−1,k(s = u)φ

as φ r1 = 1−φ for r = 1,2 and φ u2 = 1−φ for u = 1,2 for i = 2, . . . ,T and j = 1.
Therefore ααα i, j and βββ i, j for the second and subsequent secondary samples within

the second and subsequent primary periods are,

ααα i, j = ααα i, j−1
1− p

p
p = ααα i, j−1(1− p)

βββ i, j(s = 1) = βββ i, j−1(s = 1)(1− p)

βββ i, j(s = 2) = βββ i, j−1(s = 2)

for i = 2, . . . ,T and j = 2, . . . ,k.
The full multinomial likelihood function in terms of p and φ is defined as,

L(p,φ ;ni, j) =
(n0 +n†)!

n0! ·∏i=T
i=1 ∏

j=k
j=1 ni, j!

·αααn0
0 ·

i=T

∏
i=1

j=k

∏
j=1

ααα
ni, j
i, j .

In order to account for the uncertainty in the number of individuals never captured
n0 in the survey design, we derive the conditional probabilities ααα∗

i, j which is conditional
on the observed individuals (Bohrmann and Christman, 2013), i.e ααα∗

i, j =
ααα i, j

ααα
†
i, j

, where

ααα
†
i, j = ∑

T
i ∑

k
j ααα i, j is the sum of ααα i, j, so that we can use the law of iterated expectation

(Catchpole et al., 2002) when calculating its Fisher information as shown in Section
6.3.1.
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6.3 Criteria

In the robust design sampling protocol under consideration, there are different ways
to allocate the total sampling effort available: one may survey the study site more
intensively (more secondary samples) with less replicated primary periods or vice
versa. In this section we derive several criteria for removal sampling within the robust
design framework. When there is one parameter in a model, minimising its variance is
equivalent to maximising the Fisher information. When there are several parameters,
we have to assess the variance matrix or information matrix (the inverse of the variance
matrix). There are different criteria that can be used for optimal sampling design when
there is more than one parameter of interest. For a discussion of the merits of the
different methods see Atkinson and Donev (1992). We investigate four optimality
criteria, A-optimality, D-optimality, E-optimality and T-optimality and we aim to
optimise these information criteria using real-valued functions.

6.3.1 Fisher information

Let θ be a vector of length two of parameters in the model, i.e. θ = [p φ ]. The
element in the ith row and jth column in the Fisher information matrix is defined as
the negative expectation of the second derivative of the log-likelihood function with
respect to the parameters,

[I(θ)i, j] =−E
[

∂ 2

∂θi∂θ j
log
{

L(p,φ)
}]

(6.1)

where i = 1,2 and j = 1,2.
As we only consider two parameters in the model, we can write the Fisher infor-

mation matrix as

I(θ ) =−E





∂ 2

∂ p2
∂ 2

∂ p∂φ

log
{

L(p,φ ;ni, j)
}

∂ 2

∂φ∂ p
∂ 2

∂φ 2

=

(
Ip,p Ip,φ

Iφ ,p Iφ ,φ

)
.

We drive Ip,φ , Ip,p and Iφ ,φ and the results are shown in Equations (6.3) and (6.5)
for Ip,φ and Ip,p respectively. As the result for Iφ ,φ in Equation (6.6) is similar to that
obtained for Ip,p, we show the details in Appendix C.

The second step for deriving Ip,φ and Ip,p, as shown in Equations (6.2) and (6.4),
is suggested by the law of iterated expectation (Casella and Berger, 2002) to account
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for the randomness in the total number of individuals observed, n†. The law of iterated
expectation states that for two random variables A and B, E(A) = E{E(A|B)}, which
allows us to derive the expected Fisher information by first computing the expectation
of the observations ni, j with respect to the conditional distribution of n†, and then use
that to derive the Fisher information with respect to the distribution of n†.

Ip,φ

=−E
[

∂ 2

∂ p∂φ
log
{

L(p,φ)
}]

=−En†

[
En

{
∂ 2

∂ p∂φ
log
(

n†!

∏
T
i=1 ∏

k
j=1 ni, j!

·
T

∏
i=1

k

∏
j=1

(α∗
i, j)

ni, j)

)
|n†
}]

(6.2)

=−En†

[
En

{
∂ 2

∂ p∂φ

(
log(n†!)−

T

∑
i=1

k

∑
j=1

log(ni, j!)+
T

∑
i=1

k

∑
j=1

ni, j · log(α∗
i, j)

)
|n†
}]

=−En†

[
En

{
∂ 2

∂ p∂φ

T

∑
i=1

k

∑
j=1

ni, j · log(α∗
i, j)|n†

}]

=−En†

[
En

{ T

∑
i=1

k

∑
j=1

ni, j · (
1

α∗
i, j

·
∂ 2α∗

i, j

∂ p∂φ
− 1

(α∗
i, j)

2 ·
∂α∗

i, j

∂ p
·

∂α∗
i, j

∂φ
)|n†
}]

=−En†

{ T

∑
i=1

k

∑
j=1

E(ni, j|n†) · ( 1
α∗

i, j
·

∂ 2α∗
i, j

∂ p∂φ
− 1

(α∗
i, j)

2 ·
∂α∗

i, j

∂ p
·

∂α∗
i, j

∂φ
)

}

=−En†

{ T

∑
i=1

k

∑
j=1

n† ·α∗
i, j · (

1
α∗

i, j
·

∂ 2α∗
i, j

∂ p∂φ
− 1

(α∗
i, j)

2 ·
∂α∗

i, j

∂ p
·

∂α∗
i, j

∂φ
)

}

=−
T

∑
i=1

k

∑
j=1

E(n†) ·α∗
i, j · (

1
α∗

i, j
·

∂ 2α∗
i, j

∂ p∂φ
− 1

(α∗
i, j)

2 ·
∂α∗

i, j

∂ p
·

∂α∗
i, j

∂φ
)

=−
T

∑
i=1

k

∑
j=1

N ·α† ·
αi, j

α† · ( 1
α∗

i, j
·

∂ 2α∗
i, j

∂ p∂φ
− 1

(α∗
i, j)

2 ·
∂α∗

i, j

∂ p
·

∂α∗
i, j

∂φ
)

=−
T

∑
i=1

k

∑
j=1

N ·αi, j · (
1

α∗
i, j

·
∂ 2α∗

i, j

∂ p∂φ
− 1

(α∗
i, j)

2 ·
∂α∗

i, j

∂ p
·

∂α∗
i, j

∂φ
)

= N ·
[
−

T

∑
i=1

k

∑
j=1

αi, j · (
1

α∗
i, j

·
∂ 2α∗

i, j

∂ p∂φ
− 1

(α∗
i, j)

2 ·
∂α∗

i, j

∂ p
·

∂α∗
i, j

∂φ
)

]

= N ·
[
−

T

∑
i=1

k

∑
j=1

α
† ·

∂ 2α∗
i, j

∂ p∂φ
− (α†)2

αi, j
·

∂α∗
i, j

∂ p
·

∂α∗
i, j

∂φ

]
. (6.3)

To evaluate the bracketed expressions in Equations (6.3), (6.5) and (6.6), we need
to calculate the following derivatives,
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∂ 2α∗
i, j

∂ p∂φ
,

∂α∗
i, j

∂ p
,

∂ 2α∗
i, j

∂ p2 ,
∂α∗

i, j

∂φ
and

∂ 2α∗
i, j

∂φ 2 .

They can be computed recursively by elementary calculus (Lystig and Hughes,
2002; Turner, 2008). The bracketed equation of Ip,φ , Ip,p and Iφ ,φ can be computed
over a grid of p and φ values and possible integer values of k and T .
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Ip,p

=−E
[

∂ 2

∂ p2 log
{

L(p,φ)
}]

=−En†

[
En

{
∂ 2

∂ p2 log
(

n†!

∏
T
i=1 ∏

k
j=1 ni, j!

·
T

∏
i=1

k

∏
j=1

(α∗
i, j)

ni, j)|n†
)}]

(6.4)

=−En†

[
En

{
∂ 2

∂ p2 log(n†!)−
T

∑
i=1

k

∑
j=1

log(ni, j!)+
T

∑
i=1

k

∑
j=1

ni, j · log(α∗
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6.3.2 A-optimality

One common approach of study design is to minimise the trace of the inverse of
the information matrix, proposed by Chernoff (1953), which results in minimising
the average variance of the estimates of parameters (i.e. min{[var(p)+var(φ )]/2} =
min{var(p)+var(φ )}).

The determinant of I(θ ) is calculated as

det[I(θ )] = Ip,pIφ ,φ − I2
p,φ

=

[
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{

∂ 2

∂ p2 l(p,φ)
}][
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.
The inverse of the information matrix is:
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The trace of the inverse of the information matrix is:

tr[I(θ )−1] =
1

det[I(θ )]
(
Iφ ,φ + Ip,p

)
=

1
det[I(θ )]

[
−E
{
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∂φ 2 l(p,φ)
}
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{
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}]

. (6.9)

This criterion has been used in designing occupancy models (Guillera-Arroita et al.,
2010) in terms of a fixed level of sampling effort. It also has been widely discussed in
experimental design for clinical trials where subjects receive sequences of treatments
(Jones and Donev, 1996; Kerr and Churchill, 2001; Jacroux, 2012).
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6.3.3 D-optimality

D-optimality was introduced by Kiefer (1959) and it seeks to maximise the determi-
nant of the information matrix (i.e. det[I(θ )]) of the design, which is equivalent to
minimising the determinant of the dispersion matrix, because of the following formula,

det[I(θ)]−1 = det[I(θ)−1], (6.10)

as discussed in (Pukelsheim, 2006).
The inverse of the information matrix, I(θ)−1, is identified to be the standardised

dispersion matrix of the optimal estimator in the parameter space. The determinant of
I(θ)−1, det[I(θ)−1], is the generalised variance, which is the origin of the popularity
of this criterion (Pukelsheim, 2006). Therefore D-optimality results in minimizing the
generalized variance of the parameter estimates for a model, which is equivalent to
minimising the volume of the confidence ellipsoid.

Similar to A-optimality, the use of this criterion has been discussed in designing
occupancy models (Guillera-Arroita et al., 2010). Furthermore, Covey-Crump and
Silvey (1970) and Yu (2010); Yang et al. (2013) discussed the use of D-optimal designs
for multivariable polynomial models.

6.3.4 E-optimality

This design was proposed by Ehrenfeld (1955), and maximises the minimum eigen-
value of the information matrix. The eigenvalues of the information matrix are the
roots of the characteristic equation,

det[I(θ)−ωEEE2] = 0

det

[(
Ip,p Ip,φ

Iφ ,p Iφ ,φ

)
−ω

(
1 0
0 1

)]
= 0

det

[(
Ip,p −ω Ip,φ

Iφ ,p Iφ ,φ −ω

)]
= 0

(Ip,p −ω)(Iφ ,φ −ω)− I2
p,φ = 0

ω
2 − (Ip,p + Iφ ,φ )ω + Ip,pIφ ,φ − I2

p,φ = 0 (6.11)

where EEE2 is the 2×2 identity matrix.
We solve the second order Equation (6.11) to obtain the two eigenvalues of the

information matrix. These eigenvalues are then standardised by dividing by the
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maximum eigenvalues and we aim to maximise the smallest standardised eigenvalue,
which guards against the worst possible variance.

This criterion is also discussed in Sections 4.2.4 and 5.3 in evaluating standardised
eigenvalues in the derivative matrix for detecting parameter redundancy. It has been
used in Markov decision processes (Eugene and Shwartz, 2002; Bonet, 2002) as well as
regression models (Pukelsheim and Studden, 1993) but, there is no previous sampling
design studies using this criterion in statistical ecology.

6.3.5 T-optimality

This criterion was introduced by Atkinson and Fedorov (1975) in regression models,
and maximises the trace of the information matrix. The trace of the information matrix
is:

tr[I(θ )] = Iφ ,φ + Ip,p

=−E
{

∂ 2

∂φ 2 l(p,φ)
}
−E
{

∂ 2

∂ p2 l(p,φ)
}
. (6.12)

It is obvious that this criterion is linear (Pukelsheim, 2006; Atkinson and Donev,
1992), so it can be easily affected by either Iφ ,φ or Ip,p than other three criterions
considered. Although this criterion is week, it can be useful if accompanied by
further conditions which prevent it from going astray (Pukelsheim, 2006). From the
prospective of computational complexity, this criterion is particularly simple to evaluate
since it only requires the computation of the diagonal entries of the information matrix.

We find no sampling design studies in statistical ecology using this criterion.
However, there are numerous applications such as chemistry of pharmaceutics (Asprey
and Macchietto, 2000; Foo and Duffull, 2011). In addition, Dette et al. (2012) observe
clear benefits with respect to the power of the F-test for the T- optimal design in cubic
regression models.

6.3.6 Results

We calculate the criteria values using all four optimality criteria for a grid values of
p and φ (= 0.1,0.2, · · · ,0.9) for a study with K = 20 sampling occasions, where the
number of secondary periods per primary period is k = 2,4,5,10. The optimal number
of secondary samples for different values of p and φ is summarised in Table 6.1, which
describes analytically how estimator precision is affected by changes in the true values
of the design parameters.
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In the robust design sampling protocol under consideration there are different
ways to allocate the available sample effort. We could survey more primary periods
(e.g. days) with less secondary replication within each day or vice versa. Increasing
the number of secondary samples has two opposing effects. On the one hand, it
provides more information for capture probability p and therefore capture probability
is estimated more precisely. On the other hand, it reduces the number of primary
periods, so there is less chance to study the transitions between study area and the
unobservable state. Additionally, individuals are assumed to remain at their current
state within each primary period for a longer period of time (more secondary samples).

Some general observations can be drawn from the results in Table 6.1. On the one
hand, the higher the capture probability the lower the optimal number of secondary
samples, which is expected as fewer secondary replications are necessary to observe
the transition patterns between two states. When p is high, the optimal design suggests
k = 2 more frequently, which means any effort invested in extra secondary samples
(k > 2) is wasted. On the other hand, the lower φ , i.e. fewer individuals emigrate to
the unobservable state, the larger the optimal k is. The extra variance due to capture
probability has more impact for low φ , so it is more beneficial to have more secondary
samples in these cases. Therefore, we generally recommend sampling more days
less intensively for rare species, which tend to stay outside the study area. Similarly,
surveying fewer days more intensively is optimal for common species, which tend to
be present in the study area.

For each fixed value of φ , A-optim, D-optim and E-optim all suggest that we
need to survey the study area more intensively (i.e. with more secondary samples)
within each primary period when capture probability p is expected to be lower. This
fact agrees with results of the classic removal model as investigated in Bohrmann
and Christman (2013), where they observed that the it is more efficient to increase
the number of samples collected when p tends to be low as that way we obtain
more information about p and therefore minimize the uncertainty of population size
N. Similar results are obtained in Guillera-Arroita et al. (2010) for study design of
occupancy models, where they demonstrated that the optimal number of replicates
increases with lower probability of detection for each possible value of occupancy
probability.

For a fixed value of p, A-optimality, D-optimality and E-optimality designs suggest
that the optimal number of secondary samples increases when there are fewer individ-
uals that temporarily emigrate to an unobservable area, i.e. when φ is lower. Therefore
when more individuals tend to be present in the sampling area and become available for
capture across the study, it is optimal to conduct more secondary surveys within each



144 Optimal Design for Robust Design Removal Sampling

primary period. On the other hand, when most individuals in the population tend to
temporarily stay in a hidden area, we need to reduce the number of secondary samples,
and therefore increase the number of primary periods to give those individuals more
chances of moving back to the study area between primary periods and becoming
exposed to sampling effort. Guillera-Arroita et al. (2010) observed similar conclusions
for occupancy models, where they suggest to increase the number of samples at each
sampling site when occupancy probability is expected to be high.

However, the T-optimality criterion does not show similar patterns with the other
three criteria except from the parameter space of high capture probability φ and low p.
Therefore, it is critical to consider the determinant of I(θ ) for the RMER.SRC model
for sampling design.
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A-optimality

φ
p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 10 10 10 10 10 10 5 5 5
0.2 10 10 10 10 5 5 5 5 4
0.3 10 10 10 5 5 5 5 4 2
0.4 10 10 10 5 5 5 4 4 2
0.5 10 10 5 5 5 4 4 4 2
0.6 10 5 5 5 4 4 4 2 2
0.7 5 5 5 4 4 4 2 2 2
0.8 5 5 5 4 4 2 2 2 2
0.9 5 4 4 4 4 2 2 2 2

D-optimality
0.1 10 10 10 10 10 10 10 10 10
0.2 10 10 10 10 10 10 5 5 5
0.3 10 10 10 10 5 5 5 5 4
0.4 10 10 5 5 5 5 4 4 4
0.5 10 5 5 5 5 4 4 4 2
0.6 5 5 5 5 4 4 4 2 2
0.7 5 5 5 4 4 4 2 2 2
0.8 5 5 4 4 4 2 2 2 2
0.9 5 4 4 4 2 2 2 2 2

E-optimality
0.1 10 10 10 10 10 5 5 4 2
0.2 10 10 10 10 5 5 5 4 4
0.3 10 10 10 5 5 5 4 4 4
0.4 10 10 5 5 5 5 4 4 4
0.5 10 5 5 5 5 4 4 4 4
0.6 10 5 5 5 4 4 4 4 4
0.7 10 5 5 4 4 4 4 4 4
0.8 10 5 4 4 4 4 4 4 2
0.9 5 2 2 2 2 2 2 2 2

T-optimality
0.1 2 2 2 2 10 10 10 10 10
0.2 2 2 2 2 10 10 10 10 10
0.3 10 2 2 2 10 10 10 10 10
0.4 10 10 2 2 2 2 2 2 2
0.5 10 5 5 5 2 2 2 2 2
0.6 5 5 5 4 2 2 2 2 2
0.7 5 5 5 4 4 2 2 2 2
0.8 5 5 4 4 4 2 2 2 2
0.9 5 4 4 4 4 2 2 2 2

Table 6.1 Optimal number of secondary samples based on A-optimality, D-optimality,
E-optimality and T-optimality.
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k = 2

φ
p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 9.59∗ 4.66∗ 2.50∗ 1.43∗ 7.58† 4.46† 2.78† 1.87† 1.78†

0.2 1.10 3.89∗ 1.74∗ 8.88† 4.74† 2.95† 1.93† 1.50† 1.63†

0.3 1.13 3.34∗ 1.39∗ 6.63† 3.82† 2.36† 1.68† 1.38† 1.59†

0.4 1.28 3.42∗ 1.15∗ 5.86† 3.30† 2.13† 1.56† 1.32† 1.56†

0.5 1.49 2.70∗ 1.07∗ 5.29† 3.05† 2.01† 1.47† 1.28† 1.55†

0.6 1.31 2.74∗ 9.84† 4.94† 2.89† 1.90† 1.43† 1.26† 1.55†

0.7 1.64 2.94∗ 1.07∗ 4.89† 2.83† 1.91† 1.44† 1.28† 1.58†

0.8 2.12 3.64∗ 1.15∗ 5.65† 3.23† 2.09† 1.56† 1.39† 1.70†

0.9 3.71 5.71∗ 1.86∗ 8.30† 4.52† 2.91† 2.16† 1.91† 2.37†

k = 4
0.1 4.38∗ 1.35∗ 4.57† 2.10† 2.10† 6.70†† 5.21†† 5.75†† 1.01†

0.2 4.09∗ 8.30† 2.98† 1.37† 1.37† 5.38†† 4.75†† 5.61†† 1.02†

0.3 3.45∗ 6.31† 2.32† 1.11† 1.11† 4.97†† 4.59†† 5.56†† 1.02†

0.4 3.31∗ 5.79† 2.00† 1.01† 1.01† 4.79†† 4.54†† 5.58†† 1.03†

0.5 3.30∗ 5.38† 1.90† 9.63†† 9.63†† 4.77†† 4.59†† 5.68†† 1.04†

0.6 3.35∗ 5.38† 1.90† 9.78†† 9.78†† 4.94†† 4.79†† 5.98†† 1.10†

0.7 4.24∗ 5.77† 2.11† 1.06† 1.06† 5.41†† 5.30†† 6.60†† 1.22†

0.8 5.25∗ 7.52† 2.60† 1.30† 1.30† 6.68†† 6.57†† 8.19†† 1.51†

0.9 9.71∗ 1.31∗ 4.28† 2.15† 2.15† 1.09† 1.08† 1.33† 2.48†

k = 5
0.1 3.11∗ 7.92† 2.65† 1.17† 6.20†† 4.30†† 4.03†† 5.19†† 1.01†

0.2 2.85∗ 4.74† 1.68† 7.96†† 4.82†† 3.79†† 3.87†† 5.18†† 1.00†

0.3 2.25∗ 3.82† 1.34† 6.83†† 4.40†† 3.64†† 3.85†† 5.21†† 1.01†

0.4 2.12∗ 3.40† 1.21† 6.37†† 4.25†† 3.62†† 3.90†† 5.26†† 1.03†

0.5 2.03∗ 3.32† 1.19† 6.24†† 4.29†† 3.72†† 4.02†† 5.49†† 1.07†

0.6 2.31∗ 3.32† 1.23† 6.52†† 4.52†† 3.98†† 4.32†† 5.93†† 1.15†

0.7 2.54∗ 3.80† 1.35† 7.34†† 5.12†† 4.54†† 4.94†† 6.76†† 1.32†

0.8 3.50∗ 4.82† 1.71† 9.27†† 6.54†† 5.81†† 6.36†† 8.72†† 1.69†

0.9 6.51∗ 8.36† 2.95† 1.58† 1.11† 9.95†† 1.09† 1.51† 2.93†

k = 10
0.1 9.43† 1.41† 4.49†† 2.52†† 2.24†† 2.56†† 3.37†† 5.05†† 1.00†

0.2 6.39† 9.19†† 3.51†† 2.34†† 2.25†† 2.64†† 3.49†† 5.22†† 1.05†

0.3 5.23† 8.06†† 3.33†† 2.37†† 2.35†† 2.78†† 3.66†† 5.49†† 1.10†

0.4 4.74† 7.93†† 3.45†† 2.53†† 2.53†† 3.02†† 3.97†† 5.93†† 1.19†

0.5 4.90† 8.23†† 3.72†† 2.80†† 2.84†† 3.38†† 4.45†† 6.69†† 1.34†

0.6 5.38† 9.16†† 4.24†† 3.26†† 3.32†† 3.96†† 5.24†† 7.82†† 1.56†

0.7 6.31† 1.10† 5.21†† 4.08†† 4.17†† 4.99†† 6.57†† 9.80†† 1.98†

0.8 9.01† 1.53† 7.34†† 5.75†† 5.92†† 7.01†† 9.26†† 1.41† 2.77†

0.9 1.75∗ 2.92† 1.39† 1.09† 1.12† 1.35† 1.76† 2.64† 5.28†

Table 6.2 A-optimality values when k = 2,4,5,10. ∗ indicates ×10−1, † indicates
×10−2, †† indicates ×10−3 and ‡ indicates ×10−4. Optimal values are highlighted in
bold.
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k = 2

φ
p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0.08 0.46 1.03 1.87 3.37 6.45 13.45 31.52 93.61
0.2 0.07 0.46 1.10 2.00 3.44 6.06 11.33 23.38 62.08
0.3 0.06 0.45 1.16 2.16 3.69 6.24 11.04 21.56 54.87
0.4 0.05 0.42 1.19 2.34 4.05 6.80 11.76 22.41 55.93
0.5 0.04 0.38 1.16 2.45 4.42 7.57 13.14 24.92 61.89
0.6 0.03 0.31 1.06 2.41 4.61 8.21 14.59 28.04 70.07
0.7 0.02 0.23 0.85 2.11 4.32 8.11 14.96 29.48 74.71
0.8 0.01 0.13 0.54 1.47 3.24 6.45 12.45 25.32 65.38
0.9 0.00 0.04 0.19 0.58 1.37 2.91 5.89 12.40 32.69

k = 4
0.1 0.45 3.03 7.86 15.48 26.96 42.44 61.27 87.08 150.00
0.2 0.39 2.70 6.98 12.91 20.33 28.99 39.22 54.17 92.66
0.3 0.32 2.34 6.17 11.25 17.20 23.85 31.71 43.48 74.24
0.4 0.25 1.95 5.29 9.74 14.86 20.49 27.12 37.13 63.38
0.5 0.19 1.54 4.32 8.10 12.45 17.23 22.84 31.28 53.39
0.6 0.13 1.12 3.25 6.24 9.72 13.54 18.00 24.68 42.14
0.7 0.08 0.71 2.15 4.23 6.69 9.39 12.52 17.19 29.37
0.8 0.04 0.36 1.12 2.26 3.63 5.13 6.87 9.45 16.15
0.9 0.01 0.10 0.33 0.68 1.10 1.57 2.11 2.91 4.97

k = 5
0.1 0.76 5.42 14.54 27.89 43.82 59.03 72.96 92.47 150.09
0.2 0.63 4.50 11.55 20.20 28.72 36.10 43.25 54.32 88.06
0.3 0.50 3.66 9.27 15.73 21.71 26.81 31.87 39.94 64.72
0.4 0.38 2.86 7.29 12.28 16.81 20.64 24.49 30.67 49.69
0.5 0.28 2.13 5.47 9.24 12.64 15.52 18.40 23.05 37.35
0.6 0.19 1.46 3.80 6.47 8.88 10.91 12.94 16.21 26.26
0.7 0.11 0.88 2.33 4.00 5.51 6.78 8.05 10.08 16.33
0.8 0.05 0.42 1.13 1.95 2.70 3.33 3.96 4.96 8.04
0.9 0.01 0.11 0.31 0.54 0.75 0.92 1.10 1.37 2.23

k = 10
0.1 3.40 26.66 56.25 65.36 60.85 55.64 55.04 63.28 100.00
0.2 2.32 14.49 25.04 26.58 24.16 21.99 21.75 25.00 39.51
0.3 1.56 8.45 13.35 13.70 12.35 11.23 11.10 12.76 20.16
0.4 1.03 5.02 7.52 7.59 6.81 6.19 6.12 7.03 11.11
0.5 0.64 2.92 4.24 4.23 3.79 3.44 3.40 3.91 6.17
0.6 0.38 1.61 2.28 2.26 2.02 1.83 1.81 2.08 3.29
0.7 0.19 0.80 1.11 1.09 0.97 0.88 0.87 1.00 1.59
0.8 0.08 0.32 0.43 0.42 0.38 0.34 0.34 0.39 0.62
0.9 0.02 0.07 0.10 0.09 0.08 0.08 0.08 0.09 0.14

Table 6.3 D-optimality values when k = 2,4,5,10. Optimal values are highlighted in
bold.
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k = 2

φ
p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 2.00‡ 1.00†† 4.40†† 1.41† 3.51† 7.36† 1.39∗ 2.63∗ 6.05∗
0.2 2.00‡ 1.60†† 6.10†† 1.83† 4.47† 9.39† 1.83∗ 3.61∗ 7.19∗

0.3 4.00‡ 2.50†† 8.80†† 2.40† 5.48† 1.11∗ 2.11∗ 4.13∗ 7.08∗

0.4 7.00‡ 4.20†† 1.31† 3.18† 6.55† 1.23∗ 2.24∗ 4.29∗ 7.37∗

0.5 1.50†† 7.70†† 2.08† 4.31† 7.77† 1.32∗ 2.24∗ 4.15∗ 8.03∗

0.6 3.50†† 1.54† 3.49† 6.00† 9.23† 1.39∗ 2.19∗ 3.86∗ 8.46∗

0.7 9.50†† 3.45† 6.10† 8.47† 1.11∗ 1.49∗ 2.17∗ 3.64∗ 8.23∗

0.8 3.34† 8.44† 1.08∗ 1.19∗ 1.34∗ 1.64∗ 2.24∗ 3.62∗ 8.13∗

0.9 1.60∗ 2.10∗ 1.76∗ 1.59∗ 1.62∗ 1.87∗ 2.47∗ 3.90∗ 8.70∗
k = 4

0.1 9.00‡ 8.00†† 3.88† 1.20∗ 2.45∗ 3.57∗ 4.49∗ 5.88∗ 9.88∗

0.2 1.50†† 1.25† 5.65† 1.65∗ 3.32∗ 5.13∗ 6.90∗ 9.29∗ 6.24∗
0.3 2.50†† 2.01† 8.20† 2.16∗ 4.08∗ 6.15∗ 8.25∗ 8.45∗ 5.02∗
0.4 4.50†† 3.32† 1.20∗ 2.80∗ 4.85∗ 6.97∗ 8.76∗ 7.36∗ 4.36∗
0.5 8.50†† 5.60† 1.74∗ 3.58∗ 5.68∗ 7.67∗ 8.29∗ 6.48∗ 3.83∗
0.6 1.68† 9.57† 2.52∗ 4.53∗ 6.53∗ 7.93∗ 7.38∗ 5.65∗ 3.34∗
0.7 3.48† 1.62∗ 3.55∗ 5.55∗ 7.10∗ 7.40∗ 6.37∗ 4.84∗ 2.86∗
0.8 7.15† 2.59∗ 4.68∗ 6.28∗ 6.90∗ 6.43∗ 5.38∗ 4.07∗ 2.41∗
0.9 1.28∗ 3.57∗ 5.37∗ 6.18∗ 6.07∗ 5.40∗ 4.48∗ 3.38∗ 2.00∗

k = 5
0.1 1.60†† 1.55† 7.79† 2.23∗ 3.77∗ 4.54∗ 5.11∗ 6.26∗ 9.89∗

0.2 2.60†† 2.42† 1.13∗ 3.06∗ 5.39∗ 7.17∗ 8.52∗ 9.39∗ 5.82∗

0.3 4.30†† 3.78† 1.55∗ 3.79∗ 6.36∗ 8.33∗ 8.55∗ 7.00∗ 4.33∗

0.4 7.40†† 5.83† 2.06∗ 4.40∗ 6.59∗ 7.44∗ 6.86∗ 5.57∗ 3.45∗

0.5 1.29† 8.79† 2.60∗ 4.73∗ 6.11∗ 6.21∗ 5.58∗ 4.53∗ 2.80∗

0.6 2.27† 1.27∗ 3.05∗ 4.66∗ 5.30∗ 5.12∗ 4.56∗ 3.69∗ 2.28∗

0.7 3.90† 1.69∗ 3.27∗ 4.26∗ 4.46∗ 4.20∗ 3.73∗ 3.01∗ 1.86∗

0.8 6.17† 2.01∗ 3.19∗ 3.71∗ 3.70∗ 3.44∗ 3.04∗ 2.46∗ 1.52∗

0.9 8.23† 2.10∗ 2.89∗ 3.13∗ 3.05∗ 2.81∗ 2.48∗ 2.01∗ 1.24∗

k = 10
0.1 8.10†† 1.07∗ 4.40∗ 8.04∗ 9.24∗ 8.33∗ 8.22∗ 9.45∗ 6.69∗

0.2 1.08† 1.02∗ 2.66∗ 3.78∗ 4.53∗ 5.04∗ 5.11∗ 4.45∗ 2.81∗

0.3 1.32† 8.55† 1.68∗ 2.18∗ 2.58∗ 2.87∗ 2.90∗ 2.53∗ 1.60∗

0.4 1.50† 6.87† 1.14∗ 1.42∗ 1.67∗ 1.85∗ 1.88∗ 1.63∗ 1.03∗

0.5 1.59† 5.46† 8.14† 9.97† 1.16∗ 1.29∗ 1.31∗ 1.14∗ 7.20†

0.6 1.59† 4.35† 6.07† 7.33† 8.53† 9.46† 9.58† 8.33† 5.27†

0.7 1.51† 3.50† 4.67† 5.58† 6.48† 7.18† 7.27† 6.33† 4.00†

0.8 1.39† 2.85† 3.68† 4.36† 5.06† 5.61† 5.68† 4.94† 3.13†

0.9 1.25† 2.35† 2.96† 3.48† 4.04† 4.47† 4.53† 3.94† 2.49†

Table 6.4 E-optimality values when k = 2,4,5,10. ∗ indicates ×10−1, † indicates
×10−2, †† indicates ×10−3 and ‡ indicates ×10−4. Optimal values are highlighted in
bold.
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k = 2

φ
p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 23.10 21.00 15.31 11.69 10.14 10.05 11.19 13.83 19.97
0.2 17.38 17.23 13.48 10.62 9.16 8.79 9.31 10.95 15.97
0.3 12.49 13.55 11.59 9.73 8.65 8.34 8.76 10.21 15.04
0.4 8.47 10.12 9.62 8.84 8.37 8.35 8.87 10.33 15.13
0.5 5.32 7.08 7.62 7.86 8.13 8.58 9.37 10.97 15.83
0.6 3.01 4.56 5.70 6.72 7.72 8.75 9.95 11.81 16.80
0.7 1.46 2.65 3.96 5.42 6.94 8.48 10.11 12.28 17.37
0.8 0.57 1.34 2.48 3.93 5.57 7.30 9.13 11.39 16.26
0.9 0.16 0.54 1.23 2.21 3.38 4.68 6.09 7.84 11.46

k = 4
0.1 22.18 19.64 14.80 12.71 13.07 14.80 16.93 19.32 24.50
0.2 16.09 14.89 11.75 10.31 10.42 11.38 12.74 14.73 19.79
0.3 11.24 11.02 9.38 8.77 9.14 10.06 11.31 13.23 18.26
0.4 7.51 7.93 7.45 7.55 8.22 9.20 10.44 12.33 17.32
0.5 4.75 5.54 5.84 6.46 7.34 8.38 9.60 11.45 16.33
0.6 2.82 3.74 4.50 5.39 6.38 7.41 8.58 10.34 14.99
0.7 1.55 2.44 3.34 4.29 5.25 6.20 7.26 8.85 13.03
0.8 0.77 1.48 2.27 3.09 3.87 4.64 5.50 6.78 10.16
0.9 0.32 2.72 1.20 1.69 2.16 2.63 3.15 3.92 5.99

k = 5
0.1 21.77 18.99 14.73 13.67 14.85 16.58 18.05 19.76 24.50
0.2 15.57 13.96 11.28 10.62 11.23 12.18 13.20 14.75 19.46
0.3 10.81 10.21 8.92 8.88 9.56 10.40 11.32 12.84 17.52
0.4 7.27 7.42 7.17 7.61 8.38 9.19 10.07 11.55 16.14
0.5 4.70 5.35 5.78 6.51 7.33 8.10 8.95 10.37 14.78
0.6 2.92 3.82 4.61 5.46 6.26 6.98 7.76 9.07 13.17
0.7 1.74 2.67 3.54 4.37 5.08 5.71 6.38 7.53 11.11
0.8 0.96 1.73 2.48 3.15 3.70 4.19 4.71 5.60 8.38
0.9 0.43 0.88 1.33 1.72 2.04 2.32 2.62 3.14 4.76

k = 10
0.1 20.59 17.50 16.28 16.26 15.61 14.98 14.91 15.92 20.40
0.2 14.81 13.15 12.28 11.55 10.61 9.93 9.86 10.83 15.19
0.3 12.01 10.79 10.42 9.65 8.71 8.05 7.98 8.90 13.03
0.4 8.38 9.13 9.06 8.34 7.45 6.85 6.78 7.63 11.44
0.5 6.46 7.72 7.80 7.16 6.37 5.83 5.76 6.53 9.93
0.6 4.94 6.35 6.50 5.96 5.28 4.82 4.77 5.42 8.32
0.7 3.64 4.93 5.10 4.67 4.13 3.76 3.72 4.24 6.55
0.8 2.43 3.42 3.56 3.26 2.88 2.62 2.59 2.95 4.58
0.9 1.24 1.78 1.86 1.70 1.50 1.37 1.35 1.54 2.40

Table 6.5 Simulated T-optimality values when k = 2,4,5,10. Optimal values are
highlighted in bold.
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6.4 Simulation study

In Section 6.3 we have discussed several design criteria, but the choice of an appropriate
optimality criterion requires further investigation. In this section we use simulation to
assess the performance of the design with respect to those criteria in the RMER.SRC
model. The simulation setting considered is described in Section 6.4.1.

Small sample sizes are not uncommon in population ecology. In particular they
are frequently encountered in surveys linked to conservation projects, as these often
have limited resources and tend to focus on rare and protected species. Pilot studies
also tend to deal with relatively small amount of data. Designing of a study based
on large sample approximations may be not appropriate if the expected population
size is small. Under these circumstances, the actual properties of the estimators may
be different from those predicted by the analytical expressions. In these cases, the
use of simulations may be more appropriate for designing a study. As the analytic
results are based on the large sample properties of the estimators in the model, we also
conduct simulations when the population size is small. We illustrate the need to use
simulations for study design when the population size is small.

6.4.1 Setting

We conducted a simulation study to assess the performance of these analytic results
in Section 6.3.6. We are interested in which criterion performs the best based on the
results obtained in previous sections.

We simulate removal data sets with K = 20 sampling occasions and we vary
the number of secondary periods within each primary period k = (2,4,5,10). The
Population size is set to be N = 500 or N = 100 individuals. The true values of capture
probabilities p and transition probabilities φ are chosen from (0.1,0.2, · · · ,0.9). For
each possible combination of values of k, p and φ , 1000 data sets are simulated. For
each simulation setting we obtain the Hessian matrix and calculate the median criteria
values as shown in Tables 6.8 to 6.15.

6.4.2 Results

The optimal number of secondary samples to be conducted for each primary period is
presented in Tables 6.6 and 6.7 for simulations with N = 500 and N = 100 respectively.
As shown in Table 6.6, simulation results of A-optimality generally support our
analytic results where greater optimal number of secondary samples is recommended
when capture probability and φ are low. When N = 100, the patterns in A-optimality
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are similar to those of Table 6.6 and 6.1 except that when the true value of p is
extremely small (e.g. p = 0.1). Therefore, we recommend to use simulations as a tool
for sampling design if population size and capture probability are both expected to be
small.

There are noticeable disagreements for other criteria especially in the left lower
and right upper corners of Tables 6.6 and 6.7. Therefore the D-optimality, E-optimality
and T-optimality should not be used in practice for removal data collected under the
robust design.
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A-optimality

φ
p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 10 10 10 10 10 10 5 5 5
0.2 10 10 10 10 5 5 5 4 4
0.3 10 10 10 5 5 5 5 4 4
0.4 10 10 5 5 5 5 4 4 2
0.5 10 5 5 5 5 4 4 4 2
0.6 10 5 5 5 4 4 4 4 2
0.7 5 5 5 4 4 4 4 2 2
0.8 5 5 4 4 4 4 2 2 2
0.9 2 4 4 4 4 2 2 2 2

D-optimality
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 10 10 10 10 10 10 10 10 10
0.2 10 10 10 10 10 10 10 10 10
0.3 10 10 10 10 10 10 10 10 10
0.4 10 10 10 10 10 10 10 10 10
0.5 10 10 10 10 5 5 5 5 5
0.6 10 10 5 5 5 5 5 5 5
0.7 10 5 5 5 4 4 4 4 4
0.8 10 5 5 4 4 4 4 2 2
0.9 10 10 5 4 2 2 2 2 2

E-optimality
0.1 10 10 10 10 10 10 10 10 10
0.2 10 10 10 10 10 10 10 10 10
0.3 10 10 10 10 10 10 10 10 10
0.4 10 10 5 10 10 10 10 10 10
0.5 10 5 5 5 5 5 5 5 5
0.6 10 5 4 4 4 4 5 5 5
0.7 10 5 4 4 4 4 4 4 4
0.8 5 4 4 2 2 2 2 2 2
0.9 10 5 2 2 2 2 2 2 2

T-optimality
0.1 2 2 2 10 10 10 10 5 5
0.2 2 2 2 10 10 10 10 10 5
0.3 2 2 10 10 10 10 10 10 10
0.4 2 2 10 10 10 10 10 10 10
0.5 2 2 10 10 10 10 5 5 10
0.6 2 2 2 10 10 5 5 5 5
0.7 2 2 2 2 5 5 4 4 4
0.8 2 2 2 2 2 4 2 2 2
0.9 2 2 2 2 2 2 2 2 2

Table 6.6 Optimal number of secondary samples based on A-optimality, D-optimality,
E-optimality and T-optimality when N = 500.
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A-optimality

φ
p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 10 10 10 10 10 10 5 5 5
0.2 4 10 10 10 5 5 5 5 5
0.3 4 10 10 5 5 5 4 4 4
0.4 5 10 5 5 5 5 4 4 2
0.5 4 5 5 5 4 4 4 4 2
0.6 4 5 5 5 4 4 4 4 2
0.7 5 5 5 4 4 4 4 2 2
0.8 4 5 4 4 4 4 2 2 2
0.9 2 4 4 4 4 4 2 2 2

D-optimality
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 10 10 10 10 10 10 10 10 10
0.2 10 10 10 10 10 10 10 10 10
0.3 10 10 10 10 10 10 10 10 10
0.4 10 10 10 10 10 10 10 10 10
0.5 10 10 10 10 5 5 5 5 5
0.6 10 10 5 5 5 5 5 5 4
0.7 10 5 5 5 5 4 4 4 4
0.8 10 5 5 4 4 4 4 2 2
0.9 10 5 4 4 2 2 2 2 2

E-optimality
0.1 10 10 10 10 10 10 10 10 10
0.2 10 10 10 10 10 10 10 10 10
0.3 10 10 10 10 10 10 10 10 10
0.4 10 10 10 10 10 10 10 10 10
0.5 10 10 5 5 5 5 5 5 5
0.6 10 5 4 5 5 5 5 5 5
0.7 10 5 4 4 4 4 4 4 4
0.8 10 5 4 4 4 4 4 4 4
0.9 10 10 5 4 4 4 4 4 4

T-optimality
0.1 2 2 2 10 10 10 10 10 10
0.2 2 2 10 10 10 10 10 10 10
0.3 2 2 10 10 10 10 10 10 10
0.4 2 2 10 10 10 10 10 10 10
0.5 2 2 10 10 10 10 10 5 10
0.6 2 2 2 10 10 5 5 5 5
0.7 2 2 2 2 5 5 5 4 4
0.8 2 2 2 2 2 4 4 2 2
0.9 2 2 2 2 2 2 2 2 2

Table 6.7 Optimal number of secondary samples based on A-optimality, D-optimality,
E-optimality and T-optimality when N = 100.



154 Optimal Design for Robust Design Removal Sampling

k = 2

φ
p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 2.87† 1.84† 1.08† 5.56†† 2.91†† 1.56†† 8.34‡ 4.33‡ 2.13‡

0.2 3.10† 2.16† 1.12† 5.36†† 2.62†† 1.46†† 8.16‡ 4.70‡ 2.57‡

0.3 3.48† 2.23† 1.00† 4.44†† 2.36†† 1.31†† 7.92‡ 4.71‡ 2.73‡

0.4 4.37† 2.37† 8.10†† 3.90†† 2.06†† 1.22†† 7.56‡ 4.60‡ 2.69‡

0.5 3.96† 1.62† 6.73†† 3.26†† 1.85†† 1.15†† 7.12‡ 4.40‡ 2.56‡

0.6 2.58† 1.38† 5.20†† 2.81†† 1.68†† 1.06†† 6.77‡ 4.23‡ 2.39‡

0.7 2.25† 1.08† 4.87†† 2.51†† 1.58†† 1.04†† 6.76‡ 4.17‡ 2.33‡

0.8 2.14† 1.02† 4.43†† 2.71†† 1.74†† 1.14†† 7.35‡ 4.46‡ 2.51‡

0.9 2.43† 1.25† 6.37†† 3.83†† 2.45†† 1.60†† 1.03†† 6.30‡ 3.49‡

k = 4
0.1 1.89† 5.59†† 1.81†† 8.08‡ 4.83‡ 3.48‡ 2.76‡ 2.21‡ 1.63‡

0.2 2.20† 5.41†† 1.70†† 8.02‡ 5.11‡ 3.88‡ 3.21‡ 2.68‡ 2.09‡

0.3 2.37† 4.62†† 1.54†† 7.76‡ 5.32‡ 4.22‡ 3.57‡ 3.04‡ 2.46‡

0.4 2.21† 4.20†† 1.39†† 7.72‡ 5.54‡ 4.49‡ 3.84‡ 3.32‡ 2.73‡

0.5 2.05† 3.61†† 1.35†† 7.95‡ 5.90‡ 4.86‡ 4.20‡ 3.66‡ 3.06‡

0.6 1.88† 3.33†† 1.37†† 8.66‡ 6.56‡ 5.46‡ 4.77‡ 4.18‡ 3.55‡

0.7 1.90† 3.29†† 1.55†† 1.02†† 7.84‡ 6.58‡ 5.79‡ 5.14‡ 4.43‡

0.8 1.99† 4.16†† 2.02†† 1.37†† 1.07†† 9.04‡ 7.98‡ 7.15‡ 6.27‡

0.9 2.65† 7.07†† 3.62†† 2.52†† 1.96†† 1.67†† 1.48†† 1.34†† 1.20††

k = 5
0.1 1.42† 3.32†† 1.02†† 4.88‡ 3.35‡ 2.79‡ 2.46‡ 2.12‡ 1.61‡

0.2 1.70† 3.07†† 9.83‡ 5.24‡ 3.91‡ 3.37‡ 3.04‡ 2.70‡ 2.20‡

0.3 1.69† 2.81†† 9.53‡ 5.67‡ 4.39‡ 3.87‡ 3.55‡ 3.21‡ 2.70‡

0.4 1.75† 2.60†† 9.75‡ 6.19‡ 4.98‡ 4.44‡ 4.10‡ 3.77‡ 3.23‡

0.5 1.55† 2.55†† 1.06†† 7.04‡ 5.80‡ 5.21‡ 4.85‡ 4.49‡ 3.95‡

0.6 1.54† 2.58†† 1.22†† 8.46‡ 7.07‡ 6.39‡ 5.97‡ 5.59‡ 4.99‡

0.7 1.51† 3.02†† 1.51†† 1.09†† 9.20‡ 8.40‡ 7.89‡ 7.44‡ 6.75‡

0.8 1.92† 4.10†† 2.20†† 1.61†† 1.37†† 1.25†† 1.18†† 1.12†† 1.03††

0.9 2.61† 7.68†† 4.23†† 3.16†† 2.69†† 2.50†† 2.36†† 2.26†† 2.11††

k = 10
0.1 5.41†† 6.62‡ 2.87‡ 2.48‡ 2.54‡ 2.66‡ 2.67‡ 2.52‡ 2.01‡

0.2 6.24†† 9.15‡ 4.89‡ 4.28‡ 4.36‡ 4.49‡ 4.49‡ 4.31‡ 3.81‡

0.3 7.02†† 1.28†† 7.74‡ 6.99‡ 7.04‡ 7.10‡ 7.08‡ 6.91‡ 6.39‡

0.4 8.20†† 1.83†† 1.20†† 1.09†† 1.09†† 1.11†† 1.10†† 1.08†† 1.02††

0.5 1.01† 2.65†† 1.81†† 1.68†† 1.66†† 1.67†† 1.68†† 1.67†† 1.61††

0.6 1.28† 3.86†† 2.80†† 2.56†† 2.58†† 2.59†† 2.60†† 2.54†† 2.50††

0.7 1.83† 6.12†† 4.53†† 4.20†† 4.15†† 4.24†† 4.26†† 4.13†† 4.04††

0.8 2.84† 1.04† 8.03†† 7.36†† 7.51†† 7.43†† 7.59†† 7.40†† 7.21††

0.9 5.06† 2.06† 1.62† 1.54† 1.54† 1.55† 1.51† 1.45† 1.46†

Table 6.8 A-optimality values when k = 2,4,5,10 and N = 500. † indicates ×10−2,
†† indicates ×10−3 and ‡ indicates ×10−4 Optimal values are highlighted in bold.
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k = 2

φ
p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 2.92⊗ 1.41⋆ 3.96⊗ 3.44† 5.32† 2.33† 3.53†† 1.29†† 2.90††

0.2 1.43⋆ 1.00⋆⋆ 5.36⋆ 1.07⊗ 3.61⊗ 4.90⊗ 2.21⊗ 3.15† 3.73††

0.3 4.49⋆ 2.83⋆⋆ 2.30⋆⋆ 8.53⋆ 2.44 1.72 1.42 3.58⊗ 2.25⊗

0.4 5.60⋆ 4.09⋆⋆ 7.40⋆⋆ 4.90⋆⋆ 2.23⋆⋆ 2.61⋆ 3.50 7.49⊗ 1.14†

0.5 4.49⋆ 7.59⋆⋆ 1.47⋄ 1.68⋄ 1.31⋄ 8.57⋆⋆ 4.56⋆⋆ 2.04⋆⋆ 7.42⋆

0.6 4.22⋆ 7.57⋆⋆ 2.51⋄ 3.77⋄ 4.34⋄ 4.17⋄ 3.53⋄ 2.76⋄ 1.75⋄

0.7 1.82⋆ 5.32⋆⋆ 2.40⋄ 5.61⋄ 8.50⋄ 1.04⋄⋄ 1.12⋄⋄ 1.03⋄⋄ 7.30⋄

0.8 3.01⊗ 1.99⋆⋆ 1.38⋄ 3.89⋄ 7.96⋄ 1.24⋄⋄ 1.60⋄⋄ 1.70⋄⋄ 1.32⋄⋄
0.9 2.41 1.56⋆ 1.51⋆⋆ 6.55⋆⋆ 1.70⋄ 3.28⋄ 4.98⋄ 5.88⋄ 4.86⋄

k = 4
0.1 3.53⋆ 1.17⋆⋆ 6.14⋆ 8.75†† 8.17† 1.90⊗ 1.39† 7.24†† 1.35
0.2 1.15⋆⋆ 6.41⋆⋆ 6.16⋆⋆ 2.99⋆⋆ 5.32⋆ 3.42 4.39⊗ 1.50⊗ 3.09
0.3 2.12⋆⋆ 1.68⋄ 2.43⋄ 2.32⋄ 1.73⋄ 1.32⋄ 1.03⋄ 7.37⋆⋆ 3.84⋆⋆

0.4 2.42⋆⋆ 2.74⋄ 5.87⋄ 7.49⋄ 7.77⋄ 7.45⋄ 6.58⋄ 4.99⋄ 2.65⋄

0.5 2.23⋆⋆ 3.47⋄ 9.75⋄ 1.53⋄⋄ 1.93⋄⋄ 2.05⋄⋄ 1.89⋄⋄ 1.47⋄⋄ 7.77⋄

0.6 1.53⋆⋆ 3.14⋄ 1.13⋄⋄ 2.11⋄⋄ 2.99⋄⋄ 3.38⋄⋄ 3.29⋄⋄ 2.55⋄⋄ 1.38⋄⋄

0.7 5.65⋆ 1.87⋄ 8.20⋄ 1.83⋄⋄ 2.81⋄⋄ 3.44⋄⋄ 3.40⋄⋄ 2.70⋄⋄ 1.45⋄⋄
0.8 1.12⋆ 5.65⋆⋆ 3.09⋄ 7.70⋄ 1.31⋄⋄ 1.67⋄⋄ 1.69⋄⋄ 1.35⋄⋄ 7.26⋄

0.9 44.0 3.77⋆ 2.60⋆⋆ 7.41⋆⋆ 1.34⋄ 1.77⋄ 1.86⋄ 1.46⋄ 7.91⋆⋆

k = 5
0.1 7.26⋆ 2.39⋆⋆ 1.56⋆⋆ 8.68⊗ 4.23⊗ 3.39† 1.06† 2.64†† 1.44
0.2 1.97⋆⋆ 1.26⋄ 1.41⋄ 1.05⋄ 7.13⋆⋆ 4.87⋆⋆ 3.48⋆⋆ 2.31⋆⋆ 1.13⋆⋆

0.3 3.25⋆⋆ 2.93⋄ 5.12⋄ 5.74⋄ 5.65⋄ 5.25⋄ 4.44⋄ 3.11⋄ 1.59⋄

0.4 3.68⋆⋆ 4.53⋄ 1.07⋄⋄ 1.47⋄⋄ 1.72⋄⋄ 1.72⋄⋄ 1.47⋄⋄ 1.09⋄⋄ 5.40⋄

0.5 3.34⋆⋆ 5.15⋄ 1.50⋄⋄ 2.52⋄⋄ 3.18⋄⋄ 3.32⋄⋄ 2.92⋄⋄ 2.10⋄⋄ 1.07⋄⋄
0.6 1.85⋆⋆ 4.34⋄ 1.49⋄⋄ 2.82⋄⋄ 3.81⋄⋄ 4.10⋄⋄ 3.65⋄⋄ 2.65⋄⋄ 1.35⋄⋄
0.7 7.46⋆ 2.35⋄ 9.70⋄ 1.98⋄⋄ 2.82⋄⋄ 3.11⋄⋄ 2.82⋄⋄ 2.05⋄⋄ 1.05⋄⋄

0.8 1.66⋆ 6.59⋆⋆ 3.14⋄ 7.03⋄ 1.04⋄⋄ 1.18⋄⋄ 1.08⋄⋄ 7.84⋄ 4.02⋄

0.9 47.2 4.63⋆ 2.52⋆⋆ 6.08⋆⋆ 9.28⋆⋆ 9.44⋆⋆ 9.43⋆⋆ 6.57⋆⋆ 3.34⋆⋆

k = 10
0.1 3.05⋆⋆ 1.82⋄ 2.72⋄ 2.98⋄ 2.64⋄ 2.21⋄ 1.63⋄ 1.18⋄ 5.54⋆⋆
0.2 7.76⋆⋆ 7.04⋄ 1.30⋄⋄ 1.47⋄⋄ 1.44⋄⋄ 1.20⋄⋄ 8.90⋄ 6.02⋄ 2.97⋄
0.3 1.07⋄ 1.12⋄⋄ 2.33⋄⋄ 2.87⋄⋄ 2.76⋄⋄ 2.27⋄⋄ 1.72⋄⋄ 1.15⋄⋄ 5.77⋄
0.4 1.09⋄ 1.22⋄⋄ 2.68⋄⋄ 3.36⋄⋄ 3.25⋄⋄ 2.74⋄⋄ 2.06⋄⋄ 1.37⋄⋄ 6.84⋄
0.5 7.50⋆⋆ 9.58⋄ 2.21⋄⋄ 2.81⋄⋄ 2.73⋄⋄ 2.27⋄⋄ 1.71⋄⋄ 1.15⋄⋄ 5.72⋄

0.6 4.14⋆⋆ 5.64⋄ 1.33⋄⋄ 1.71⋄⋄ 1.65⋄⋄ 1.38⋄⋄ 1.04⋄⋄ 6.99⋄ 3.50⋄

0.7 1.51⋆⋆ 2.23⋄ 5.40⋄ 7.06⋄ 6.81⋄ 5.54⋄ 4.16⋄ 2.83⋄ 1.40⋄

0.8 2.55⋆ 4.86⋆⋆ 1.18⋄ 1.58⋄ 1.40⋄ 1.19⋄ 8.65⋆⋆ 5.87⋆⋆ 3.03⋆⋆

0.9 1.08⊗ 2.85⋆ 7.15⋆ 7.49⋆ 8.79⋆ 6.72⋆ 5.79⋆ 4.47⋆ 1.87⋆

Table 6.9 Simulated D-optimality values when k = 2,4,5,10 and N = 500. ⊗ indicates
×102, ⋆ indicates ×103, ⋆⋆ indicates ×104, ⋄ indicates ×105 and ⋄⋄ indicates ×106.
Optimal values are highlighted in bold.
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k = 2

φ
p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 1.22∗ 1.91‡ 8.49‡ 1.42∗ 9.48∗ 2.74∗ 3.45∗ 1.39∗ 4.80∗

0.2 7.26∗ 9.68‡ 3.49†† 8.40∗ 2.12∗ 1.93∗ 7.24∗ 1.04∗ 1.61∗

0.3 2.47‡ 1.90†† 6.18†† 2.57†† 5.73∗ 2.88∗ 2.10∗ 4.70∗ 4.00∗

0.4 3.55‡ 2.18†† 9.19†† 8.69†† 2.75†† 2.52‡ 2.91∗ 5.63∗ 1.10∗

0.5 3.81‡ 3.26†† 1.06† 1.83† 1.05† 5.18†† 2.33†† 9.91‡ 4.61‡

0.6 5.84‡ 3.34†† 1.16† 2.57† 2.34† 1.72† 1.24† 9.20†† 7.56††

0.7 5.54‡ 3.17†† 1.03† 2.50† 3.34† 3.21† 2.93† 2.60† 2.39†

0.8 3.44‡ 2.77†† 8.86†† 1.80† 2.75† 3.31† 3.57† 3.64† 3.63†

0.9 1.88∗ 1.20†† 3.54†† 6.92†† 1.03† 1.28† 1.55† 1.71† 1.82†

k = 4
0.1 1.75‡ 1.72†† 3.13†† 3.05∗ 2.07∗ 3.42∗ 2.83∗ 2.10∗ 1.40∗

0.2 6.19‡ 6.59†† 1.10† 3.35†† 4.50‡ 2.86∗ 4.01∗ 2.26∗ 8.31∗

0.3 1.30†† 1.24† 2.24† 1.37† 8.26†† 5.88†† 4.96†† 4.53†† 4.37††

0.4 1.87†† 1.54† 3.25† 2.80† 2.30† 1.99† 1.83† 1.76† 1.74†

0.5 2.20†† 1.68† 3.63† 3.91† 3.79† 3.60† 3.43† 3.37† 3.35†

0.6 2.37†† 1.49† 3.17† 3.98† 4.27† 4.32† 4.30† 4.27† 4.26†

0.7 1.83†† 1.06† 2.18† 2.94† 3.39† 3.60† 3.67† 3.67† 3.68†

0.8 9.09‡ 5.56†† 1.12† 1.47† 1.81† 1.92† 2.01† 2.01† 2.02†

0.9 2.85‡ 1.57†† 2.89†† 3.96†† 4.94†† 4.95†† 5.42†† 5.44†† 5.75††

k = 5
0.1 3.67‡ 3.41†† 4.65†† 1.65‡ 5.62∗ 3.74∗ 1.46∗ 7.12∗ 1.38∗

0.2 1.13†† 1.24† 1.55† 7.49†† 3.96†† 2.64†† 2.41†† 3.00†† 2.94††

0.3 2.17†† 2.01† 2.95† 2.30† 1.91† 1.81† 1.88† 1.83† 1.82†

0.4 2.95†† 2.35† 3.87† 3.86† 3.74† 3.68† 3.60† 3.58† 3.54†

0.5 3.56†† 2.18† 3.86† 4.45† 4.64† 4.65† 4.62† 4.59† 4.60†

0.6 2.88†† 1.69† 3.06† 3.82† 4.15† 4.28† 4.30† 4.28† 4.29†

0.7 2.07†† 1.08† 1.95† 2.48† 2.77† 2.87† 2.93† 2.94† 2.94†

0.8 1.21†† 5.28†† 9.08†† 1.14† 1.28† 1.37† 1.42† 1.38† 1.39†

0.9 2.72‡ 1.63†† 2.62†† 3.24†† 3.75†† 3.30†† 3.61†† 3.54†† 3.56††

k = 10
0.1 1.64†† 1.59† 1.59† 1.24† 1.21† 1.42† 1.87† 2.93† 5.49†

0.2 4.54†† 2.87† 3.38† 3.07† 3.25† 3.89† 5.09† 6.90† 6.94†

0.3 6.66†† 2.99† 4.06† 4.13† 4.42† 5.21† 5.79† 5.76† 5.76†

0.4 6.59†† 2.46† 3.50† 3.95† 4.03† 4.05† 4.09† 4.08† 4.08†

0.5 5.42†† 1.70† 2.38† 2.58† 2.63† 2.67† 2.62† 2.62† 2.58†

0.6 3.90†† 1.08† 1.43† 1.55† 1.54† 1.55† 1.54† 1.57† 1.53†

0.7 2.34†† 5.57†† 7.17†† 7.96†† 8.06†† 7.65†† 7.71†† 8.12†† 8.21††

0.8 1.07†† 2.46†† 3.24†† 3.43†† 3.22†† 3.35†† 3.07†† 3.27†† 3.36††

0.9 3.61‡ 7.73‡ 9.81‡ 8.43‡ 9.64‡ 8.55‡ 1.11†† 1.22†† 1.08††

Table 6.10 Simulated E-optimality values when k = 2,4,5,10 and N = 500. † indicates
×10−2, †† indicates ×10−3, ‡ indicates ×10−4, and ∗ indicates ≤×10−4. Optimal
values are highlighted in bold.
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k = 2

φ
p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 896.26 778.97 654.24 537.67 426.37 329.07 249.59 195.71 160.91
0.2 906.96 786.25 651.98 534.19 434.74 356.58 303.85 280.14 260.10
0.3 907.62 821.81 684.90 569.10 479.19 418.84 387.05 375.15 359.62
0.4 913.56 862.43 737.58 628.67 549.34 499.63 479.09 474.73 460.63
0.5 901.10 913.12 808.37 708.96 633.80 593.31 578.79 575.47 560.41
0.6 855.69 955.30 887.86 799.01 735.36 697.76 684.19 680.17 663.64
0.7 782.45 959.38 953.36 892.17 836.86 804.77 793.81 786.90 767.22
0.8 628.91 885.31 946.94 937.70 911.51 893.55 886.52 883.17 865.72
0.9 369.45 614.22 738.43 789.33 813.95 835.18 850.05 856.85 849.07

k = 4
0.1 873.36 733.73 584.39 470.36 394.26 357.90 333.74 281.76 198.74
0.2 866.87 718.11 575.23 482.49 445.61 442.24 430.35 379.28 295.22
0.3 869.81 741.48 610.42 541.47 529.31 538.74 530.42 482.38 397.91
0.4 858.53 781.55 672.26 623.75 625.03 641.25 632.53 583.60 501.38
0.5 845.46 827.41 751.25 717.65 730.07 746.03 736.18 690.27 607.87
0.6 805.19 869.02 824.18 806.81 827.03 842.05 837.49 790.10 714.52
0.7 729.02 858.92 863.86 872.95 898.17 919.22 911.38 874.01 802.95
0.8 577.62 766.27 812.90 854.32 886.90 909.00 907.38 878.47 818.60
0.9 339.04 509.91 586.85 636.27 672.65 701.02 696.09 683.54 642.77

k = 5
0.1 857.20 710.83 560.54 460.68 420.37 405.70 367.86 294.57 199.13
0.2 849.99 689.01 554.60 496.18 498.03 501.15 466.67 392.51 296.90
0.3 845.72 715.08 599.95 573.70 593.36 602.89 569.17 495.80 402.67
0.4 838.45 758.41 672.24 664.37 694.54 706.63 672.43 604.01 507.47
0.5 824.13 805.72 754.57 762.08 797.61 808.20 776.31 706.98 617.18
0.6 775.39 841.71 819.71 846.30 883.54 892.16 862.69 800.63 715.84
0.7 706.63 820.29 848.28 883.28 923.67 940.21 913.65 857.70 787.16
0.8 557.75 715.11 776.32 831.88 876.33 884.25 866.50 830.17 772.20
0.9 324.01 466.10 534.01 583.98 612.51 637.13 619.27 599.90 563.73

k = 10
0.1 805.58 623.87 575.22 604.79 574.41 499.22 402.09 305.45 205.85
0.2 776.10 630.15 658.61 704.58 683.93 607.71 514.34 419.01 322.32
0.3 751.01 683.95 748.21 806.70 785.85 710.04 622.21 533.33 443.02
0.4 741.44 738.58 826.54 886.69 867.50 803.56 717.86 636.58 548.48
0.5 721.29 775.58 872.40 927.91 912.03 852.11 784.20 705.44 638.58
0.6 675.55 766.22 872.00 916.49 907.74 856.92 801.77 732.27 676.81
0.7 588.69 713.52 813.69 855.26 835.26 807.97 755.97 703.13 645.97
0.8 451.13 573.51 649.88 686.55 679.40 652.64 626.89 585.59 545.77
0.9 260.92 338.90 387.53 410.67 402.66 391.06 367.79 350.42 333.05

Table 6.11 Simulated T-optimality values when k = 2,4,5,10 and N = 500. Optimal
values are highlighted in bold.
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k = 2

φ
p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 3.15† 3.37† 2.78† 2.35† 1.80† 1.14† 7.45†† 4.32†† 2.11††

0.2 4.81† 3.98† 3.89† 2.62† 1.91† 1.32† 8.16†† 4.46†† 2.56††

0.3 3.93† 5.01† 3.77† 3.08† 2.00† 1.27† 7.84†† 4.84†† 2.71††

0.4 5.44† 5.12† 3.96† 2.80† 1.93† 1.17† 7.42†† 4.70†† 2.68††

0.5 4.46† 4.29† 4.06† 2.64† 1.85† 1.07† 7.03†† 4.44†† 2.49††

0.6 7.11† 4.87† 3.94† 2.60† 1.70† 1.07† 6.93†† 4.26†† 2.33††

0.7 6.22† 5.47† 4.00† 2.47† 1.56† 1.04† 6.73†† 4.21†† 2.32††

0.8 6.45† 5.66† 3.93† 2.50† 1.68† 1.12† 7.09†† 4.44†† 2.49††

0.9 5.86† 6.53† 5.09† 3.59† 2.37† 1.64† 9.96†† 6.47†† 3.37††

k = 4
0.1 2.39† 2.02† 1.14† 7.11†† 4.69†† 3.49†† 2.77†† 2.22†† 1.62††

0.2 2.76† 2.51† 1.35† 7.44†† 5.00†† 3.86†† 3.19†† 2.67†† 2.08††

0.3 3.29† 2.58† 1.38† 7.49†† 5.10†† 3.99†† 3.39†† 2.86†† 2.29††

0.4 4.33† 2.95† 1.40† 7.68†† 5.50†† 4.48†† 3.84†† 3.31†† 2.70††

0.5 3.97† 2.76† 1.36† 7.89†† 5.79†† 4.87†† 4.16†† 3.63†† 3.02††

0.6 4.70† 2.82† 1.39† 8.58†† 6.57†† 5.45†† 4.70†† 4.11†† 3.48††

0.7 5.42† 3.17† 1.59† 1.03† 7.98†† 6.53†† 5.71†† 5.08†† 4.33††

0.8 5.41† 3.78† 2.03† 1.34† 1.06† 8.96†† 7.81†† 7.01†† 6.15††

0.9 6.24† 5.02† 3.30† 2.29† 1.86† 1.57† 1.41† 1.25† 1.08†

k = 5
0.5 5.15† 2.48† 1.07† 7.01†† 5.80†† 5.12†† 4.81†† 4.40†† 3.83††

0.6 5.34† 2.63† 1.20† 8.41†† 7.00†† 6.28†† 5.94†† 5.46†† 4.85††

0.7 5.30† 2.99† 1.52† 1.10† 9.05†† 8.30†† 7.82†† 7.40†† 6.51††

0.8 5.57† 3.66† 2.15† 1.57† 1.32† 1.19† 1.15† 1.06† 9.99††

0.9 6.65† 5.91† 3.54† 2.78† 2.34† 2.18† 2.03† 1.90† 1.81†

k = 10
0.1 2.24† 5.72†† 2.72†† 2.26†† 2.37†† 2.52†† 2.51†† 2.33†† 1.86††

0.2 3.35† 8.89†† 4.72†† 4.06†† 4.09†† 4.09†† 4.17†† 3.94†† 3.48††

0.3 4.68† 1.29† 7.08†† 6.57†† 6.52†† 6.68†† 6.53†† 6.48†† 6.10††

0.4 6.40† 1.79† 1.11† 1.00† 1.01† 1.02† 1.02† 9.85†† 9.62††

0.5 7.54† 2.48† 1.63† 1.52† 1.59† 1.54† 1.58† 1.53† 1.49†

0.6 8.74† 3.58† 2.47† 2.35† 2.35† 2.36† 2.25† 2.33† 2.25†

0.7 1.04∗ 5.27† 3.83† 3.26† 3.61† 3.24† 3.49† 3.61† 3.36†

0.8 1.14∗ 7.37† 5.19† 5.07† 5.51† 5.08† 5.09† 5.09† 4.84†

0.9 9.60† 1.09∗ 8.36† 8.14† 8.39† 7.15† 8.26† 8.19† 6.82†

Table 6.12 Simulated A-optimality values when k = 2,4,5,10 and N = 100. † indicates
×10−2, †† indicates ×10−3 and ‡ indicates ×10−4. Optimal values are highlighted in
bold.



6.4 Simulation study 159

k = 2

φ
p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0.21 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.2 9.19 5.63 0.00 0.00 0.00 0.00 0.01 0.01 0.01
0.3 0.92 30.86 0.90 0.01 0.01 0.01 0.01 0.03 0.02
0.4 4.22 41.78 34.59 0.07 0.02 0.02 0.03 0.03 0.03
0.5 3.06 44.85 102.28 63.82 5.02 0.06 0.07 0.08 0.04
0.6 2.51 44.88 204.62 253.67 218.61 134.52 57.15 8.79 0.13
0.7 0.03 41.53 190.05 469.65 670.67 756.70 751.75 624.69 402.84
0.8 0.02 9.03 101.41 371.61 703.66 1074.81 1357.51 1415.64 1094.98
0.9 0.00 0.14 12.14 49.67 148.30 276.43 450.44 525.78 430.96

k = 4
0.1 3.04 2.40 0.00 0.00 0.00 0.01 0.01 0.01 0.01
0.2 2.33 23.67 2.86 0.02 0.03 0.04 0.06 0.07 0.04
0.3 8.73 112.81 100.60 15.05 0.11 0.09 0.08 0.07 0.03
0.4 10.64 194.42 374.96 355.73 270.58 175.49 106.48 65.04 27.05
0.5 21.34 312.96 732.27 1066.45 1261.23 1335.79 1238.57 857.62 440.97
0.6 5.37 269.87 910.25 1726.24 2430.28 2819.55 2575.60 2008.17 977.38
0.7 1.21 139.17 681.19 1496.81 2454.63 2994.04 2982.37 2307.07 1202.16
0.8 0.09 39.85 253.11 731.48 1162.94 1483.81 1511.72 1218.42 641.23
0.9 0.00 1.24 22.78 83.07 146.20 203.46 199.93 166.66 73.61

k = 5
0.1 2.01 3.64 0.00 0.00 0.01 0.02 0.02 0.02 0.01
0.2 9.29 54.37 18.26 0.03 0.04 0.07 0.07 0.09 0.04
0.3 32.33 197.93 252.98 150.97 77.98 38.51 9.01 1.33 3.68
0.4 17.84 368.58 764.55 918.27 1036.02 916.47 799.79 564.44 279.63
0.5 14.79 396.32 1337.65 1896.80 2626.85 2445.05 2227.56 1566.27 748.86
0.6 8.60 309.94 1377.96 2468.14 3097.01 3573.75 3136.41 2214.24 1095.70
0.7 2.06 177.98 855.21 1681.76 2434.62 2769.28 2517.34 1721.41 880.28
0.8 0.10 44.33 274.69 634.43 957.83 1088.63 963.00 724.04 338.78
0.9 0.01 2.87 25.42 63.82 99.44 120.30 116.92 69.34 29.84
0.1 11.43 69.51 58.21 13.72 13.04 11.44 7.48 4.52 3.40
0.2 37.55 426.25 871.89 911.76 879.38 635.97 534.40 348.98 171.41
0.3 65.76 857.30 1776.85 2245.56 2108.36 1806.24 1334.57 875.67 422.47
0.4 58.95 971.72 2186.03 2830.12 2762.42 2285.53 1775.66 1149.48 544.16
0.5 34.59 782.58 1849.88 2326.80 2310.17 1924.18 1459.60 942.86 465.62
0.6 13.83 459.23 1114.24 1479.76 1373.55 1135.31 902.11 557.92 287.40
0.7 4.56 152.70 460.87 630.27 593.90 521.79 351.02 240.15 110.08
0.8 0.46 33.67 117.69 163.16 156.86 139.03 88.84 59.96 28.42
0.9 0.01 2.88 8.82 13.96 17.08 10.92 6.86 4.01 1.36

Table 6.13 Simulated D-optimality values when k = 2,4,5,10 and N = 100. Optimal
values are highlighted in bold.
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k = 2

φ
p 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

0.1 1.29∗ 8.06∗ 1.95∗ 1.43∗ 1.63∗ 2.83∗ 7.82∗ 2.03∗ 6.29∗

0.2 6.78∗ 1.07∗ 4.25∗ 1.97∗ 2.15∗ 5.33∗ 1.05∗ 2.02∗ 2.81∗

0.3 5.74∗ 4.01∗ 8.17∗ 4.06∗ 3.69∗ 5.30∗ 7.14∗ 1.16∗ 1.29∗

0.4 3.54∗ 3.35∗ 9.63∗ 2.40∗ 5.31∗ 5.61∗ 5.82∗ 7.70∗ 7.63∗

0.5 3.06∗ 3.27∗ 1.20‡ 1.16‡ 9.75∗ 7.66∗ 7.97∗ 8.98∗ 6.12∗

0.6 4.67∗ 2.22∗ 1.36‡ 2.54‡ 1.99‡ 1.05‡ 3.73∗ 5.44∗ 1.04∗

0.7 2.40∗ 2.63∗ 1.06‡ 2.85‡ 3.70‡ 3.63‡ 3.17‡ 2.56‡ 2.27‡

0.8 4.28∗ 1.45∗ 6.88∗ 1.84‡ 2.97‡ 3.96‡ 4.26‡ 4.32‡ 4.24‡

0.9 2.82∗ 2.96∗ 4.11∗ 7.61∗ 1.50‡ 1.90‡ 2.38‡ 2.51‡ 2.54‡

k = 4
0.1 1.77‡ 8.31‡ 1.74∗ 1.67∗ 1.59∗ 1.50∗ 1.98∗ 4.19∗ 1.03∗

0.2 2.16‡ 4.29†† 8.37‡ 2.69∗ 2.78∗ 3.48∗ 4.97∗ 9.81∗ 9.33∗

0.3 5.34‡ 1.16† 1.02† 1.24†† 5.64∗ 4.33∗ 4.38∗ 4.73∗ 4.20∗

0.4 9.07‡ 1.27† 2.36† 1.56† 8.99†† 5.05†† 3.12†† 2.41†† 2.11††

0.5 1.79†† 1.64† 3.07† 3.13† 2.73† 2.54† 2.33† 2.17† 2.21†

0.6 8.82‡ 1.28† 2.94† 3.59† 3.78† 3.82† 3.75† 3.71† 3.70†

0.7 3.79‡ 8.33†† 2.18† 3.02† 3.31† 3.57† 3.61† 3.64† 3.62†

0.8 7.25∗ 4.70†† 1.12† 1.74† 2.08† 2.14† 2.34† 2.28† 2.30†

0.9 6.83∗ 9.62‡ 5.11†† 7.16†† 8.25†† 9.55†† 9.25†† 8.97†† 7.36††

k = 5
0.1 1.52‡ 8.35‡ 1.98∗ 1.27∗ 1.20∗ 2.01∗ 2.91∗ 7.13∗ 1.12∗

0.2 6.27‡ 7.57†† 2.90†† 3.22∗ 3.00∗ 3.97∗ 5.31∗ 1.20∗ 1.03∗

0.3 2.08†† 1.69† 1.72† 6.87†† 3.04†† 1.38†† 4.00‡ 1.23‡ 5.31‡

0.4 1.43†† 2.17† 3.14† 2.72† 2.39† 2.19† 2.12† 2.10† 2.11†

0.5 1.83†† 1.81† 3.42† 3.85† 4.03† 3.92† 3.90† 3.82† 3.83†

0.6 1.15†† 1.36† 2.91† 3.72† 4.00† 4.06† 4.04† 4.05† 4.04†

0.7 6.78‡ 9.26†† 1.97† 2.58† 2.97† 2.95† 3.05† 3.02† 3.21†

0.8 1.24‡ 4.81†† 9.67†† 1.44† 1.58† 1.60† 1.70† 1.76† 1.64†

0.9 8.47∗ 1.95†† 5.27†† 6.91†† 6.09†† 6.71†† 7.78†† 6.92†† 5.98††

k = 10
0.1 6.85‡ 8.99†† 4.80†† 7.56‡ 7.10‡ 8.57‡ 9.82‡ 1.44†† 3.75††

0.2 2.73†† 2.27† 2.66† 2.24† 2.31† 2.59† 3.53† 5.00† 5.37†

0.3 4.11†† 2.58† 3.46† 3.58† 3.76† 4.33† 4.99† 5.35† 5.35†

0.4 3.55†† 2.29† 3.37† 3.64† 3.84† 3.99† 4.20† 4.31† 4.22†

0.5 3.08†† 1.83† 2.68† 2.95† 2.80† 2.93† 2.92† 2.92† 2.82†

0.6 1.66†† 1.27† 1.85† 1.82† 1.77† 1.80† 1.98† 1.90† 1.91†

0.7 1.10†† 7.30†† 1.04† 1.24† 9.75†† 1.30† 1.11† 9.75†† 1.13†

0.8 3.82‡ 4.04†† 7.57†† 5.65†† 6.82†† 7.88†† 7.62†† 7.45†† 6.13††

0.9 1.00∗ 3.18†† 5.05†† 6.11†† 6.80†† 6.81†† 6.12†† 3.07†† 2.27††

Table 6.14 Simulated E-optimality values when k = 2,4,5,10 and N = 100. † indicates
×10−2, †† indicates ×10−3, ‡ indicates ×10−4, and ∗ indicates ≤×10−4. Optimal
values are highlighted in bold.
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k = 2

φ
p 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

0.10 88.74 76.96 65.47 55.34 42.35 33.61 25.86 20.27 15.71
0.20 89.45 79.10 65.28 55.75 44.54 37.39 31.71 27.68 25.54
0.30 88.67 82.02 69.34 58.15 49.48 42.87 39.10 37.15 35.98
0.40 87.68 85.48 73.36 62.85 55.92 50.93 47.98 46.92 45.37
0.50 85.35 87.84 80.47 70.19 62.45 59.10 57.20 56.81 55.31
0.60 79.90 90.31 86.21 78.29 71.85 67.95 66.45 66.16 64.73
0.70 68.08 89.65 90.51 86.38 81.94 79.00 77.07 76.24 74.67
0.80 52.76 79.10 88.04 89.83 90.46 87.14 86.25 85.47 84.52
0.90 28.20 52.04 65.17 73.75 77.67 81.61 81.43 82.85 81.60

k = 4
0.10 85.33 74.32 59.98 47.07 40.41 36.31 33.03 28.14 19.26
0.20 84.88 74.08 58.01 49.09 44.97 44.09 42.51 37.75 29.15
0.30 85.68 74.81 60.63 53.63 51.62 52.25 51.87 47.04 38.76
0.40 83.80 79.00 66.61 60.87 60.89 61.64 61.14 56.34 48.35
0.50 81.54 82.11 73.56 69.28 70.35 72.12 71.72 66.31 58.43
0.60 74.91 84.00 80.37 77.55 79.97 82.12 80.24 76.19 68.03
0.70 65.97 82.76 82.68 83.29 87.69 88.76 88.63 83.46 77.58
0.80 50.29 68.72 77.86 80.85 83.76 88.22 85.90 83.83 78.79
0.90 26.58 44.28 52.82 59.65 62.91 62.38 64.72 62.77 61.80

k = 5
0.10 84.75 73.44 56.95 46.90 42.70 40.41 36.25 28.86 19.80
0.20 84.00 70.27 56.18 49.53 48.70 49.27 45.49 38.34 29.55
0.30 83.82 72.89 59.52 55.31 56.99 58.13 54.57 47.08 38.17
0.40 82.11 75.21 66.49 63.98 67.47 67.91 65.11 57.84 49.11
0.50 80.74 79.04 73.78 72.65 78.19 77.35 74.91 67.63 58.49
0.60 72.92 81.47 80.68 82.77 83.71 86.27 83.58 76.96 68.27
0.70 65.15 78.05 81.92 85.87 88.12 91.90 88.09 82.60 74.09
0.80 47.29 65.46 75.81 78.42 80.97 86.12 81.88 78.36 72.52
0.90 24.52 39.86 46.11 51.83 56.34 57.23 55.47 53.43 51.49

k = 10
0.10 82.72 64.36 57.29 57.94 55.21 48.20 38.35 28.36 18.83
0.20 78.43 64.42 63.90 67.28 65.38 56.95 48.30 39.27 29.37
0.30 76.99 66.34 71.12 76.88 73.94 67.91 59.15 49.74 41.35
0.40 73.87 71.18 78.18 83.94 82.07 75.68 68.41 59.50 51.78
0.50 66.82 73.97 80.97 87.07 87.29 80.37 74.40 66.60 58.80
0.60 63.01 71.46 79.02 86.88 86.01 79.73 74.66 66.67 61.11
0.70 53.17 64.49 74.89 76.04 79.67 72.04 68.94 64.73 58.20
0.80 38.67 50.21 55.95 62.56 58.88 57.26 51.53 48.98 46.22
0.90 17.54 26.33 28.20 31.77 29.91 29.47 28.35 27.95 25.45

Table 6.15 Simulated T-optimality values when k = 2,4,5,10 and N = 100. Optimal
values are highlighted in bold.
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6.5 Discussion

Many ecologists have extensive experience with the design of natural resource surveys
from an empirical perspective, however it is also important to plan studies based on the
properties of estimators, such as their variance, to sample adequate data that are usable
for modelling and improve precision of parameter estimates. Incorporation of the
robust design is highly preferable when sampling removal data because it overcomes
the issues of parameter redundancy (Zhou et al., 2018). However, no work has been
done on how to optimally design the removal sampling under the robust design.

Bohrmann and Christman (2013) present the first detailed investigation of study
design in the context of classic removal modelling based on analytical consideration of
the large sample properties of the capture probability and simulations, in particular the
allocation of sampling effort into number of samples sites and amount of replication
within each site.

We investigate the ways for choosing the optimal design for removal sampling
accounting for temporary emigration analytically. This assessment can help ecologists
to decide how many secondary samples and primary periods should be conducted
to minimise the variance of parameters for a fixed level of total survey effort. We
explored four criteria for optimal design for removal data with robust design and we
concluded that the best performing criterion is A-optimality as theoretical results are
supported by simulation results, but only when population size is large enough.

We recommend sampling more primary periods with less number of secondary
samples for rare species, as such a population tends to stay outside the study area (i.e.
φ > 0.5 on average). Similarly, surveying fewer primary period with more secondary
samples is better for common species when φ < 0.5 is assumed on average.

It is always useful to perform simulation-based studies before conducting the actual
field survey not only to evaluate the design in terms of its ability to generate useful
estimates, but also so that you have an expectation of what the data will look like as
they are being sampled. This would give you the ability to recognise some pathologies
and possibly intervene to resolve issues before they conduct a whole study.

For robust design removal sampling we assume the population is closed between
secondary samples within each primary period, with periods of closure assumed to be
short relative to the life history of the species under study. If the closure assumption
in the secondary periods is violated we would expect the capture probability to be
underestimated, and could potentially lead to positive bias in the estimate of population
size. In practice it can be difficult to guarantee a closed population, for example a
dispersing individual may arrive just as observers leave the study site. For some
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species we may be able to avoid seasons where violation of demographic closure is
highly likely happening such as during migration seasons in migratory birds or during
the start and end of breeding seasons. However, for many species such ecological
seasons might be less clear cut. For instance, rats can easily breed throughout the year
if conditions are suitable. As a consequence, guidelines of what time frame adequately
gives rise to a closed population can be vague. To choose a time that is appropriate, a
prior study of biological behavior of the species subject to removal before the survey
is highly recommended.

The frequency or length of temporal samples is one of the most important aspects
of sampling design for population sampling. However, there are other aspects that
should be considered in sampling. The importance of adequate trap placing has been
investigated in capture-recapture studies. Dice (1938, 1941) recognized the importance
of population home ranges and highlighted the need to distribute the traps in a way
so that the array of traps exposes as many individuals as possible. This lead to the
development of spatial models.

In order to initiate a study, we have to choose a study area which contains target
populations that you may be able to capture and remove. For a translocation study, the
area is likely to comprise of an area which is going to built on and its surrounding area
which contains individuals that are subject to removal. Given a well-defined study
area, we prefer a design with the arrangement of collecting traps that are capable of
sampling more data. The design we present in this chapter assumes that the survey
area is carefully chosen and the traps are able to cover home ranges of individuals in
the population.

Even if we have carefully designed how to place the traps and to choose the study
area, as a practical matter, some species might still have a small probability of being
captured. Our models can only apply to individuals that have capture probabilities that
are consistent with the model being considered. If there are individuals with p = 0,
they cannot be estimated as the existence of a hole is not addressed in the model.
Therefore the use of an optimal study design may not lead to precise estimation of the
population size, as the RMER.SRC model assumes a homogeneous constant capture
probability.

There are also other practical difficulties for sampling. Depending on environmen-
tal conditions, potentially there are parts of the study area which may be not accessible
to field workers, due to dense vegetation cover or deep sea. Even when accessible,
setting up traps in difficult habitat conditions can cost large amounts of time and
resources.
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In most cases, study design faces a limit of available resources or being logistically
manageable. In the future, we could generate a framework incorporated with other
considerations, e.g. logistics, costs and other practical restrictions. It is also useful to
perform preliminary field studies before conducting the actual sampling, which would
not only evaluate the design in terms of its ability to generate meaningful estimates,
but also give you an opportunity to highlight potential issues.



Chapter 7

Conclusion

7.1 Discussion

Estimating the population size is of fundamental interest when studying animals for
conservation science. The use of removal sampling is increasingly being used as it
recently has been adopted as a conservation management tool for translocation projects
and invasive species removal.

In Chapter 2 we discussed the limitation of the classic removal model, which
assumes constant capture probability and that all individuals are within the sampling
area throughout the study (Moran, 1951; Zippin, 1956, 1958), but these assumptions
are often violated. If constant capture probability and perfect availability are incorrectly
assumed, the estimate of population size will be positively biased. It is crucial to avoid
bias of estimates in the model as biased estimators may lead to misleading conclusions
for conservation purposes.

In Chapter 3, we developed new removal models accounting for temporary emigra-
tion for removal data sets with a robust design structure. The underlying movement
pattern of individuals between the study area and an area outside of the study was
modelled in a multievent framework.

In Chapter 4, we investigated which parameters of the models proposed in Chapter
3 can be individually estimated, i.e. whether or not a model is parameter redundant.
Symbolic algebra is used to investigate parameter redundancy and to find the estimable
combinations of parameters if the proposed model is parameter redundant. The
methods presented in Chapter 4 provide almost identical findings to Chapter 3, without
the need for intensive simulations.

Although we showed the benefits of the use of robust design in Chapters 3 and 4,
a lot of removal data sets are sampled from a standard sampling protocol with only
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a single sampling occasion within each primary period. In Chapter 5, we proposed
penalised likelihood approaches to model new arrivals of individuals, which allowed
individuals to enter the study area during the removal study. We investigated three
types of penalty terms, ridge, Lasso and fused Lasso for the proposed model. We
demonstrated that the new approaches reduce the frequency of boundary estimates
obtained from optimising the likelihood without a penalty term. However they have to
be used with caution in cases of small sample sizes.

As the robust design is highly preferred for removal sampling as we discussed
in Chapters 3 and 4, we investigated the survey design aspects of removal sampling
at a single site while accounting for the availability of individuals under the robust
design in Chapter 6. We used both simulations and analytic criteria to investigate how
to allocate the total sampling effort for the removal sampling under the robust design
sampling protocol where constant parameters are assumed.

7.2 Future work

We hope that the work conducted in this thesis will make a valuable contribution to
modelling removal data and help guide removal studies in the future. There is still
work to be done in the future on removal models. We list potential work which can be
investigated below:

• This thesis presents new models for temporary emigration and new arrivals of
individuals in the population as populations are rarely closed during sampling.
These models can be used to deal with lack of closure and a better fit to the data
than that obtained from the classic removal model may provide evidence that the
collected data does not satisfy the closure assumption. However, it requires us to
fit models to the data in order to conduct model comparison. Currently there is
no statistical test for population closure for removal data. A number of such tests
have been developed in traditional capture recapture studies. Otis et al. (1978)
developed a test for population closure that can handle heterogeneity in capture
probability, however the performance in the presence of time or behavioral
variation is not promising. Stanley and Burnham (1999) developed a closure test
for the closed population model Mt with time-varying pt , which performs well
when emigration is permanent and the majority of the population migrate. Both
tests can be implemented in the program CloseTest (Stanley and Richards,
2005). However, it is not fully understood whether these tests can be adapted
for removal data. In the future we could develop a closure test specifically for
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removal data, which would provide evidence of whether the closure assumption
has been violated or not.

• For the robust design removal models explored in Chapter 3, simulation studies
suggest that when capture probability is small and φ 12

i is large, the variances
of fully time-dependent transition probabilities tend to be large. Similar results
are observed when analysing real data. The poor precision is likely due to low
capture probability (0.18 on average) and low availability of individuals ( ˆ

φ 12
i is

0.70 and 0.57 on average for juveniles and adults respectively). In the future, we
could propose an alternative method of estimation to improve the precision of
estimates for the robust design removal models based on penalised likelihood.

• The penalised likelihood approaches investigated for removal data sets without
the robust design structure are computationally intensive due to the required
cross-validation. One possible way to resolve the problem is when other auxiliary
data are available, we can integrate that information with removal data sets. For
example, if the study area has been monitored by capture recapture sampling
for a number of years, those data can potentially be considered in the model
fitting. Alternatively, we could conduct concurrent capture-recapture sampling
as suggested in Gould and Pollock (1997) or a few capture-recapture sampling
occasions prior to removal sampling. We could evaluate modelling approaches
and survey design in the presence of such data in the future.

• Prior information or guesses of parameter values is a typical requirement in the
development of sampling design for statistical models. In Chapter 6, we have
explored study design aspects of removal sampling under robust design and
the results heavily depend on the true values of the parameter we used. These
parameter values can be obtained from a systematic review of the literature or a
pilot study. Potentially, meta-analysis can be performed for a family of species
with similar biological behaviors that are analysed in previous studies.

• Although an idea of true values of parameters can be obtained from careful
literature review, in most situations precise prior knowledge can be rarely avail-
able, as previous results may depend on combinations of environmental factors
which are potentially different from those of the proposed study. Several studies
have explored robust versions of the classic optimality criteria such as minimax
D-optimality criteria, which is less sensitive with respect to the choice of pa-
rameters (Pronzato and Walter, 1985; Dette, 1997). Therefore, in the future we
could explore other study design criteria for removal models with robust design.
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• In the future, we could develop a user-friendly software program that is repro-
ducible and efficient while being accessible and intuitive for applied practitioners.
Similar ideas have been executed for fitting capture recapture models, e.g. Mark
(White and Burnham, 1999) and E-SURGE (Choquet, 2009), and occupancy mod-
els, e.g. Presence (MacKenzie, 2018). We are currently developing web-based
software for the robust design removal model. This program will be be easier to
use for practitioners without prior programming knowledge in R.
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