Kent Academic Repository

Borys, Andryj M. (2018) Synthesis and Properties of Main-Group Heterocyclic Radicals. Doctor of Philosophy (PhD) thesis, University of Kent,.

Downloaded from
https://kar.kent.ac.uk/69884/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version UNSPECIFIED

DOI for this version

Licence for this version UNSPECIFIED

Additional information

Versions of research works

Versions of Record

If this version is the version of record, it is the same as the published version available on the publisher's web site. Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record in KAR. If you believe that your, or a third party's rights have been compromised through this document please see our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository\#policies).

Synthesis and Properties of Main-Group Heterocyclic Radicals

Andryj M. Borys
School of Physical Sciences
Canterbury
University of Kent

A thesis submitted for the degree of Doctor of Philosophy
August 2018

Declaration

The research presented in this thesis was carried out by the author at the University of Kent between September 2015 and August 2018. I declare that the work presented in this thesis is entirely that of the author unless specified in the text. This work has not been previously submitted, in whole or in part, for any other academic degree. The copyright of this thesis rests with the author.

Publications

Work from this thesis, and carried out in the duration of this Ph.D. have been included in the following publications:

Donor-substituted phosphanes - surprisingly weak Lewis donors for phosphenium cation stabilisation

Ewan R. Clark, Andryj M. Borys and Kyle G. Pearce. Dalton Trans. 2016, 45, 16125-16129.

Adducts of Donor-Functionalized $\mathrm{Ar}_{3} \mathrm{P}$ with the Soft Lewis Acid I_{2} : Probing Simultaneous Lewis Acidity and Basicity at Internally Solvated P(III) Centers Andryj M. Borys and Ewan R. Clark. Inorg. Chem. 2017, 56 (8), 4622-4634.

Exploring the reactivity of donor-stabilised phosphenium cations: Lewis acid catalysed reduction of chlorophosphanes by silanes

Kyle G. Pearce, Andryj M. Borys, Ewan R. Clark and Helena J. Shepherd. Inorg. Chem. 2018, 57 (18), 11530-11536.

Synthesis and Electronic Properties of Persistent 1,2,4-Benzothiadiazinyl Radicals Andryj M. Borys, Antonio Alberola, Dana J. Eisler, Jeremy M. Rawson, Ewan R. Clark. 2018, In preparation.

Exploring Structural Diversity in Phosphorus-Amidine Heterocycles Andryj M. Borys and Ewan R. Clark. 2018, In preparation.

Acknowledgements

My first and foremost thanks go to my supervisor Ewan for accepting me for this Ph.D. and introducing me to the wonderful world of main-group chemistry. I have learnt a lot from him over the past three years and aspire to be as enthusiastic and passionate about chemistry as he is. I look forward to seeing the Clark group grow, and the crazy research ideas become a reality. I would also like to thank the various members of the Clark group, particularly Kyle and Asad. It was a pleasure to see their synthetic skills and passion for chemistry develop, and I am happy to see them pursue further research in the field. Special thanks must go to Ollie for being the lab DJ - slow cannula filtrations are much more bearable with Thy Art is Murder playing at full blast!

I have made many great friends within the department during my time in Canterbury and I will truly miss everyone in office 208 and labs 212/308/310, who have made this journey so much fun. Thanks are also due to all of the other postgraduate and undergraduate students who have come and gone over the years, and have made demonstrating such a blast. This also includes the technicians, Jackie, Dave and JJ in particular, who were the true heroes and comedians of the teaching labs.

Research would've been severely hampered if it weren't for Ian, who was always on hand to refill liquid nitrogen dewars and replace argon cylinders. I would also like to thank the many other staff in the department, especially Helena and Paul, for their patience and technical support. This also extends to Greg Wildgoose and his group at UEA for cyclic voltammetry training. I greatly appreciate the time that Emma and Aniello have taken to stop for a chat, offer advice and take interest in my research and future plans. That just leaves Jen, my unofficial mentor, who drove/kept me (in)sane over the past three years. I sure I did the same though, so we'll call it even!

Special thanks go to all of the \#RealTimeChem Twitter community for sharing great science and for sharing mine too. It has been wonderful to make so many friends across the world, and I am excited to meet them in the near future.

Finally, I would like to thank all of my family and friends for their continued support. I could not have done this without them.

Abbreviations

AFM	Antiferromagnetic
BBDTA	Benzo-bis-dithiazolyl
BDTA	Benzodithiazolyl
BSS	Broken Symmetry State
BTDA	Benzothiadiazinyl
CV	Cyclic Voltammetry
CW	Continuous Wave
DABCO	1,4-Diazabicyclo[2.2.2]octane
DCM	Dichloromethane
DDQ	2,3-Dichloro-5,6-dicyano-p-benzoquinone
DFT	Density Functional Theory
DMA	N, N-Dimethylaniline
DMAP	4- N, N-Dimethylaminopyridine
DMF	N, N-Dimethylformamide
DTA	Dithiazolyl
DTDA	Dithiadiazolyl
ECP	Effective Core Potential
EDG	Electron-Donating Group
EF	Edge-to-Face
EM	Electromagnetic
ENDOR	Electron Nuclear Double Resonance
EPR	Electron Paramagnetic Resonance
EWG	Electron-Withdrawing Group
FC	Field Cooled
FM	Ferromagnetic
HBA	Hydrogen Bond Acceptor
HBD	Hydrogen Bond Donor
HOMO	Highest Occupied Molecular Orbital
LUMO	Lowest Occupied Molecular Orbital
NBS	N-Bromo Succinimide
NHC	N-Heterocyclic Carbene
NMR	Nuclear Magnetic Resonance
OFF	Offset Face-to-Face
SCO	Spin Crossover

SCXRD	Single-Crystal X-Ray Diffraction
SOMO	Singly Occupied Molecular Orbital
SQUID	Superconducting Quantum Interference Device
TEMPO	$2,2,6,6$-Tetramethylpiperidin-1-yl-oxyl
THF	Tetrahydrofuran
TMEDA	$N, N, N^{\prime}, N^{\prime}$-Tetramethylethylenediamine
TMS	Trimethylsilyl
TS	Triplet State
UV	Ultraviolet
WCA	Weakly Coordinating Anion
ZFC	Zero Field Cooled

Definition of Units

a	hyperfine coupling constant
A	Ampere
A	Angstrom
B	applied external magnetic field vector
C	Coulomb
C	Curie constant
e	electron charge $=1.6021766208(98) \times 10^{-19} \mathrm{C}$
E	energy or potential
$E_{1 / 2}$	half cell potential
emu	electromagnetic unit
F	Faraday's constant $=96485.33289$ (59) $\mathrm{C} \mathrm{mol}^{-1}$
g	grams
g_{e}	free-electron g-factor
g_{N}	effective nuclear g-factor
h	Plancks constant $=6.626070040(81) \times 10^{-34} \mathrm{~J} \mathrm{~s}{ }^{-1}$
\bar{h}	reduced Plancks constant $=1.054571800(13) \times 10^{-34} \mathrm{~J} \mathrm{~s}^{-1}$
$H_{\text {ex }}$	Heisenberg Hamiltonian
Hz	Hertz
I	magnetic spin
I	spin quantum number
J	magnetic exchange energy
J	Joules
K	Kelvin
m	metre
m_{e}	electron mass $=9.10938356(11) \times 10^{-31} \mathrm{~kg}$
m_{I}	magnetic quantum number
mol	mole
m_{S}	electron spin angular momentum quantum number
Oe	Oersted
ppm	parts per million
R	universal gas constant $=8.3144598(48) \mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
\boldsymbol{S}	spin angular momentum
S	electron spin quantum number
s	seconds

T	temperature (K)
T	Tesla
T_{C}	Curie temperature (K)
T_{N}	Néel temperature (K)
U	Coulombic repulsion
ν	Frequency (Hz)
V	volts
δ	chemical shift (ppm)
θ	Weiss constant
μ_{B}	Bohr magneton $=9.274009994(57) \times 10^{-24} \mathrm{~J} \mathrm{~T}-1$
μ_{N}	nuclear magneton $=5.050783699(31) \times 10^{-27} \mathrm{~J}$ T-1
μ_{S}	magnetic dipole moment
χ_{m}	magnetic susceptibility
χ_{p}	paramagnetic susceptibility
${ }^{\circ} \mathrm{C}$	Celsius

Definition of Chemical Terms

Ar	aryl
Dipp	2,6-diisopropylphenyl
Et	ethyl
${ }^{i} \mathrm{Pr}$	isopropyl
m	meta
Me	methyl
Mes	2,4,6-trimethylphenyl
Mes*	2,4,6-tri-tert-butylphenyl
$\mathrm{NaBAr}{ }^{\mathrm{Cl}}$	sodium tetrakis-(3,5-dichlorophenyl)-borate
NaBAr ${ }^{\text {F }}$	sodium tetrakis-(3,5-bis-trifluoromethylphenyl)-borate
${ }^{n} \mathrm{Bu}$	n-butyl
o	ortho
OTf	trifluoromethanesulfonate aka triflate
p	para
Ph	phenyl
Pr	propyl
R	variable group
${ }^{t} \mathrm{Bu}$	tert-butyl
tolyl	methyl-phenyl
Tripp	2,4,6-triisopropylphenyl
xylyl	dimethyl-phenyl

Abstract

A family of substituted 1,2,4-benzothiadiazine 1-chlorides have been prepared by the treatment of N-arylamidines with neat SOCl_{2}. This route resulted in partial chlorination of the benzo-fused ring. In a number of cases, species with mixed degrees of chlorination at susceptible positions were characterised by NMR spectroscopy or single-crystal X-ray diffraction. The SIV $^{\text {IV }}$ chlorides show considerable variation in their solid-state structures, primarily in the degree of planarity, twisting of the pendant aryl-ring and orientation of fused-ring substituents. The 1,2,4-benzothiadiazines 1 -chlorides undergo facile anion metathesis with GaCl_{3}, whilst treatment with $\mathrm{NaBAr}^{\mathrm{Cl}}$ afforded the neutral $\mathrm{S}^{\text {III }}$ radical.

Cyclic voltammetry studies on the 1,2,4-benzothiadiazines 1 -chlorides reveal the presence of a radical monomer-dimer equilibria in solution. These equilibria were qualitatively assessed via variable concentration studies, whilst the reversibility of the $1 / 0$ and $0 / 1^{+}$redox couples was probed via variable scan rate studies. The $E_{1 / 2}$ values for the two redox couples gave poor correlation with both the calculated SOMO energies of the radical and the LUMO energies of the S^{IV} chloride from DFT (UB3LYP/6-31g) calculations. The range of $E_{1 / 2}$ values however was small indicating that the substituents about the benzo-fused and pendant aryl-ring have minimal influence on the electronic structure of the radicals. This was supported by EPR spectroscopy measurements, which showed only minor variation in the g-values and hyperfine coupling constants within the radicals. The neutral SIII radicals can be prepared by one electron reduction of the $\mathrm{S}^{\text {IV }}$ chlorides with $\mathrm{Ph}_{3} \mathrm{P}$ under mild conditions. The three $1,2,4$-benzothiadiazinyl radicals characterised by SCXRD were shown to dimerise in the solid-state, but all showed different modes of association between the heterocyclic rings. Broken-symmetry calculations (UB3LYP/6-311g(d,p)) confirmed that this dimerisation leads to spinpairing and diamagnetism within the radicals.

The synthetic routes optimised for the 1,2,4-benzothiadiazine 1-chlorides do not directly transfer to the isoelectronic fused-ring phosphorus-nitrogen heterocycles. Slow and careful development of the reaction conditions allowed the 1,2,4-benzophosphadiazines to be prepared under mild and simple conditions, through the introduction of an electron-donating and para-directing dimethylamido group. Attempts to transform these species into suitable radical precursors were met with limited success.

The reactions of N-arylamidines with halophosphines was found to be highly sensitive to both the reaction conditions and the substituents. A library of novel compounds has been exposed and explored, and where possible have been characterised by

multinuclear NMR spectroscopy and SCXRD. The structural complexity within these systems was supported by DFT calculations. Research was extended to the N, N^{\prime} diarylureas which highlighted that a number of factors influenced whether fused-ring or non-fused ring heterocycles were formed. In the case of electron-rich N, N^{\prime}-diarylureas, isomerism between the two systems was observed.

A series of ortho-functionalised $\mathrm{Ar}_{3} \mathrm{PI}_{2}$ adducts have been prepared to investigate the effects of internal solvation on the donor strength of triaryl-phosphanes. The enhancement of donor strength for oxygen substituents was shown to occur by conjugation of the lone pairs through the aromatic system, and via internal solvation for the pendant nitrogen donors. This afforded the first neutral six-coordinate PIII species acting as a simultaneous Lewis acid and Lewis base. Nevertheless, the increased steric congestion about the phosphorus centre was shown to significantly oppose the increase in donor strength for these phosphanes. Crystallographic interrogation of the corresponding iodophosphonium salts shows that the cationic complexes experience a greater influence of the steric bulk than their neutral precursors. The steric and electronic contributions to bonding have been analysed through computational studies to determine the factors governing the basicity of donor-functionalised phosphanes.

Table of Contents

Chapter 1 - Introduction 1
1.1 - Introduction to Radicals 2
1.2 - Introduction to Organic Materials 3
1.2.1 - Crystal Engineering 3
1.2.2 - Organic Magnets 3
1.3 - Introduction to Magnetism 4
1.3.1 - Molecular Bistability 7
1.4 - Introduction to Conductivity 7
1.4.1 - Conductivity in Organic Radicals 8
1.5 - Main-Group Radicals 9
1.5.1 - Nitrogen Radicals 9
1.5.2 - Nitrogen-Oxygen Radicals 10
1.5.3 - Sulfur-Nitrogen Radicals 11
1.5.4 - Selenium-Nitrogen Radicals 13
1.5.5 - Phosphorus-Centred Radicals 14
1.5.6 - Targeted Radicals 16
1.6 - Characterisation of Radicals 16
1.6.1 - Electron Paramagnetic Resonance Spectroscopy 17
1.6.1.1 - Background Theory 17
1.6.1.2 - The EPR Spectrum 20
1.6.2 - Electrochemical Studies 22
1.6.2.1 - Cyclic Voltammetry 22
1.7 - Conclusions 24
1.8 - References 26
Chapter 2-1,2,4-Benzothiadiazine 1-Chlorides 33
2.1 - Introduction to 1,2,4-Benzothiadiazines 34
2.2 - Introduction to 1,2,4-Benzothiadiazine 1-Chlorides 35
2.2.1 - Prior Synthesis of 1,2,4-Benzothiadiazines 1-Chlorides 36
2.2.1.1 - Route 1 - SCl_{2} 36
2.2.1.2 - Route $2-\mathrm{S}_{2} \mathrm{Cl}_{2}$ 37
2.2.1.3 - Route 3 - SOCl_{2} 37
2.3 - Synthesis of New Compounds 38
2.3.1 - Synthesis of Substituted N-Arylamidines 38
2.3.2 - Synthesis of Substituted 1,2,4-Benzothiadiazines 1-Chlorides 39
2.4 - Structural Studies of 1,2,4-Benzothiadiazine 1-Chlorides 43
2.4.1 - Crystal Structure of 2a 45
2.4.2 - Crystal Structure of 2b 45
2.4.3 - Crystal Structure of 2c 46
2.4.4 - Crystal Structure of $\mathbf{2 d} \mathbf{d} \boldsymbol{\alpha}$ 46
2.4.5 - Crystal Structure of $\mathbf{2 f}$ 47
2.4.6 - Crystal Structure of $\mathbf{2 g}$ 48
2.4.7 - Crystal Structure of $\mathbf{2 h}$ 49
2.4.8 - Crystal Structure of $[\mathbf{2 j} . \mathbf{H}]\left[\mathbf{H C l}_{\mathbf{2}}\right]$ 49
2.4.9 - Crystal Structure of $\mathbf{2 k}$ 50
2.4.10 - Crystal Structure of 21 51
2.4.11 - Crystal Structure of $2 \mathbf{s}$ 51
2.4.12 - Crystal Structure of $\mathbf{2 t}$ 52
2.4.13 - Conformational Polymorphism 52
2.5 - Transformations of 1,2,4-Benzothiadiazine 1-Chlorides 53
2.5.1 - Anion Metathesis 53
2.5.2 - Hydrolysis 55
2.6 - S-Aryl 1,2,4-Benzothiadiazines 56
2.6.1 - Structural Studies of S-Aryl 1,2,4-Benzothiadiazines 57
2.6.1.1 - Crystal Structure of $\mathbf{6 m}$ 57
2.6.1.2 - Crystal Structural of $\mathbf{6 n}$ 58
2.6.2-N-Methylation 58
2.7 - Conclusions 59
2.8 - Experimental 61
2.8.1 - Synthesis of Amidines 61
2.8.2 - Synthesis of 1,2,4-Benzothiadiazine 1-Chlorides 65
2.8.3 - Synthesis of SIV Cations 68
2.8.4 - Synthesis of 1,2,4-Benzothiadiazine 1-Oxides 68
2.8.5 - Synthesis of S-Aryl 1,2,4-Benzothiadiazines 68
2.9 - References 70
Chapter 3-1,2,4-Benzothiadiazinyl Radicals 73
3.1 - Introduction 74
3.2 - 1,2,4-Benzothiadiazinyl Radicals 74
3.2.1 - Radical Generation via Oxidation 75
3.2.2 - Radical Generation via Reduction 75
3.2.3 - Radical Generation via Comproportionation 76
3.3 - Electrochemical Studies 76
3.3.1 - Cyclic Voltammetry Results 77
3.3.2 - Computational Studies of the Redox Process 82
3.4 - Synthesis and Isolation of 1,2,4-Benzothiadiazinyl Radicals 83
3.5 - Structural Studies of 1,2,4-Benzothiadiazinyl Radicals 84
3.5.1 - Crystal Structure of 3a 85
3.5.2 - Crystal Structure of 3c 86
3.5.3 - Crystal Structure of $\mathbf{3 e}$ 88
3.5.4 - Comparison of Solid-State Structures 89
3.6 - Electron Paramagnetic Resonance 91
3.6.1 - EPR Results 92
3.6.2 - Computational Studies 98
3.7 - Magnetic Studies 99
3.7.1 - SQUID Results 99
3.7.2 - Magnetic Exchange Interactions 104
3.8 - Conclusions 108
3.9 - Future Work 109
3.10 - Experimental 110
3.10.1 - Synthesis of 1,2,4-Benzothiadiazinyl Radicals 110
3.10.2 - Computational Methods 111
3.11 - References 112
Chapter 4-1,2,4-Benzophosphadiazines 115
4.1 - Introduction to Fused-Ring Phosphorus-Nitrogen Heterocycles 116
4.1.1 - An Overview of 1,2,4-Benzophosphadiazines 116
4.2 - Attempted Syntheses of 1,2,4-Benzophosphadiazines 118
4.2.1 - Initial Studies with Pv Sources 118
4.2.2 - Initial Studies with PIII Sources 120
4.3 - N, N-Substituted Amidines 121
4.3.1 - Synthesis of N, N-Substituted Amidines 121
4.3.2 - Reactions with PhPCl_{2} 121
4.4 - Electron-Rich Aromatics 123
4.4.1 - Initial Studies with Electron-Rich N, N^{\prime}-Diarylureas 124
4.4.2 - Electron-Rich N-Arylamidines 126
4.4.2.1 - Synthesis of Electron-Rich N-Arylamidines 126
4.4.2.2 - Synthesis of 1,2,4-Benzophosphadiazines 126
4.4.2.3 - Crystal Structure of 19r.HCl 128
4.5 - Electron-Neutral Aromatics 130
4.6 - Functionalisation of 1,2,4-Benzophosphadiazines 132
4.6.1 - Deprotonation 132
4.6.2 - Oxidation 134
4.6.3 - N-Functionalisation 136
4.6.3.1 - N-Methylation 136
4.6.3.2 - N-Phosphination 138
4.6.4 - One Electron Oxidation 139
4.7 - Conclusions 140
4.8 - Future Work 140
4.9 - Experimental 142
4.9.1 - Synthesis of N-Arylamidines 142
4.9.2 - Synthesis of N, N^{\prime} - and N, N^{\prime}-Substituted Arylamidines 142
4.9.3 - Synthesis of N^{\prime}-Phosphanyl- N-Arylamidines 144
4.9.4 - Synthesis of N, N^{\prime}-Diarylureas 145
4.9.5 - Synthesis of 1,2,4-Benzophosphadiazines 146
4.10 - References 149
Chapter 5 - Structural Complexity in Phosphorus-Nitrogen Heterocycles 151
5.1 - A Brief Introduction to Phosphorus-Nitrogen Heterocycles 152
5.1.1 - Cyclophosph(III)azines 152
5.1.2 - Cyclophosph(V)azanes 154
5.1.3 - Urea-Ligated Phosphorus Heterocycles 154
5.1.4 - Phosphorus-Amidinate Chemistry 156
5.2 - Reactions of N-Arylamidines with PhPCl_{2} 158
5.2.1 - N-Phenylbenzamidine 158
5.2.2 - N-3-Dimethylaminophenyl-benzamidine 160
5.2.3 - N-3-Methoxyphenyl-benzamidine 164
5.2.4-N-4-Chlorophenyl-benzamidine 167
5.2.5-N-2,6-Diisopropylphenyl-benzamidine 168
5.2.6 - N-tert-Butyl-benzamidine 168
5.2.7 - The Influence of Base 169
5.3 - Reactions of N-Arylamidines with $\mathrm{N}^{2} \mathrm{Pr}_{2} \mathrm{PCl}_{2}$ 173
5.4 - Reactions of N-Arylamidines with Phosphorus Trihalides 174
5.4.1 - Phosphorus Trichloride 174
5.4.2 - Phosphorus Tribromide 175
5.4.3 - Phosphorus Triiodide 183
5.5 - Transformations of Phosphorus-Amidine Heterocycles 184
5.5.1 - Thermal Rearrangement 184
5.5.2 - Methylation 187
5.5.3 - One Electron Oxidation 189
5.6 - Reactions of N, N^{\prime}-Diarylureas with Chlorophosphines 190
5.6.1 - Electron-Poor N, N^{\prime}-Diarylureas 190
5.6.2 - Poorly Electrophilic Chlorophosphines 192
5.6.3 - Base Strength 193
5.6.4 - Phosphorus Trichloride 195
5.7 - Conclusions 197
5.8 - Future Work 198
5.9 - Experimental 199
5.9.1 - Synthesis of N-Arylamidines 199
5.9.2 - Synthesis of Phosphorus-Amidine Heterocycles 200
5.9.3 - Synthesis of N, N^{\prime}-Diarylureas 202
5.9.4 - Synthesis of Phosphorus-Urea Heterocycles 202
5.10 - References 205
Chapter 6 - Donor-Functionalised Diiodophosphoranes 208
6.1 - Introduction 209
6.1.1 - A Brief Introduction to Main-Group Lewis Acids 209
6.1.2 - Introduction to Diiodophosphoranes 209
6.2 - Target Molecules 211
6.3 - Structural Studies of Donor-Functionalised Diiodophosphoranes 212
6.3.1 - Crystal Structure of 34a 213
6.3.2 - Crystal Structure of 34b 215
6.3.3 - Crystal Structure of 34c 216
6.3.4 - Crystal Structure of 34d 218
6.3.5 - Crystal Structure of 34e 219
6.4 - Synthesis and Structural Studies of Iodophosphonium Salts 221
6.4.1 - Initial Synthesis 221
6.4.2 - Structural Studies 223
6.4.2.1 - Crystal Structure of [35a]BAr ${ }^{\mathbf{F}}$ 224
6.4.2.2 - Crystal Structure of [35b]BAr ${ }^{\text {F }}$ 224
6.4.2.3 - Crystal Structure of [35d]BAr ${ }^{\text {F }}$ 225
6.4.2.4 - Crystal Structure of $[\mathbf{3 5 g}] \mathbf{B A r}^{\mathbf{F}}$ 226
6.4.2.5 - Crystal Structure of $[\mathbf{3 5 d}] \mathbf{I}_{3}$ 227
6.4.2.6 - Crystal Structure of $[\mathbf{3 5 e}]_{\mathbf{I}}$ 227
6.4.2.7 - Polymorphism in $\mathrm{Ar}_{3} \mathrm{PI}_{4}$ Systems 228
6.5 - Computational Studies 229
6.5.1 - Bonding and Lewis Basicity of Functionalised Phosphanes 229
6.5.2 - Diiodophosphoranes 232
6.5.3 - Iodophosphonium Salts 233
6.5.4 - Summary of Computational Results 234
6.6 - Conclusions 235
6.7 - Experimental 236
6.7.1 - Synthesis of Aryl-Lithiums 236
6.7.2 - Synthesis of Donor-Functionalised Phosphanes 236
6.7.3 - Synthesis of Diiodophosphoranes 238
6.7.4 - Synthesis of Iodophosphonium Salts 239
6.8 - References 243
Supplementary Chapter 1 - Crystal Structures of \boldsymbol{N}-Arylamidines 247
S1.1-A Very Brief Introduction to Amidines 248
S1.2 - Monosubstituted Amidines 248
S1.3-Structural Studies of Monosubstituted N-Arylamidines 249
S1.3.1 - Crystal Structure of 1a 252
S1.3.2 - Crystal Structure of 1b 253
S1.3.3 - Crystal Structure of 1c 254
S1.3.4 - Crystal Structure of $1 \mathbf{d}$ 255
S1.3.5 - Crystal Structure of $\mathbf{1 e}$ 256
S1.3.6 - Crystal Structure of $\mathbf{1 f}$ 257
S1.3.7 - Crystal Structure of $\mathbf{1 g}$ 258
S1.3.8 - Crystal Structure of 1h 259
S1.3.9 - Crystal Structure of 1i 260
S1.3.10 - Crystal Structure of $\mathbf{1 j}$ 261
S1.3.11 - Crystal Structure of $\mathbf{1 k}$ 262
S1.3.12 - Crystal Structure of 11 263
S1.3.13 - Crystal Structure of 1m 265
S1.3.14 - Crystal Structure of 1n 266
S1.3.15 - Crystal Structure of 10 267
S1.3.16 - Crystal Structure of 1p 268
S1.3.17 - Crystal Structure of 1r 269
S1.3.18 - Crystal Structure of 1t 270
S1.3.19 - Crystal Structure of $\mathbf{1 u}$ 271
S1.3.20 - Crystal Structure of 1'a 272
S1.4-N, N^{\prime} - and N, N-Substituted Amidines 273
S1.4.1 - Structural Studies 273
S1.4.2 - Crystal Structure of 11a 274
S1.4.3 - Crystal Structure of 12a 275
S1.4.4 - Crystal Structure of 13a 277
S1.5 - Conclusions 278
S1.6 - References 280
Appendix 1 - General Experimental 281
A1.1 - Starting Materials 282
A1.2 - Drying of Solvents 282
A1.3 - Air and Moisture Sensitive Techniques 282
A1.4 - NMR Spectroscopy 282
A1.5 - Single-Crystal X-Ray Diffraction 283
A1.6 - Cyclic Voltammetry 283
A1.7-EPR Spectroscopy 283
A1.8 - SQUID Magnetometry 283
A1.9 - Elemental Analysis 284
A1.10 - References 284
Appendix 2 - Computational Details 285
A2.1-1,2,4-Benzothiadiazinyl Radicals 286
A2.1.1 - Electronic and EPR Studies 286
A2.1.1.1 - Example Input Files 286
A2.1.2 - Magnetic Exchange Interactions 287
A2.1.2.1 - Method and Example Input Files 287
A2.2 - Phosphorus-Nitrogen Heterocycles 290
A2.2.1 - Geometry Optimisations 290
A2.2.1.1 - Example Input Files 291
A2.2.2 - NICS Calculations 292
A2.2.2.1 - Example Input Files 293
A2.3 - Donor-Functionalised Diiodophosphoranes 294
A2.3.1 - Geometry Optimisations 294
A2.3.1.1 - Example Input Files 294
A2.4 - Cartesian Coordinates for Optimised Geometries 295
A2.5 - References 364
Appendix 3 - Crystallographic Data Tables 365
Appendix 4 - Miscellaneous Supplementary Data 392
A4.1 - Cyclic Voltammograms 393
A4.2 - Buried Volume Maps 394

Chapter 1

Introduction

"Put that cookie down! NOW!"
Jingle All The Way (1996)

1.1 - Introduction to Radicals

A radical is defined as a molecular entity possessing an unpaired electron. ${ }^{1}$ Compounds with open-shell configurations are readily found for the metallic elements, where the core-like nature of the d or f orbitals stabilises them and hinders reaction. In contrast, open-shell organic compounds are typically highly reactive and unstable species. The notion that radicals can therefore be stable or persistent is stills news to much of the chemical community, despite the fact that some species were synthesised over 150 years ago. ${ }^{2}$ It is now well established however that certain kinds of molecular architectures can provide a versatile template to support stability in open-shell organic compounds. ${ }^{3}$

A stable radical is pragmatically defined as one that can be isolated and handled as a pure compound, whilst persistent radicals are only sufficiently long-lived to be observed by spectroscopic methods. ${ }^{4}$ Kinetic stability may be achieved by steric protection through incorporation of bulky substituents around the radical centre, ${ }^{5}$ whilst thermodynamic stability is achieved by electronic means, by lowering the energy of the singly occupied molecular orbital (SOMO), and inducing delocalisation of the unpaired electron. Many stable radicals employ a combination of these factors, and are typically heteroatom based since these are effective carriers of spin density. ${ }^{3}$

Earlier interest in stable radicals arose from their status as "novelty acts", and explored the fundamental structure and bonding within these open-shell compounds. Gomberg's landmark discovery of the triphenylmethyl radical A in 1900^{6} marked the discovery of organic free radical chemistry (Scheme 1.1.1). These radicals are best described as persistent since they exist in equilibrium with the dimeric species \mathbf{B} and are not isolable. The tendency to dimerise however can be attenuated through substituent effects; para-nitro substitution on all three aryl rings renders these species monomeric in the solid-state, ${ }^{7}$ whilst the perchlorinated analogues are essentially chemically inert. ${ }^{8}$

Scheme 1.1.1: Synthesis and dimerisation of the triphenylmethyl radical.

Although significant research is still focused on the synthesis of novel stable radicals, ${ }^{9}$ many areas of chemistry take advantage of the properties afforded by the combination of an open-shell configuration and stability. Radicals have been employed as spin labels ${ }^{10}$ and spin traps ${ }^{11,12}$ to obtain structural, dynamic, and reactivity information on short-lived radical species using electron paramagnetic resonance (EPR) spectroscopy. There have also been widespread efforts into the development of new materials exhibiting properties such as magnetism and conductivity, for which stable radicals are promising candidates by virtue of containing unpaired electrons. ${ }^{13}$ Interest in organic materials stems from their versatility and ease of modification, as well as their unique properties which are not obtainable in conventional metal-based materials.

1.2 - Introduction to Organic Materials

Organic materials, such as synthetic polymers and fibres, play an important role in everyday life. More recently, interest has focused on organic materials which possess unusual properties including magnetism ${ }^{14}$ and conductivity. ${ }^{15}$ These properties are more commonly associated with metals and their oxides, and originate from the solidstate structure of the materials. Tailored organic syntheses should therefore provide an opportunity to control the solid-state structure, and hence the properties of organic materials. ${ }^{16}$

1.2.1 - Crystal Engineering

Crystal engineering is defined as "the understanding of intermolecular interactions in the context of crystal packing and the utilisation of such understanding in the design of new solids with desired physical and chemical properties." ${ }^{17}$ The spatial arrangement of molecules in the solid-state is a result of many delicate non-covalent interactions of varying strength and directionality. ${ }^{18}$ Although many of these intermolecular interactions, termed supramolecular synthons, ${ }^{19}$ are well understood and established, the subtle balance between them is often difficult to control which means that the prediction of the crystal structure and design of tailored materials remains challenging.

1.2.2 - Organic Magnets

Magnetic materials have extraordinary technological importance with ubiquitous uses and applications in daily life. The majority of these materials however are based on metals ions and their oxides, and are often fabricated via energy intensive metallurgical methods as well as utilising elements in limited supply. ${ }^{20}$ A great deal of research has therefore focused on the development of organic materials exhibiting magnetic properties.

Organic magnets may offer several advantages over typical metal-based materials, including solubility and flexibility, which may allow for alternative processing strategies. ${ }^{21}$ In addition, unique properties may be coupled to develop multifunctional "smart materials" in which the magnetism is modified by the action of external stimuli such as heat, light, or pressure. ${ }^{22}$ The opportunity to tailor these compounds at the molecular level through standard synthetic techniques ultimately offers the potential to design custom magnets for any given application.

Control of the solid-state structure of stable radicals should, in principle, give rise to paramagnetic materials in which magnetic communication between localised radical centres may lead to magnetic ordering at some finite temperature. Many radicals however have a tendency to dimerise in the solid-state, rendering the system diamagnetic. Significant efforts have therefore been directed at attempting to overcome this dimerisation, either by structural modification or co-crystallisation. ${ }^{23}$

One major disadvantage of organic magnets, however, is that they have inherently larger molecular weights per magnetic moment compared to a metal-based material; most organic radicals are constructed with a single unpaired electron ($S=1 / 2$) with additional organic structural support to stabilise the radical. This typically results in significant separation of the spins and weaker exchange energies, ultimately leading to lower magnetic ordering temperatures. The major challenge in the field of organic magnetism is therefore to construct materials with higher magnetic ordering temperatures.

1.3 - Introduction to Magnetism

The phenomenon of magnetism arises from the presence of unpaired electrons and is therefore associated with d and f block metals and radicals (i.e. $S \neq 0$). Electrons possess a property called spin characterised by an intrinsic angular momentum which, from a classical perspective, generates a magnetic dipole moment. The net magnetic moment of a sample is therefore comprised of all the spins with the sample. Paired electrons give rise to a small magnetic moment opposing the direction of an applied magnetic field. This behaviour, known as diamagnetism, leads to a repulsive interaction and is exhibited by all substances. ${ }^{24}$ This is a minor effect however and is often negligible compared to the other forms of magnetism associated with open-shell compounds. ${ }^{25}$

Paramagnetism is the simplest form of magnetic behaviour and is observed in compounds with unpaired electrons. In the absence of an external magnetic field, the
non-interacting spins are randomly orientated due to thermal motion (Figure 1.3.1). In the presence of an applied magnetic field, the spins align in the direction of the applied field, resulting in an attractive interaction and increase in magnetisation. For Curietype paramagnetism, which is observed in systems with localised unpaired electrons, the magnetisation has inverse temperature dependence. In contrast, Pauli paramagnetism, which is attributable to the itinerant electrons that promote metallic conductivity, is independent of temperature. Both Pauli and Curie-type paramagnetism are independent of the applied magnetic field strength.

Randomly aligned magnetic dipoles
= zero magnetic moment

Absence of applied magnetic field

Aligned magnetic dipoles
= positive magnetic moment

Figure 1.3.1: A simple model for paramagnetism.
Short-range interactions between the magnetic dipole moments of the unpaired spins can lead to magnetic ordering that is dependent on the strength of the applied magnetic field. Interactions which favour a parallel alignment of spins are described as ferromagnetic, whilst interactions favouring an anti-parallel alignment of spins are referred to as antiferromagnetic (Figure 1.3.2). If these interactions propagate throughout the solid-state structure then bulk (i.e. long-range) magnetic order can arise. The interactions are associated with an energy-gain resulting from occupying a lower energy state, and vary significantly in strength from system to system, and ultimately dictates the temperature at which magnetic ordering is observed.

Figure 1.3.2: Types of magnetic ordering.

Ferromagnetism is a form of cooperative magnetism arising from concerted long-range order resulting from the parallel alignment of spins. The temperature at which the bulk magnetism of a solid switches from paramagnetic to ferromagnetic is known as the Curie temperature, T_{C}. The spontaneous ordering of the magnetic dipoles below T_{C} leads to a sudden and large increase in the magnetic susceptibility. In soft ferromagnetic materials, the magnetisation becomes zero when the applied magnetic field is removed. In contrast, hard ferromagnets display hysteresis and retain their magnetisation when the applied magnetic field is removed. This remanent magnetism is a familiar property associated with permanent magnets. Ferromagnetic materials may be demagnetised by heating above its Curie temperature (e.g. 1043 K for Fe). ${ }^{26}$

Antiferromagnetism occurs when long-range magnetic order results from the antiparallel alignment of spins. The temperature at which the bulk magnetism of a solid switches from paramagnetic to antiferromagnetic is known as the Néel temperature, T_{N}. The spontaneous ordering of the magnetic dipoles leads to a net zero magnetic moment and sudden decrease in the magnetic susceptibility below T_{N}. At temperatures above T_{N}, the antiparallel alignment of adjacent magnetic dipoles is disrupted by thermal fluctuations.

Ferrimagnetism is observed in systems containing non-equivalent sub-lattices where the antiparallel alignment of spins between sub-lattices is of a different magnitude - i.e. the antiferromagnetic coupling is the dominant interaction. This gives rise to a net magnetic moment that is smaller in magnitude than the potential moment caused by the parallel alignment of all spins in the two sub-lattices. Canted antiferromagnetism is observed for systems with non-perfect co-parallel alignment of adjacent spins, and leads to a non-zero magnetic moment at absolute zero. This is commonly associated with low symmetry materials and arises through a competitive combination of isotropic and antisymmetric exchange interactions. ${ }^{27}$

The nature of the interactions between spins is largely dominated by the solid-state structure of the compound. For molecular systems, the magnetic communication between spins on neighbouring molecules can arise either by direct overlap of the singly occupied molecular orbitals (SOMO), known as direct exchange, or through magnetically innocent atoms or functional groups, known as superexchange. The magnitude of the exchange interaction is therefore dependant on the distance between adjacent spins and the degree of orbital overlap. In both mechanisms, the orientation of the SOMOs will determine whether the interactions are ferro- or antiferromagnetic.

1.3.1 - Molecular Bistability

Molecular materials whose physical properties can be altered by external stimuli such as heat, light, or pressure, may find applications in the development of electronic switching and memory storage devices. 16,28 Molecular bistability, defined as "the ability of a molecular system to be observed in two different electronic states in a certain range of external perturbation", ${ }^{29}$ is most commonly associated with transition metalbased spin-crossover materials. ${ }^{30}$ The spin-crossover (SCO) phenomenon, first reported in 1931, ${ }^{31,32}$ is observed in octahedral $3 d^{n}$ metal centres ($n=4-7$) which can exist in either a high-spin or low-spin state depending on the relative ligand field strength and pairing energies. The low-spin state is enthalpically favoured whilst the high-spin state is entropically favoured, and SCO occurs when a perturbation causes a switch in the two spin-states. ${ }^{30}$

The properties of organic radicals have also been shown to be perturbed by the influence of external stimuli ${ }^{22}$ and therefore show promise for the construction of molecular materials. Several sulfur-nitrogen radicals have been shown to exist as π dimers $(S=0)$ at low temperatures and undergo a phase transition to monomeric π stacked radicals ($S=1 / 2$) on heating. ${ }^{33-37}$ In some cases, the temperature of the dimer-to-monomer and monomer-to-dimer transitions differ leading to hysteresis ${ }^{36-39}$ and a well-defined region of magnetic bistability wherein the two states can exist. ${ }^{42}$

1.4 - Introduction to Conductivity

Electronic conductivity arises due to the flow of electrons through a solid. The central aspect that determines the electrical properties is therefore the distribution and mobility of electrons. Electrons are assumed to occupy bands formed through the overlap of crystal orbitals that are delocalised throughout the solid. The lowest energy orbital is therefore fully bonding whilst the highest energy orbital is fully antibonding. ${ }^{43}$ The band arising from the occupied orbitals is known as the valence band whist the conduction band is populated by empty orbitals. The energy distribution of the orbitals is known as the density of states, and the highest available electron energy level at absolute zero is known as the Fermi level. ${ }^{44}$

In a metallic conductor (i - Figure 1.4.1), the crystal orbitals form a continuous band with a non-zero density of states at the Fermi level (i.e. the highest occupied molecular orbital). In contrast, an insulator has a full valence band and empty conduction band (v), with a large band gap such that there are no thermally accessible states to allow for the conduction. Semiconductors are materials with a small band gap (ii), allowing
electrons to be promoted into the conduction band when the temperature is raised. This promotion of electrons results in positively charged holes in the valence band. The conductivity of semiconductors can be modulated through the introduction of charge carriers, known as dopants, moving the Fermi level to a position with a higher density of states. The introduction of dopants carrying excess electrons is known as n-type doping; these additional electrons occupy otherwise empty states in the conduction band (iii). The introduction of dopants that withdraw electrons from the filled valence band is known as p-type doping; this generates holes which allow the remaining electrons to move (iv).

Figure 1.4.1: Band structures in conductors, semiconductors and insulators.

1.4.1 - Conductivity in Organic Radicals

The idea that neutral radicals could serve as building blocks in the construction of organic conductors was first proposed in 1975.45 One of the consequences of a having a regular band formed from half-filled orbitals (i.e. the SOMOs) is that the band must be half filled, resulting in a non-zero density of states at the Fermi level, akin to a metallic conductor, with the unpaired electron acting as a carrier of charge.

Despite the simplistic model, isolation of crystalline radicals which exhibit metallic conductivity has proven to be challenging, and a number of factors must be addressed. ${ }^{16,46}$ The primary issue faced with organic radicals is their tendency to form S
$=0$ dimers in the solid-state. ${ }^{3,13}$ For many planar radicals, this dimerisation leads to arrays of distorted 1D π-stacks of alternating short and long contacts between molecules, known as Peierls distorted stacks. ${ }^{44}$ This leads to an opening of the band gap at the Fermi level as the valence band becomes full, leading to an insulating state. When the dimerisation is overcome however, typically by steric protection, there is an intrinsically large Coulombic barrier to intermolecular charge transfer, U (i.e. the energy required for the transfer of an electron from one molecule to another). Additionally, suppression of the dimerisation inherently leads to a weakening of intermolecular interactions, resulting in poor SOMO overlap and a low electronic bandwidth, W. If the bandwidth is greater than the Coulomb repulsion $(W>U$) then a metallic state prevails, whilst an insulating state exists for systems where the unpaired electron is localised such that $W<U .{ }^{47}$ Delocalisation of the unpaired electron and incorporation of heavy heteroatoms with more diffuse valence orbitals, has been shown to dramatically increase the bandwidth and lower the Coulombic barrier, resulting in improved conductivity in neutral radicals. ${ }^{48,49}$

1.5 - Main-Group Radicals

The chemistry of stable radicals is dominated by heterocyclic open-shell compounds, and these are primarily synthesised for the development of organic materials exhibiting magnetic or conducting properties. The magnetic properties of carboncentred radicals has received considerably less attention; phenalenyl and related radicals typically form diamagnetic π-dimers, ${ }^{50}$ whilst the incorporation of bulky substituents to provide steric protection in triarylmethyl-type radicals prevents SOMO overlap and magnetic communication between radical centres. The latter factor can however be overcome by synthesising polyradicals in which the intramolecular magnetic ordering of the unpaired electrons occur through conjugated π-bonds. ${ }^{51}$ The following sections will highlight a few major classes of main-group (i.e. non-carbon centred) radicals, and focus on heterocyclic systems whose magnetic properties have been studied.

1.5.1 - Nitrogen Radicals

Many simple aminyl radicals [$\mathrm{R}_{2} \mathrm{~N} \cdot$] are short-lived species, and rapidly dimerise to form hydrazines or undergo other radical degradation pathways. ${ }^{52}$ The incorporation of aminyl radicals into cyclic, π-conjugated frameworks to give phenazinyls such as \mathbf{C} and \mathbf{D} leads to significantly enhanced stability (Figure 1.5.1.1).53,54 Most stable phenazinyls are monomeric in solution at room temperature but form π-stacked dimers in the solid state.

c

D

Figure 1.5.1.1: Phenazinyl radicals.
Hydrazyl radicals [$\mathrm{R}_{2} \mathrm{NNR}^{\prime} \cdot$] are generally persistent and short-lived species, although the DPPH radical \mathbf{E} (Figure 1.5.1.2) is well established as a stable radical and a common EPR reference compound. ${ }^{55}$ Constraining the hydrazyl moiety into cyclic structures optimises the π orbital overlap between the heteroatoms, leading to stable radicals such as the $1,2,4$-benzotriazinyl radicals \mathbf{F}. Many derivatives of this family of radical, also known as Blatter radicals, ${ }^{56}$ have exhibited relatively strong antiferromagnetic or ferromagnetic interactions in the solid state depending on the choice of substituents. ${ }^{57-62}$ Verzadyl radicals \mathbf{G} are another class of resonancedelocalised hydrazyls that are incredibly stable to both air and water without the need for sterically bulk substituents. ${ }^{63,64}$ This versatile class of radicals have been used as chelating radical ligands in the metal-radical65 approach to form complexes and extended chains with interesting magnetic behaviour. ${ }^{66-68}$

E

F

G

Figure 1.5.1.2: Hydrazyl, 1,2,4-benzotriazinyl and verdazyl radicals.

1.5.2 - Nitrogen-Oxygen Radicals

Nitroxides [$\left.\mathrm{R}_{2} \mathrm{NO} \cdot\right]$ are perhaps the most well-known family of stable radicals, and are the subject of many books and reviews. $55,69,70$ The stability of nitroxide radicals is attributed to a dipolar resonance contribution, with the unpaired electron occupying the $\mathrm{N}-\mathrm{O} \pi^{*}$ orbital. Due to this remarkable stability, nitroxides such as the TEMPO ${ }^{71}$ radical \mathbf{H} (Figure 1.5.2.1) have found use as mild, catalytic oxidising agents, ${ }^{72}$ and in applications such as spin-labelling. ${ }^{73}$ The α-nitronyl nitroxide radical \mathbf{I}, discovered in 1991, was the first organic compound to exhibit bulk ferromagnetism ($T_{C}=0.65 \mathrm{~K}$). ${ }^{74}$ The extremely low magnetic ordering temperatures of nitroxides are a consequence of
the long intermolecular contacts between radical centres stemming from the addition of bulky substituents, which disfavour the $\mathrm{N}-\mathrm{O} \cdots \mathrm{O}-\mathrm{N}$ interaction.

H

I

Figure 1.5.2.1: Nitroxide radicals.

1.5.3 - Sulfur-Nitrogen Radicals

Demarçay reported the first sulfur-nitrogen radical J (Figure 1.5.3.1) in 1880,² some 20 years prior to Gomberg's triphenylmethyl radical. ${ }^{6}$ Substitution about the heterocyclic ring with isoelectronic C-R groups reveals many potential isomers of which the 1,2,3,5dithiadiazolyl (DTDA) \mathbf{K} and 1,3,2-dithiazolyl (DTA) \mathbf{L} radicals have been extensively studied due to their facile synthesis and stability. ${ }^{13}$

J

K

L

Figure 1.5.3.1: Five-membered sulfur-nitrogen radicals.

DTDA radicals were amongst the first major class of heterocyclic sulfur-nitrogen radicals to be investigated. ${ }^{75}$ The radicals typically exist in a monomer-dimer equilibrium in solution, and many early derivatives adopt π-dimeric structures in the solid state. The choice of substituent heavily influences the dimer configuration but has little effect on the electronic properties of the radical, since the SOMO has a nodal plane at the heterocyclic carbon. Several monomeric DTDA radicals have been prepared by the introduction of fluorinated phenyl substituents. ${ }^{76-79}$ Subtle molecular modifications can have a significant consequence on the solid-state structure, and hence the magnetic properties. For example, the β-phase of M1 (Figure 1.5.3.2) exhibits bulk magnetic ordering as a spin-canted antiferromagnet below $36 \mathrm{~K}, 77$ whilst M2 orders as a bulk ferromagnet below $1.3 \mathrm{~K} .{ }^{79}$ The application of pressure has been found to dramatically increase the magnetic ordering temperatures for both compounds. ${ }^{80}$

M1

M2

Figure 1.5.3.2: Fluorinated DTDA radicals.
Many DTA radicals are monomeric in the solid-state, with several examples co-existing in both the monomeric and dimeric form. ${ }^{3}$ Only one neutral derivative, the benzo-fused 1,3,2-dithiazolyl (BDTA) ${ }^{81} \mathbf{N}$ (Figure 1.5.3.3), has been found to undergo bulk magnetic ordering and exhibits a phase transition to an antiferromagnetic state below 11 K . The benzo-bis-1,3,2-dithiazolyl diradicals (BBDTA) are also known but form spin-paired dimers in the solid-state. ${ }^{82}$ Radical-cation salts of BBDTA have been investigated in some detail. 3,13 The tetrachlorogallate salt $\mathbf{0 1}$ orders as a ferromagnet at $6.7 \mathrm{~K},{ }^{83}$ whilst other non-solvated crystalline phases have been reported as diamagnetic $\pi^{*}-\pi^{*}$ dimers. ${ }^{84}$ Replacement of the anion with the paramagnetic tetrachloroferrate results in anion \cdots cation magnetic exchange interactions, and leads to a ferrimagnetic phase below 44 K. ${ }^{85}$

N

01

02

Figure 1.5.3.3: Benzo-fused DTA radicals.
Sulfur-nitrogen radicals which are not derived from compounds isoelectronic to \mathbf{J}, namely thioaminyl radicals [RSNR'], have also been extensively studied but require bulky substituents (e.g. P - Figure 1.5.3.4) to be stable and isolable. ${ }^{86,87}$ Cyclic and fused-ring thioaminyls such as \mathbf{Q} and \mathbf{R} are generally only persistent at low temperatures, although some perhalogenated derivatives are sufficiently stable to be isolated. ${ }^{88-90}$

P

Q

R

Figure 1.5.3.4: Thioaminyl radicals.
The 1,2,4-benzothiadiazinyl (BTDA) radicals of type \mathbf{R} are a potentially versatile class of compound as they allow facile alteration of the substituents about the fused-ring and
of the pendant R group. Nevertheless, these have received considerably less attention than the DTDA and DTA based radicals, and very few examples have been reported. ${ }^{90,91}$ More recent work by Oakley into the related, resonance delocalised bisbenzothiadiazinyl radicals \mathbf{S} (Figure 1.5.3.5) has shown these species to be remarkably stable and monomeric in the solid-state. ${ }^{22,93}$ The choice of substituent was found to dramatically alter the magnetic properties, with $\mathbf{S} 1$ exhibiting paramagnetic behaviour whilst susceptibility measurements of $\mathbf{S 2}$ indicated a strongly antiferromagnetically coupled system. ${ }^{93}$ Subtle substituents affects have also been observed in the hybrid BTDA-DTA radicals T. 94

S1: $R=M e$
S2: $\mathrm{R}=\mathrm{Et}$

S

T1: $\mathrm{R}=\mathrm{Ph}$
T2: $\mathrm{R}=$ 2-thienyl

Figure 1.5.3.4: Resonance stabilised BTDA radicals.

1.5.4 - Selenium-Nitrogen Radicals

The replacement of sulfur with selenium into heterocyclic radicals affords the heavier congeners which often exhibit enhanced conducting and magnetic properties due to increased SOMO overlap. ${ }^{49,95,96}$ A family of isostructural radicals \mathbf{U} (Figure 1.5.4.1) based on 1,2,3-dithiazolyls has been successfully isolated and characterised, and allowed for a direct comparison of the effect of selenium incorporation on the physical properties. ${ }^{96}$ Like many selanazyl radicals, these species were found to form $\mathrm{Se}-\mathrm{Se} \sigma$ bonded dimers in the solid state, ${ }^{97-100}$ however careful choice of substituents afforded the desired monomeric species. The incorporation of heavy heteroatoms was shown to enhance the magnetic properties; U4a and U3a behave as spin-canted antiferromagnets with ordering temperatures of 27 K and 18 K respectively, whilst U4b and U2b exhibit bulk ferromagnetic order at 17.0 K and 12.8 K respectively. ${ }^{101,102}$
a: $X=H$
b: $X=C l$

U1: $E_{1}=E_{2}=S$
U2: $E_{1}=S, E_{2}=S e$
U3: $E_{1}=S e, E_{1}=S$
U4: $E_{1}=E_{2}=S e$

U

Figure 1.5.4.1: Selenium-nitrogen radicals derived from 1,2,3-dithiazolyls.

1.5.5 - Phosphorus-Centred Radicals

The involvement of phosphorus-centred radicals in many organic reactions has been recognised and investigated for many years, ${ }^{103-105}$ and was directly observed via EPR spectroscopy in 1969. ${ }^{106}$ The phosphinyl species $\left[\mathrm{R}_{2} \mathrm{P} \cdot\right]\left(\mathrm{R}=\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right.$ or $\left.\mathrm{CH}\left(\mathrm{SiMe}_{3}\right)_{2}\right)$ were amongst the first class of persistent phosphorus-centred radicals to be studied, and were generated by photolysis of the parent $\mathrm{R}_{2} \mathrm{PCl}$ species in the presence of an electron-rich olefin. ${ }^{107}$ Many other persistent sterically encumbered phosphinyl radicals (\mathbf{V} - Figure 1.5.5.1) can also been prepared by reduction of the corresponding halophosphine with an alkali metal. ${ }^{108}$ These radicals dimerise in the solid-state to give constrained diphosphines $\left[\mathrm{R}_{2} \mathrm{P}-\mathrm{PR}_{2}\right]$, but dissociate into monomeric radicals in solution and in the gas-phase, which has led to their description as "Jack-in-the-box" compounds. ${ }^{109,110}$ The P-P bond dissociation process has been thoroughly examined for a number of species including cyclic and acyclic tetra-amino-diphosphines. ${ }^{111,112}$

	$\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}$
	$\mathrm{CH}\left(\mathrm{SiMe}_{3}\right)_{2}$
	$\mathrm{R}=\mathrm{N}^{\prime} \mathrm{Pr}_{2}$
	Mes*
V	$\mathrm{O}^{\text {t }} \mathrm{Bu}$

Figure 1.5.5.1: Persistent phosphinyl radicals.
There has been a growing interest in the study of persistent and stable phosphorus radicals since this time, and several neutral two-coordinate species have been isolated. Nitridovanadium metalloligands ${ }^{113}$ V1 (Figure 1.5.5.2) are able to stabilise phosphinyl radicals by delocalisation of the spin density, as are N-heterocyclic carbene (NHC) derivatives ${ }^{114,115} \mathbf{V} 2$, although to a lower extent (i.e. more spin density resides on phosphorus). The bulky cyclic species V3 represents the first neutral dialkylphosphinyl radical that is monomeric in the solid-state. ${ }^{116}$

Figure 1.5.5.2: Monomeric, stable phosphinyl radicals.

Isolated cases of other classes of stable phosphorus radicals have also been reported. The 1,3-diphosphacyclobutenyl radical ${ }^{117}$ V4 (Figure 1.5.5.3) is monomeric in the solidstate, unlike analogues bearing less bulky substituents, 118 but EPR and DFT studies revealed that the majority of the SOMO is localised on the two carbon atoms in the $\mathrm{P}_{2} \mathrm{C}_{2}$
ring. Several other examples of phosphorus-containing radicals with inverse spin densities have also been recently reported. ${ }^{119,120}$ The electrochemical and chemical reduction of triarylphosphine oxides to give the corresponding radical anions [$\left.\mathrm{Ar}_{3} \mathrm{PO} \cdot\right]$] dates back to the $1950 \mathrm{~s}^{121-123}$ and were studied as analogues to the ketyl radical anion. ${ }^{124}$ These species were found to be short-lived, and early studies were solely based on EPR spectroscopy. Recently, however, a stable PV^{V} radical anion \mathbf{W} was isolated by one electron reduction of a bridged triarylphosphine oxide decorated with bulky fluorenyl moieties. Two-coordinate PIII radical anions have also been reported by the alkali metal reduction of phosphaalkenes. ${ }^{125-127}$

V4

w

$\mathrm{M}^{+}=\begin{gathered}\mathrm{K}^{+}[18-\text { crown- } 6] \\ \text { or } \\ \mathrm{K}^{+}[2.2 .2-\text { cryptand }]\end{gathered}$

Figure 1.5.5.3: Neutral and anionic phosphorus radicals. The redox properties of triarylphosphines can be modulated by the choice of substituents, and can be reversibly oxidised to give stable radical cations when extremely bulky aryl groups are employed. ${ }^{128,129}$ The use of weakly coordinating anions (WCA) ${ }^{130,131}$ has recently allowed $\left[\mathrm{Ar}_{3} \mathrm{P} \cdot\right]^{+}$species ($\mathbf{X 1}$ - Figure 1.5.5.4) to be isolated in the solid-state, ${ }^{132}$ and this approach has been extended to the tetraaryldiphosphines, X2. ${ }^{133}$ Cyclophosphadiazines and cyclotetraphosphines bearing bulky and electronrich substituents are also readily oxidised to afford the corresponding radical cations. ${ }^{134}$ Whilst EPR and DFT studies show that the spin density is delocalised across the $\mathrm{P}_{2} \mathrm{~N}_{2}$ core in $\mathbf{X 3}$, the all phosphorus four-membered ring system $\mathbf{X 4}$ shows inverse spin density distribution with the SOMO delocalised onto the four exocyclic nitrogen atoms with little contribution on phosphorus.

Figure 1.5.5.4: Phosphorus radical cations.
The synthesis of stable phosphorus-centred radicals remains a significant chemical challenge. Kinetic stabilisation and shielding of the radical centre through the
introduction of bulky substituents has been the primary approach to obtaining monomeric neutral radicals. Association of the radicals can also be prevented by preparing radical ions in which electrostatic repulsion of like charges disfavours close contact. These radical ions however require weakly-coordinating counterions to be sufficiently stable and isolable. ${ }^{135}$ Thermodynamic stabilisation, through π delocalisation of the unpaired electron and lowering of the SOMO energy, has been successful for sulfur-nitrogen and selenium-nitrogen radicals, but still affords dimeric species for the valence-isoelectronic phosphorus radicals. ${ }^{112,136}$ For these reasons, no magnetic properties have been reported for any phosphorus-centred radical to date.

1.5.6 - Targeted Radicals

The research presented in thesis focuses on the synthesis of 1,2,4-benzothiadiazinyl radicals (\mathbf{R} - Figure 1.5.6.1), and aims to investigate the effects of varying the substituents about the fused-ring and pendant R-group on the structural, electronic, and magnetic properties of these radicals. The isoelectronic phosphorus-nitrogen heterocyclic radicals \mathbf{Y}, which are also heavier congeners of the well-established Blatter-type radicals, are promising candidates for the construction of new magnetic organic materials; the development of new synthetic routes to these species will be explored.

R

Y

Figure 1.5.6.1: Main-group heterocyclic radicals targeted in this thesis.

1.6 - Characterisation of Radicals

A range of routine and advanced techniques can be used to characterise and investigate the properties radicals. NMR spectroscopy, however, is not typically viable for radicals since the paramagnetic nature of the sample leads to line broadening effects and concomitant loss of resolution in the majority of cases. Electron paramagnetic resonance (EPR) spectroscopy is the preferred method of studying radicals (vide infra) whilst advanced EPR spectroscopic measurements such as ENDOR (electron nuclear double resonance) spectroscopy can be used to indirectly measure the NMR spectrum through perturbations of the electron spin. ${ }^{137}$

The bulk magnetic properties of radicals are measured via SQUID magnetometry and supported by computational calculations such as density functional theory (DFT).

Elucidation of the solid-state structure, typically via single-crystal X-ray diffraction (SCXRD), is necessary for the physical properties to be understood. UV-Vis spectroscopy is also commonly used to gain information about HOMO-LUMO transitions. Finally, electrochemical methods such as cyclic voltammetry (CV) are routinely used to probe the redox properties of radicals (vide infra).

1.6.1 - Electron Paramagnetic Resonance Spectroscopy

Electron paramagnetic resonance (EPR) spectroscopy is a powerful technique for the study of systems containing unpaired electrons, and is well suited for the characterisation of organic radicals. The fundamental basis of EPR spectroscopy involves the observation of electron spin transitions in the presence of an external magnetic field. Like all spectroscopic techniques, excitation between two states or energy levels is induced by the absorption of electromagnetic (EM) radiation. In EPR spectroscopy, the magnetic field component of EM radiation interacts with permanent magnetic dipole moments arising from the unpaired electrons in the sample. These dipoles are aligned in the presence of an applied external magnetic field meaning that when EM radiation of the correct frequency is available, resonance absorption will occur. In continuous wave (CW) EPR spectroscopy, the sample is exposed to EM radiation of fixed frequency, usually in the microwave region (GHz), and the external magnetic field is swept.

1.6.1.1 - Background Theory

Electrons are negatively charged particles possessing an intrinsic property called spin, characterised by the spin angular momentum \boldsymbol{S}. This property is a vector with magnitude quantised in units of \bar{h} :

$$
\begin{equation*}
|\boldsymbol{S}|=\sqrt{S(S+1)} \tag{1}
\end{equation*}
$$

where S is the electron spin quantum number. There are $2 S+1$ projections allowed onto an arbitrarily chosen z axis, which coincides with the direction of the applied magnetic field vector \boldsymbol{B}. The allowed orientations of \boldsymbol{S} along the z axis are consequently given by the m_{S} values of the spin; m_{S} is the electron spin angular momentum quantum number with $2 S+1$ integral steps between $+S$ and $-S$. An electron with $S=1 / 2$ therefore has two possible spin states denoted as 'spin-up' (α spin, m_{S} value $=+1 / 2$) and 'spindown' (β spin, m_{S} value $=-1 / 2$). In the absence of a magnetic field, the two electron spin states are degenerate, and the probability of the electron being in either spin state is equal.

It is convenient to consider the electron as a particle of mass m_{e} and charge e rotating about an axis with spin angular momentum S which produces a circulating current. This generates a magnetic dipole moment μ_{S} related to the gyromagnetic ratio γ by:

$$
\begin{equation*}
\mu_{S}=-\gamma \boldsymbol{S} \bar{h}=-g_{e} \frac{e \bar{h}}{2 m_{e}} \boldsymbol{S} \tag{2}
\end{equation*}
$$

where g_{e} is the free-electron g-factor $(\approx 2.0023) .{ }^{138}$ Equation 2 is more commonly expressed in terms of the Bohr magneton ($\mu_{B}=e h / 2 m_{e}$). The z-component of the magnetic moment μ_{z} along the magnetic field \boldsymbol{B} direction can be related to the m_{S} electron spin states, resulting in two electron magnetic dipole moments given by:

$$
\begin{equation*}
\mu_{z}=-g_{e} \mu_{B} m_{s} \tag{3}
\end{equation*}
$$

In the absence of a magnetic field the electron spin states are degenerate. This degeneracy is removed in the presence of an external magnetic field. The energy of the electron magnetic moment is directly proportional to the magnitude of the applied magnetic field such that:

$$
\begin{equation*}
E=-g_{e} \mu_{B} m_{s} B \tag{4}
\end{equation*}
$$

The two components of the magnetic dipole moment along the z-direction give two states of differing energy, referred to as the electron Zeeman levels (Figure 1.6.1.1.1). The lowest energy β spin state corresponds to the electron magnetic moment aligned parallel to the applied magnetic field, and the high energy α spin state arises due to the anti-parallel alignment.

Applied Magnetic Field, B
Figure 1.6.1.1.1: Electron Zeeman levels for an unpaired electron in an external magnetic field of increasing magnitude B.

In EPR spectroscopy, a sample containing unpaired electrons is irradiated with electromagnetic radiation $h v$ in the presence of an external magnetic field. When the energy difference between the two energy levels matches the supplied energy, absorption occurs which leads to an EPR resonance. The selection rule in EPR spectroscopy is $\Delta m_{S}= \pm 1$ so that the resulting resonance condition is:

$$
\begin{equation*}
\Delta E=h v=g_{e} \mu_{B} B \tag{5}
\end{equation*}
$$

A key parameter of interest is the g-value, since this determines the resonant field position and is influenced by the chemical environment of the electron. For organic radicals, the g-value is usually close to free spin ($g_{e} \approx 2.0023$) whilst deviations are observed for systems with large orbital angular momenta contributions such as maingroup radicals and transition metal ions.

The presence of nuclei with magnetic spin I adds further magnetic interactions to the electron spin systems, which give multi-line EPR spectra that contain a wealth of information. The interactions of the nuclear spin with \boldsymbol{B} results in nuclear Zeeman splitting, and the resulting interaction between the electron and nuclear magnetic moments is referred to as the hyperfine interaction.

In analogy with μ_{s} (Equation 2), nuclei that possess a non-zero spin quantum number \boldsymbol{I} will also have an associated magnetic moment μ_{I}. The magnitude of the nuclear spin moments are also quantised in units of \bar{h} and given as:

$$
\begin{equation*}
|\boldsymbol{I}|=\sqrt{I(I+1)} \tag{6}
\end{equation*}
$$

As a result, the vector I can assume $2 I+1$ discrete orientations which are given by the magnetic quantum number m_{I}. In analogy to the electron spin, the z-component of the nuclear magnetic dipole moment is related to the m_{I} nuclear spin states by:

$$
\begin{equation*}
\mu_{z}=-g_{N} \mu_{N} m_{I} \tag{7}
\end{equation*}
$$

where g_{N} is the effective nuclear g-factor and μ_{N} is the nuclear magneton. In the absence of an applied magnetic field, the permitted z-components of nuclei with $I \geq 1 / 2$ will have the same energy; the degeneracy of the $2 I+1$ nuclear Zeeman energy levels is removed in the presence of an applied external magnetic field.

The interaction between the electron and nuclear magnetic dipole moments gives rise to a hyperfine interaction. This leads to a perturbation of the nuclear Zeeman energy levels towards higher or lower energy, the extent of which is described by the hyperfine
coupling constant a (i.e. the magnitude of the magnetic interaction between the electron and nuclear spin). In CW EPR spectroscopy, the transitions from one state to another which occur with the highest probabilities are the ones corresponding to $\Delta m_{S} \pm$ 1 and $\Delta m_{I} \pm 0$ - i.e. the electron spin state must change whilst the nuclear spin state remains the same. Different energy quanta are required to induce these transitions, which results in two resonance lines in the EPR spectrum. The magnitude of the separation between these two lines is given by the hyperfine coupling constant, a. There are two contributions to the hyperfine interaction that arise from the regions of space inside and outside the nuclear volume; the isotropic and anisotropic interactions.

The isotropic, or Fermi contact interaction, is a direct measure of the interaction between the electron and nuclear magnetic dipole moments as a result of the finite probability that the unpaired electron will be located at the nucleus. This arises exclusively for s orbitals and the magnitude of the experimentally observed isotropic hyperfine coupling constant can thus be related to the electron spin density located at the nucleus.

The second contribution to the hyperfine interaction arises from classical dipole-dipole interactions. The energy of this anisotropic hyperfine interaction is dependent on the relative orientation and distance between the electron and nuclear magnetic dipole moments. The terms of this relationship must be averaged over the entire probability of the spin distribution such that the energy is zero for s orbitals, or for rapidly tumbling molecules where the anisotropy with respect to the external field is motionally averaged - i.e. small organic radicals in low viscosity solvents. Spectra arising from anisotropic interactions are observed in the solid-state and for frozen solutions.

1.6.1.2 - The EPR Spectrum

An EPR spectrum is a plot of microwave absorption as a function of applied magnetic field intensity. In the CW experiment, the resonance absorption signal is plotted as the first derivative rather than in absorption mode. The EPR spectrum for an arbitrary $S=$ $1 / 2$ radical is shown in Figure 1.6.1.2.1.

Figure 1.6.1.2.1: CW EPR spectrum for an arbitrary $S=1 / 2$ radical.
The EPR spectra of real systems are typically more complex compared to the simple spectrum shown in in Figure 1.6.1.2.1. Such multi-line EPR spectra contain a wealth of information that make it possible to not only identify and unambiguously assign a structure to a particular radical, but also obtain further geometrical details about the spin system including the distribution of electron density in both organic and inorganic systems containing unpaired electrons. The EPR spectra for a $S=1 / 2$ radical coupling to two non-equivalent $I=1$ nuclei is shown in Figure 1.6.1.2.2.

Figure 1.6.1.2.2: CW EPR spectrum for a $S=1 / 2$ radical coupling to two non-equivalent $I=1$ nuclei.

The position of the EPR signal is determined by the g-value. This is usually close to that of a free electron ($g_{e} \approx 2.0023$) for organic radicals and provides limited structural information. The separation between the lines is determined by the hyperfine coupling constant, a, whilst the number of lines in the hyperfine splitting pattern is dictated by the nuclear spin, I. The linewidth is influenced by a number of factors including dynamic effects and unresolved hyperfine interactions. The differing line intensities depends primarily on the multiplicity of the hyperfine lines caused by interactions with nuclei of $I \geq 1 / 2$, or the anisotropy of the paramagnetic systems.

1.6.2 - Electrochemical Studies

Electrochemistry is a powerful tool to probe reactions involving the transfer of electrons, and is therefore routinely used in the characterisation and study of radicals. Knowledge of the reduction and oxidation potentials required to access radicals, and the window within which the radical is stable, provides good guidelines for the choice of appropriate reducing or oxidising agent. The potentials may also be related to ionisation energies of the system, which are in turn useful for estimating the Coulombic repulsion, U, for the design of conducting materials. In addition, electrochemistry data are useful when considering the formation of charge-transfer salts or the stability of metal complexes. The potentials of these redox processes may be probed by various techniques of which cyclic voltammetry is the most common for organic radicals and the one employed in this thesis.

1.6.2.1 - Cyclic Voltammetry

In a standard cyclic voltammetry experiment, a circuit is prepared by placing two electrodes into a solution containing a small amount of the analyte and a supporting electrolyte. A varying potential is placed across the cathode and anode within the solution and the current that flows is recorded. The supporting electrolyte serves to carry the current between the electrodes when a voltage is applied. When the potential across the electrodes corresponds to a redox process, there is an increase in current associated with the flow of electrons. The analyte will undergo reduction (accept an electron from the electrode) when the potential energy of the electrons in the electrode is higher than the lowest unoccupied molecular orbital (LUMO) of the analyte. Conversely, the analyte will undergo oxidation (lose an electron to the electrode) when the potential energy of the highest occupied molecular orbital (HOMO) is higher than the potential energy of the electrons in the electrode. The plot of measured current against the applied potential is called a cyclic voltammogram (CV); the CV trace for the reversible ferrocene/ferrocenium ($\mathrm{Fc} / \mathrm{Fc}^{+}$) couple is shown in Figure 1.6.2.1.1.

Figure 1.6.2.1.1: Cyclic voltammogram for the reversible $\mathrm{Fc} / \mathrm{Fc}^{+}$redox couple.

The Nernst equation relates the potential of an electrochemical cell E to the standard potential of a species E^{0} and the relative activities of the oxidised (Ox) and reduced (Red) analyte in the system at equilibrium. The activities are typically replaced with concentrations, which are more experimentally accessible, such that for a one electron process:

$$
\begin{equation*}
E=E^{0}+\frac{R T}{F} \ln \frac{(\mathrm{Ox})}{(\text { Red })} \tag{8}
\end{equation*}
$$

where R is the universal gas constant, T is the temperature, and F is Faraday's constant. The Nernst equation thus provides a powerful way to predict how a system will respond to a change of concentration of the species in solution, or a change in the electrode potential.

The cathodic and anodic peaks are separated due to the diffusion of the analyte to and from the electrode. For this reason, it is imperative that the experiment is performed under diffusion controlled conditions and without stirring. If the electron transfer process is chemically and electrochemically reversible, the difference between the peak potentials $\left(\Delta E_{p}\right)$ is 57 mV at standard temperature and pressure. ${ }^{139}$ Chemical reversibility refers to the stability of the analyte upon reduction and whether it can be subsequently be reoxidised. Electrochemical reversibility describes the electron transfer kinetics between the analyte and the electrode; these processes are fast and have a low barrier to electron transfer. In contrast, electrochemical irreversibility refers to slow electron transfer processes and require more negative (or positive)
applied potentials to observe subsequent reduction (or oxidation), which results in peak-to-peak separations larger than 57 mV .

Asymmetric voltammograms are often observed when an electron transfer is coupled to a chemically irreversible process, $E_{r} C_{i}$. If the irreversible chemical reaction is slow compared to the electron transfer, then the symmetry will be preserved and the voltammogram appears reversible. For a rapid irreversible chemical reaction however, the ratio of cathodic and anodic peak currents will differ significantly until just a single peak is observed. For sufficiently fast scan rates, the electrochemical feature will regain reversibility as the electron transfer process out-competes the irreversible chemical reaction. Variable scan-rate studies can therefore be used to extract information about the kinetics and mechanisms involved in $E_{r} C_{i}$ reactions.

While the current flows between a working and counter electrode in a cyclic voltammetry experiment, a third reference electrode is used to accurately measure the applied potential relative to a stable and well-defined redox process. In non-aqueous solvents, reference electrodes are typically based on the $\mathrm{Ag} / \mathrm{Ag}^{+}$couple. This potential however can vary significantly between experiments due to a number of factors, and it is therefore recommended to instead reference potentials to an internal reference compound with a known E^{0}, such as ferrocene. ${ }^{140,141}$

The solvent and supporting electrolyte employed must be stable towards reduction and oxidation within the potential range of the experiment, as well as being chemically inert with the analyte. It is crucial that the solvent and electrolyte are free of impurities and rigorously dried whilst performing the experiments under an inert atmosphere, to prevent the occurrence of additional and unwanted redox processes. Further details and practical guides on cyclic voltammetry are given by Dempsey ${ }^{142}$ and Graham. ${ }^{143}$

1.7 - Conclusions

Organic radicals are promising candidates for the development of new molecular materials exhibiting interesting properties such as magnetism and conductivity. This field is dominated by sulfur-nitrogen radicals, primarily those derived from DTDA and DTA radicals, whilst comparatively little research has been published on other systems such as the 1,2,4-benzothiadiazinyl (BTDA) radicals. Prior work in the Clark group has explored the synthesis and chemistry of BTDA radicals and their precursors, ${ }^{144}$ and this thesis aims to expand on this earlier work to further investigate the magnetic and electrochemical behaviour of this versatile class of radicals. The synthesis of stable phosphorus-centred radicals remains a significant challenge and no data to date have
been published on the magnetic properties of neutral phosphorus radicals. The latter half of this thesis will therefore focus on the development of new synthetic routes to novel phosphorus-nitrogen heterocyclic radicals, which are isoelectronic to the 1,2,4benzothiadiazinyl radicals and are heavier congeners of the well-established 1,2,4benzotriazinyl radicals.

1.8 - References

1 P. Muller, Int. Union Pure Appl. Chem., 1994, 66, 1077-1184.
2 E. Demarçay, Compt. Rend., 1880, 91, 854.
3 R. G. Hicks, Org. Biomol. Chem., 2007, 5, 1321.
4 D. Griller and K. U. Ingold, Acc. Chem. Res., 1976, 9, 13-19.
5 P. P. Power, Chem. Rev., 2003, 103, 789-809.
6 M. Gomberg, J. Am. Chem. Soc., 1902, 22, 597-628.
$7 \quad$ P. Anderson and B. Klewe, Acta Chem. Scand., 1967, 2599-2607.
8 M. Ballester, J. Riera, J. Castafier, C. Badía and J. M. Monsó, J. Am. Chem. Soc., 1971, 93, 2215-2225.

9 R. Ghadwal, D. Rottschäfer, B. Neumann, H. G. Stammler, M. Van Gastel and D. Andrada, Angew. Chem. Int. Ed., 2018, 57, 4765-4768.

10 L. J. Berliner, Spin Labelling: Theory and Applications, Academic Press, New York, 1979.

11 D. Rehorek, Chem. Soc. Rev., 1991, 20, 341-353.
12 M. J. Davies, Methods, 2016, 109, 21-30.
13 J. M. Rawson, A. Alberola and A. Whalley, J. Mater. Chem., 2006, 16, 2560.
14 J. S. Miller and A. J. Epstein, Angew. Chem. Int. Ed., 1994, 33, 385-415.
15 J. Wosnitza, Curr. Opin. Solid State Mater. Sci., 2001, 5, 131-141.
16 I. Ratera and J. Veciana, Chem. Soc. Rev., 2012, 41, 303-349.
17 G. R. Desiraju, Crystal Engineering, Elsevier, Amsterdam, 1989.
18 C. B. Aakeröy, Acta Cryst. Sect. B, 1997, 53, 569-586.
19 G. R. Desiraju, Angew. Chem. Int. Ed., 1995, 34, 2311-2327.
20 J. S. Miller, Mater. Today, 2014, 17, 224-235.
21 J. A. Crayston, J. N. Devine and J. C. Walton, Tetrahedron, 2000, 56, 7829-7857.
22 R. G. Hicks, Nat. Chem., 2011, 3, 189-191.
23 D. A. Haynes, CrystEngComm, 2011, 13, 4793-4805.
24 A. F. Orchard, Magnetochemistry, Oxford Chemistry Primers, Oxford, 2003.
25 H. D. Young, University Physics, Addison Wesley, 7th edn., 1992.
26 H. E. Hall and J. R. Hook, Solid State Physics, John Wiley \& Sons, Chichester, 2nd edn., 1991.
R. Winpenny, Molecular Cluster Magnets, World Scientific, 2011.
O. Sato, Nat. Chem., 2016, 8, 644-656.
O. Kahn, Science, 1998, 279, 44-48.

30 M. A. Halcrow, Spin-Crossover Materials: Properties and Applications, John Wiley \& Sons, 1st edn., 2013.
L. Cambi and A. Cagnasso, Atti. Accad. Naz. Lincei., 1931, 13, 809.
L. Cambi, L. Szego and A. Cagnasso, Atti. Accad. Naz. Lincei., 1932, 15, 266.
A. Alberola, D. J. Eisler, L. Harvey and J. M. Rawson, CrystEngComm, 2011, 13, 1794-1796.
A. Alberola, O. P. Clements, R. J. Collis, L. Cubbitt, C. M. Grant, R. J. Less, R. T. Oakley, J. M. Rawson, R. W. Reed and C. M. Robertson, Cryst. Growth Des., 2008, 2-8.
A. Alberola, R. J. Collis, S. M. Humphrey, R. J. Less and J. M. Rawson, Inorg. Chem., 2006, 45, 1903-1905.
G. D. McManus, J. M. Rawson, N. Feeder, J. van Duijn, E. J. L. McInnes, J. J. Novoa, R. Burriel, F. Palacio and P. Oliete, J. Mater. Chem., 2001, 11, 1992-2003.
T. M. Barclay, A. W. Cordes, N. A. George, R. C. Haddon, R. T. Oakley, T. M. Palstra, G. W. Patenaude, R. W. Reed, F. Richardson and H. Zhang, Chem. Commun., 1997, 873-874.
J. L. Brusso, O. P. Clements, R. C. Haddon, M. E. Itkis, A. A. Leitch, R. T. Oakley, R. W. Reed and J. F. Richardson, J. Am. Chem. Soc., 2004, 126, 8256-8265.
J. L. Brusso, O. P. Clements, R. C. Haddon, M. E. Itkis, A. A. Leitch, R. T. Oakley, R. W. Reed and J. F. Richardson, J. Am. Chem. Soc., 2004, 126, 14692-14693.
W. Fujita, Science, 1999, 286, 261-262.
T. M. Barclay, A. W. Cordes, N. A. George, R. C. Haddon, M. E. Itkis, M. S. Mashuta, R. T. Oakley, G. W. Patenaude, R. W. Reed, J. F. Richardson and H. Zhang, J. Am. Chem. Soc., 1998, 120, 352-360.
D. Bates, C. M. Robertson, A. A. Leitch, P. A. Dube and R. T. Oakley, J. Am. Chem. Soc., 2018, 140, 3846-3849.
P. Atkins and J. De Paula, Physical Chemistry, Oxford University Press, 9th edn., 2010.
R. Hoffmann, Angew. Chem. Int. Ed., 1987, 26, 846-878. R. C. Haddon, Nature, 1975, 256, 394-396.
R. G. Hicks, Stable Radicals: Fundamentals and Applied Aspects of Odd-Electron Compounds, John Wiley \& Sons, Wiltshire, 2010.
N. F. Mott, Metal-insulator Transitions, Taylor \& Francis, London, 1990.
R. T. Oakley, Can. J. Chem., 1993, 71, 1775-1784.
L. Beer, J. L. Brusso, R. C. Haddon, M. E. Itkis, R. T. Oakley, R. W. Reed, J. F. Richardson, R. A. Secco and X. Yu, Chem. Commun., 2005, 5745-5747.
Y. Takano, T. Taniguchi, H. Isobe, T. Kubo, Y. Morita, K. Yamamoto, K. Nakasuji, T. Takui and K. Yamaguchi, J. Am. Chem. Soc., 2002, 124, 11122-11130.
N. M. Shishlov, Russ. Chem. Rev., 2007, 75, 863-884.
W. C. Danen and F. A. Neugebauer, Angew. Chem. Int. Ed., 1975, 14, 783-789.
T. Barth, B. Kanellakopulos, C. Krieger and F. A. Neugebauer, J. Chem. Soc., Chem. Comтип., 1993, 50, 1626-1628.
G. E. Jeromin, Tetrahedron Lett., 2001, 42, 1863-1865.
A. R. Forrester, J. M. Hay and R. H. Thomson, Organic Chemistry of Stable Free Radicals, Academic Press, London, 1968.
H. M. Blatter and H. Lukaszewski, Tetrahedron Lett., 1968, 9, 2701-2705.
P. Kaszyński, C. P. Constantinides and V. G. Young, Angew. Chem. Int. Ed., 2016, 55, 11149-11152.
C. P. Constantinides, A. A. Berezin, M. Manoli, G. M. Leitus, M. Bendikov, J. M. Rawson and P. A. Koutentis, New J. Chem., 2014, 38, 949-954.
C. P. Constantinides, A. A. Berezin, M. Manoli, G. M. Leitus, G. A. Zissimou, M. Bendikov, J. M. Rawson and P. A. Koutentis, Chem. Eur. J., 2014, 20, 5388-5396.
Y. Miura and N. Yoshioka, Chem. Phys. Lett., 2015, 626, 11-14.
C. P. Constantinides, P. A. Koutentis, H. Krassos, J. M. Rawson and A. J. Tasiopoulos, J. Org. Chem., 2011, 76, 2798-2806.
C. P. Constantinides, P. A. Koutentis and J. M. Rawson, Chem. Eur. J., 2012, 18, 15433-15438.
R. Kuhn and H. Trischmann, Angew. Chem. Int. Ed., 1963, 2, 155.
F. A. Neugebauer, H. Fischer and R. Siegel, Chem. Ber., 1988, 121, 815-822.
A. Caneschi, D. Gatteschi, R. Sessoli and P. Rey, Acc. Chem. Res., 1989, 22, 392398.
B. D. Koivisto and R. G. Hicks, Coord. Chem. Rev., 2005, 249, 2612-2630.
J. B. Gilroy, B. D. Koivisto, R. McDonald, M. J. Ferguson and R. G. Hicks, J. Mater. Chem., 2006, 16, 2618-2624.
F. Pointillart, C. Train, P. Herson, J. Marrot and M. Verdaguer, New J. Chem., 2007, 31, 1001-1006.
E. G. Rozanstev, Free Nitroxyl Radicals, Plenum, New York, 1970.
S. Nakatsuji and H. Anzai, J. Mater. Chem., 1997, 7, 2161-2174.
O. L. Lebedev and S. N. Kazarnovskii, Zhur. Obs. Khim., 1960, 30, 1631-1635.
S. S. Kim and H. C. Jung, Synthesis, 2003, 2135-2137.
E. F. Ullman, J. H. Osiecki, D. G. B. Boocock and R. Darcy, J. Am. Chem. Soc., 1972, 94, 7049-7059.
M. Tamura, Y. Nakazawa, D. Shiomi, K. Nozawa, Y. Hosokoshi, M. Ishikawa, M. Takahashi and M. Kinoshita, Chem. Phys. Lett., 1991, 186, 401-404.
A. Vegas, A. Perez-Salazar, A. J. Banister and R. G. Hey, J. Chem. Soc., Dalt. Trans., 1980, 1812-1815.
A. J. Banister, N. Bricklebank, W. Clegg, M. R. J. Elsegood, C. Gregory, I. Lavender, J. M. Rawsona and B. K. Tannerc, J. Chem. Soc., Chem. Commun., 1995, 679-680.
A. J. Banister, N. Bricklebank, I. Lavender, J. M. Rawson, C. I. Gregory, B. K. Tanner, W. Clegg, M. R. J. Elsegood and F. Palacio, Angew. Chem. Int. Ed., 1996, 35, 25332535.
G. Antorrena, J. E. Davies, M. Hartley, F. Palacio, J. M. Rawson, J. N. B. Smith and A. Steiner, Chem. Commun., 1999, 1393-1394.
A. Alberola, R. J. Less, C. M. Pask, J. M. Rawson, F. Palacio, P. Oliete, C. Paulsen, A. Yamaguchi, R. D. Farley and D. M. Murphy, Angew. Chem. Int. Ed., 2003, 42, 4782-4785.
M. Mito, T. Kawae, K. Takeda, S. Takagi, Y. Matsushita, H. Deguchi, J. M. Rawson and F. Palacio, Polyhedron, 2001, 20, 1509-1512.
W. Fujita, K. Awaga, Y. Nakazawa, K. Saito and M. Sorai, Chem. Phys. Lett., 2002, 352, 348-352.
G. Wolmershauser, M. Schnauber, T. Wilhelm and L. H. Sutcliffe, Synth. Met., 1986, 14, 239-244.
W. Fujita and K. Awaga, Chem. Phys. Lett., 2002, 357, 385-388.
W. Fujita and K. Awaga, Chem. Phys. Lett., 2004, 388, 186-189.
W. Fujita, K. Awaga, M. Takahashi, M. Takeda and T. Yamazaki, Chem. Phys. Lett., 2002, 362, 97-102.
Y. Miura, E. Yamano, A. Tanaka and J. Yamauchi, J. Org. Chem., 1994, 59, 32943300.
Y. Miura, A. Yamamoto, Y. Katsura and M. Kinoshita, J. Chem. Soc., Chem. Commun., 1980, 0, 37.
V. Benin and P. Kaszynski, J. Org. Chem., 2000, 65, 8086.
P. Kaszynski, Molecules, 2004, 9, 716-724.
J. Zienkiewicz, P. Kaszynski and V. G. Young, J. Org. Chem., 2004, 69, 7525-7536.
J. Zienkiewicz, A. Fryszkowska, K. Zienkiewicz, F. Guo, P. Kaszynski, A. Januszko and D. Jones, J. Org. Chem., 2007, 72, 3510-3520.
L. Beer, R. C. Haddon, M. E. Itkis, A. A. Leitch, R. T. Oakley, R. W. Reed, J. F. Richardson, D. G. VanderVeer, L. Beer, J. L. Brusso, A. W. Cordes, R. C. Haddon, M. E. Itkis, K. Kirschbaum, D. S. MacGregor, R. T. Oakley, A. A. Pinkerton and R. W. Reed, Chem. Commun., 2005, 124, 1218-1220.
A. Leitch, R. T. Oakley, R. W. Reed and L. K. Thompson, Inorg. Chem., 2007, 46,

6261-70.
S. M. Winter, A. R. Balo, R. J. Roberts, K. Lekin, A. Assoud, P. A. Dube and R. T. Oakley, Chem. Commun., 2013, 49, 1603.
J. L. Brusso, K. Cvrkalj, A. A. Leitch, R. T. Oakley, R. W. Reed and C. M. Robertson, J. Am. Chem. Soc., 2006, 128, 15080-15081.
C. M. Robertson, A. A. Leitch, K. Cvrkalj, D. J. T. Myles, R. W. Reed, P. A. Dube and R. T. Oakley, J. Am. Chem. Soc., 2008, 130, 14791-14801.
N. Feeder, R. J. Less, J. M. Rawson, P. Oliete and F. Palacio, Chem. Commun., 2000, 2, 2449-2450.
A. W. Cordes, R. C. Haddon, R. G. Hicks, R. T. Oakley, T. T. M. Palstra, L. F. Schneemeyer and J. V. Waszczak, J. Am. Chem. Soc., 1992, 114, 1729-1732.
A. W. Cordes, R. C. Haddon, R. T. Oakley, L. F. Schneemeyer, J. V. Waszczak, K. M. Young and N. M. Zimmerman, J. Am. Chem. Soc., 1991, 113, 582-588.
M. P. Andrews, A. W. Cordes, D. C. Douglass, R. M. Fleming, S. H. Glarum, R. C. Haddon, P. Marsh, R. T. Oakley, T. T. M. Palstra, L. F. Schneemeyer, G. W. Trucks, R. Tycko, J. V. Waszczak, K. M. Young, N. M. Zimmerman, A. W. Cordes, R. T. Oakley and K. M. Young, J. Am. Chem. Soc., 1991, 113, 3559-3568.
A. A. Leitch, J. L. Brusso, K. Cvrkalj, R. W. Reed, C. M. Robertson, P. A. Dube and R. T. Oakley, Chem. Commun., 2007, 4, 3368-3370.
C. M. Robertson, D. J. T. Myles, A. A. Leitch, R. W. Reed, B. M. Dooley, N. L. Frank, P. A. Dube, L. K. Thompson and R. T. Oakley, J. Am. Chem. Soc., 2007, 129, 1268812689.
C. Walling and M. S. Pearson, Top. Phosphorus Chem., 1966, 3, 1.
W. G. Bentrude, The Chemistry of Organophosphorus Compounds, Wiley, Chichester, 1990.
D. Leca, L. Fensterbank, E. Lacôte and M. Malacria, Chem. Soc. Rev., 2005, 34, 858-865.
J. K. Kochi and P. J. Krusic, J. Am. Chem. Soc., 1969, 91, 3944-3946.
M. J. S. Gynane, A. Hudson, M. F. Lappert and P. P. Power, J. Chem. Soc., Chem. Commип., 1976, 623-624.
M. J. S. Gynane, A. Hudson, M. F. Lappert, P. P. Power and H. Goldwhite, J. Chem. Soc., Dalt. Trans., 1980, 2428-2433.
S. L. Hinchley, C. A. Morrison, D. W. H. Rankin, C. L. B. Macdonald, R. J. Wiacek, A. H. Cowley, M. F. Lappert, G. Gundersen, J. A. C. Clyburne and P. P. Power, Chem. Commun., 2000, 2045-2046.
S. L. Hinchley, C. A. Morrison, D. W. H. Rankin, C. L. B. Macdonald, R. J. Wiacek, A.

Voigt, A. H. Cowley, M. F. Lappert, G. Gundersen, J. A. C. Clyburne and P. P. Power, J. Am. Chem. Soc., 2001, 123, 9045-9053.

111 M. Blum, O. Puntigam, S. Plebst, F. Ehret, J. Bender, M. Nieger and D. Gudat, Dalton Trans., 2016, 45, 1987-1997.

112 D. M. C. Ould, A. C. Rigby, L. C. Wilkins, S. J. Adams, J. A. Platts, S. J. A. Pope, E. Richards and R. L. Melen, Organometallics, 2018, 37, 712-719.

113 P. Agarwal, N. A. Piro, K. Meyer, P. Müller and C. C. Cummins, Angew. Chem. Int. Ed., 2007, 46, 3111-3114.

114 O. Back, B. Donnadieu, M. von Hopffgarten, S. Klein, R. Tonner, G. Frenking and G. Bertrand, Chem. Sci., 2011, 2, 858-861.
115 C. D. Martin, M. Soleilhavoup and G. Bertrand, Chem. Sci., 2013, 4, 3020-3030.
116 S. Ishida, F. Hirakawa and T. Iwamoto, J. Am. Chem. Soc., 2011, 133, 1296812971.

117 S. Ito, M. Kikuchi, M. Yoshifuji, A. J. Arduengo, T. A. Konovalova and L. D. Kispert, Angew. Chem. Int. Ed., 2006, 45, 4341-4345.

118 M. Sebastian, O. Schmidt, A. Fuchs, M. Nieger, D. Szieberth, L. Nyulaszi and E. Niecke, Phosphorus, Sulfur Silicon Relat. Elem., 2004, 179, 779-783.
X. Pan, X. Wang, Z. Zhang and X. Wang, Dalton Trans., 2015, 44, 15099-15102.

120 F. Biaso, T. Cantat, N. Mézailles, L. Ricard, P. Le Floch and M. Geoffroy, Angew. Chem. Int. Ed., 2006, 45, 7036-7039.

121 V. F. Hein, H. Plust and H. Pohlemann, Z. Anorg. Allg. Chem., 1953, 272, 25-31.
122 A. K. Hoffmann and A. G. Tesch, J. Am. Chem. Soc., 1959, 81, 5519-5520.
123 A. H. Cowley and M. H. Hnoosh, J. Am. Chem. Soc., 1966, 88, 2595-2597.
124 E. Beckmann and T. Paul, Justus Liebigs Ann. Chem., 1891, 266, 1-28.
125 S. Sasaki, F. Murakami and M. Yoshifuji, Angew. Chem. Int. Ed., 1999, 38, 340-343.
126 X. Pan, X. Weng, Y. Zhao, Y. Sui and X. Wang, J. Am. Chem. Soc., 2014, 136, $9834-$ 9837.

127 G. Tan, S. Li, S. Chen, Y. Sui, Y. Zhao and X. Wang, J. Am. Chem. Soc., 2016, 138, 6735-6738.
S. Sasaki, K. Sutoh, F. Murakami and M. Yoshifuji, J. Am. Chem. Soc., 2002, 124, 14830-14831.
R. T. Boeré, A. M. Bond, S. Cronin, N. W. Duffy, P. Hazendonk, J. D. Masuda, K. Pollard, T. L. Roemmele, P. Tran and Y. Zhang, New J. Chem., 2008, 32, 214-231. I. Krossing and I. Raabe, Angew. Chem. Int. Ed., 2004, 43, 2066-2090. I. M. Riddlestone, A. Kraft, J. Schaefer and I. Krossing, Angew. Chem. Int. Ed., 2018, 57, 2-45.

132 X. Pan, X. Chen, T. Li, Y. Li and X. Wang, J. Am. Chem. Soc., 2013, 135, 3414-3417.
133 X. Pan, Y. Su, X. Chen, Y. Zhao, Y. Li, J. Zuo and X. Wang, J. Am. Chem. Soc., 2013, 135, 5561-5564.

134 X. Wang, Y. Su, X. Zheng, X. Wang, X. Zhang and Y. Sui, J. Am. Chem. Soc., 2014, 136, 6251-6254.

135 G. Tan and X. Wang, Chinese J. Chem., 2018, 36, 573-586.
136 R. Edge, R. J. Less, E. J. L. McInnes, K. Müther, V. Naseri, J. M. Rawson and D. S. Wright, Chem. Commun., 2009, 2, 1691-1693.
137 V. Chechik, E. Carter and D. Murphy, Electron Paramagnetic Resonance, Oxford Chemistry Primers, 2015.
138 W. M. Haynes, CRC Handbook of Chemistry and Physics, CRC Press, 93rd edn., 2012.

139 A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamental and Applications, John Wiley \& Sons, NJ, 2nd edn., 2001.
140 G. Gritzner and J. Kuta, Int. Union Pure Appl. Chem., 1984, 1, 462-466.
141 N. G. Tsierkezos, J. Solution Chem., 2007, 36, 289-302.
142 N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart and J. L. Dempsey, J. Chem. Educ., 2018, 95, 197-206.

143 D. J. Graham, Standard Operating Procedures for Cyclic Voltammetry, 2018.
144 E. R. Clark, Synthesis and Chemistry of 1,2,4-Benzothiadiazines, University of Cambridge, 2008.

Chapter 2

1,2,4-Benzothiadiazine 1-Chlorides

2.1 - Introduction to 1,2,4-Benzothiadiazines

1,2,4-Benzothiadiazines in various oxidation states (Figure 2.1.1) have been known for many years. ${ }^{1}$ Early studies focused on the S $^{\text {VI }} 1,1$-dioxides (A) for their medicinal properties ${ }^{2}$ and this framework now lies at the core of commercially available pharmaceuticals used to treat osteoporosis and hypertension. ${ }^{3,4}$ S $^{\text {II }}$ derivatives (B) may undergo one electron oxidation to form stable benzothiadiazinyl radicals, ${ }^{1,5,6}$ and appropriately functionalised $S^{11} 1,2,4$-benzothiadiazines can act as bidentate N, N^{\prime} chelating ligands to afford first row transition metal7,8 and Ir ${ }^{\text {III }}$ complexes. ${ }^{9}$ Whilst reports of the $\mathrm{S}^{\text {IV }}$ heterocycles ($\mathbf{C - D}$) are limited, $, 1,10-12$ their facile synthesis allows hitherto inaccessible $S^{\text {II }}$ and $S^{\text {VI }}$ analogues to be prepared. ${ }^{6}$

A

B

C

D

Figure 2.1.1: Various oxidation states of 1,2,4-benzothiadiazines.
Early synthetic routes to $\mathrm{S}^{\text {II }} 1,2,4$-benzothiadiazines relied on the preparation and subsequent reduction of S ${ }^{\text {IV }} 1$-oxides, ${ }^{12}$ whilst more recent approaches have utilised the thermolysis and intramolecular elimination of S-alkyl ylides (Scheme 2.1.1). ${ }^{5}$ The use of microwave synthesis has been shown to afford high yields and short reaction times in several key reaction steps. ${ }^{13}$ The only direct methods to these species however, involve the condensation of ortho-aminothiophenols with hydroxamoyl chlorides (Scheme 2.1.2) ${ }^{14}$ which, despite having high reported yields, suffers from a limited range of suitable starting materials. The multi-step reactions, sensitivity to substituents, and lack of a general method for the synthesis of $\mathrm{SI}^{\mathrm{II}} 1,2,4$-benzothiadiazines therefore prompted us to focus on S $^{\text {IV }} 1$-chlorides (D) as suitable precursors to neutral $\mathrm{S}^{\text {III }} 1,2,4$ benzothiadiazinyl radicals.

Scheme 2.1.1: Synthesis of SII 1,2,4-benzothiadiazines via thermal elimination.

Scheme 2.1.2: Direct synthesis of SII 1,2,4-benzothiadiazines via condensation of orthoaminothiophenols and hydroxamoyl chlorides.

2.2 - Introduction to 1,2,4-Benzothiadiazine 1-Chlorides

The relatively short synthetic pathway and tolerance to substitutional variation make the $S^{\text {IV }} 1$-chlorides advantageous precursors to the corresponding radicals. These are a potentially extremely versatile as they allow fine-tuning of the molecular structure, and hence physical properties, by altering the substituents around the fused-ring and changing the nature of the pendant groups. The $1,2,4$-benzothiadiazine 1 -chlorides were first synthesised in 1981 utilising SCl_{2} as the source of sulfur as well as the oxidising and chlorinating agent. ${ }^{15}$ The strongly chlorinating nature of the reaction conditions however, resulted in substitution of labile functional groups by chlorine, and varying degrees of chlorination of the benzo-fused ring.

The 1,2,4-benzothiadiazine 1 -chlorides may undergo facile $2 e$ - reduction, ${ }^{6}$ typically using a thiol (Scheme 2.2.1), to afford the corresponding SII heterocycles, making hitherto inaccessible analogues available as valid synthetic targets. The $S^{\text {Iv }} 1$-chlorides are also susceptible to hydrolysis to form the $\mathrm{S}^{\text {IV }} 1$-oxides, ${ }^{10}$ which may be further oxidised up to the $S^{\text {VII }} 1,1$-dioxide (Scheme 2.2.2). ${ }^{12}$ Finally, $1 e^{-}$reduction of $1,2,4$ benzothiadiazine 1 -chlorides, under mild conditions (Scheme 2.2.3), yields the target neutral S ${ }^{\text {III }}$ benzothiadiazinyl radicals [Discussed in Chapter 3].

Scheme 2.2.1: Two electron reduction of 1,2,4-benzothiadiazine 1-chlorides.

Scheme 2.2.2: Hydrolysis of 1,2,4-benzothiadiazine 1-chlorides and subsequent two electron oxidation.

Scheme 2.2.3: One electron reduction of 1,2,4-benzothiadiazine 1-chlorides.

2.2.1 - Prior Synthesis of 1,2,4-Benzothiadiazine 1-Chlorides

2.2.1.1 - Route 1 - SCl_{2}

The first detailed study of the synthesis of 1,2,4-benzothiadiazine 1 -chlorides was carried out by Levchenko in $1984,{ }^{10}$ by the reaction of N -chloroamidines with SCl_{2} in the presence of base (Scheme 2.2.1.1.1). This was found to give ring-closed and oxidised benzothiadiazine 1 -chlorides with varying degrees of chlorination on the benzo-fused ring. Their experiments revealed that the position para to the amidine nitrogen was always chlorinated suggesting that chlorination occurred either at the same time as or prior to ring-closure. 1,2,3-Dithiazolylium salts prepared by Herz cyclisation are also prone to chlorination at this position. ${ }^{16,17}$ No additional chlorination was observed on the pendant aryl groups (R^{\prime}) despite the fact that the products were recrystallised from solvents saturated with Cl_{2}.

Scheme 2.2.1.1.1: Synthesis of 1,2,4-benzothiadiazine 1-chlorides via Route 1.
Levchenko reported that careful control of the quantity of SCl_{2} and reaction conditions could offer access to selectively chlorinated derivatives. ${ }^{10}$ However, previous work by Clark ${ }^{18}$ found this approach to be unreproducible and all attempts to prepare partiallychlorinated derivatives or form those based upon methyl-substituted amidine precursors were unsuccessful. Further studies into this route revealed that in the absence of base, the N-protonated Siv benzothiadiazine 1-chloride (E) (Figure 2.2.1.1.1) was isolated, whilst utilising the hindered base, $\operatorname{EtN}^{i} P_{2}$, afforded the $S^{I I}$ benzothiadiazine (\mathbf{F}). This indicates that the S^{II} species is the initial product and that ring chlorination para to the nitrogen must be more facile than chlorination at the heterocyclic sulfur centre. Other experiments revealed that the amidine precursor itself is the initial base during the reaction, suggesting that a large excess is required in relation to SCl_{2} to form the neutral $\mathrm{S}^{\text {IV }}$ benzothiadiazine 1 -chloride. However, in the absence of excess SCl_{2} the reaction mixtures were observed to decay to dark-green EPR active solutions suggesting either partial oxidation to the corresponding SIII radical or
comproportionation of the S^{II} and S^{IV} states. Thus in order to stabilise the desired S^{IV} product, an excess of SCl_{2} or additional chlorinating agent such as $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ is required.

E

F

Figure 2.2.1.1.1: Intercepted intermediates via Route 1.

In light of these observations, Clark developed a modified procedure, using NaH as a strong, non-nucleophilic base and performing the reaction at room temperature to prevent further ring chlorination. Trace $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ was added during recrystallization to stabilise the $\mathrm{S}^{\text {IV }}$ state, and this was successfully employed to prepare substituted 1,2,4benzothiadaizine 1 -chlorides.

2.2.1.2 - Route 2 - $\mathbf{S}_{2} \mathrm{Cl}_{2}$

More recent research by Oakley 19,20 into the related, symmetrical bis-thiadiazines has made use of the milder, less oxidising $\mathrm{S}_{2} \mathrm{Cl}_{2}$, which yielded mixed valence $\mathrm{S}^{\mathrm{II}} / \mathrm{S}^{\mathrm{IV}}$ compounds (Scheme 2.2.1.2.1). Unlike Route 1, the starting amidine is unoxidised and no base is present. Instead the reaction is performed under reflux in high boiling solvents to drive off the HCl . This initial step occurs with chlorination of the fused ring, whilst the pendant aryl-groups remain unaffected. The ionic character of the S^{IV} chloride is reflected in the subsequent facile anion metathesis step, the stability of which is ascribed to the high symmetry of the resonance stabilised cation. Further transformations are necessary however to remove the acidic proton and alkylate the species prior to reduction to the target radical.

Scheme 2.2.1.2.1: Synthesis of bis-1,2,4-benzothiadiazines via Route 2.

2.2.1.3 - Route 3 - SOCl $_{2}$

The complications involving $S^{I I}$ intermediates prompted Clark to explore the use of SOCl_{2} as a S ${ }^{\mathrm{IV}}$ source in the synthesis of 1,2,4-benzothiadiazine 1 -chlorides. Despite the
well-established chemistry of thionyl chloride with primary amines, ${ }^{21}$ first investigated in 1890, its reactions with N-arylamidines has received less attention. Benzothiadiazine 1 -oxides have been prepared by the reaction of N-phenylbenzamidine with SOCl_{2} followed by an aqueous work-up, but this approach was lowyielding. ${ }^{12}$ Initial attempts to react thionyl chloride with N-phenyl-benzamidine were unsuccessful, yielding a fine colourless precipitate of N-phenyl-benzamidine hydrochloride, and a dark red supernatant which swiftly discoloured regardless of the choice of base or solvent.

The use of thionyl chloride as both the reagent and high-boiling solvent circumvented the poor solubility of amidinium hydrochloride salts, whilst performing the reaction under reflux to drive off HCl eliminated the need for additional base. These conditions (Scheme 2.2.1.3.1) afforded a family of substituted 1,2,4-benzothiadiazine 1-chlorides in good yield, crystallised by layering dry hexane onto the reaction mixture. It is believed that the 1,2,4-benzothiaidiazine 1-oxide is the initial ring-closed product, which then reacts with a second equivalent of SOCl_{2}, with the loss of SO_{2} and HCl gas, to give the desired $\mathrm{S}^{\text {IV }}$ 1-chloride. Additional chlorination to the fused-ring and substituents is also observed due to the strongly chlorinating conditions, but the exact stage at which this occurs is unknown.

Scheme 2.2.1.3.1: Synthesis of 1,2,4-benzothiadiazines 1 -chlorides via Route 3.

This chapter will further expand on this synthetic approach to prepare a library of substituted 1,2,4-benzothiadiazine 1-chlorides as suitable precursors to the neutral SIII benzothiadiazinyl radicals.

2.3 - Synthesis of New Compounds

2.3.1 - Synthesis of Substituted \boldsymbol{N}-Arylamidines

A large family of substituted N-arylamidines 1a-q (Figure 2.3.1.1) were prepared via standard methods, through condensation of lithiated anilines with suitable carbonitriles followed by aqueous work-up, ${ }^{22}$ or by Lewis-acid mediated condensation in the melt. ${ }^{23}$

		Aniline R	Nitrile R'	Synthetic Route	Yield \%
	1a	H	Ph	A	89.7
	1b	2-Me	Ph	A	70.8
	1c	2,3-Me 2	Ph	A	86.8
	1d	$2,5-\mathrm{Me}_{2}$	Ph	A	78.7
	1e	$3,5-\mathrm{Me}_{2}$	Ph	A	77.8
	1 f	$3-\mathrm{OMe}$	Ph	A	64.5
	1 g	H	o-Tolyl	A	62.8
	1h	2,3-Me 2	o-Tolyl	A	66.1
	1 i	H	p-Pyridyl	A	87.9
	1j	2,3-Me 2	p-Pyridyl	A	84.5
	1k	H	$p-\mathrm{OMe}-\mathrm{C}_{6} \mathrm{H}_{4}$	A	77.0
	11	2,3-Me ${ }_{2}$	$p-\mathrm{OMe}-\mathrm{C}_{6} \mathrm{H}_{4}$	A	73.7
	1 m	4-Me	Ph	A	70.8
	1n	2,4-Me 2	Ph	A	72.2
1	10	2-Ph	Ph	A	67.5
	1p	H	${ }^{t} \mathrm{Bu}$	B	41.0
	$1 q$	H	$p-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$	A or B	0

Figure 2.3.1.1: Target substituted N-arylamidines.
The syntheses of amidines $\mathbf{1 a - o}$ proceeded in good yield to give colourless crystalline solids. Attempts to prepare p-nitro-substituted amidine $\mathbf{1 q}$ by the standard routes were unsuccessful, and both the base and acid-catalysed Pinner reaction ${ }^{24,25}$ were likewise found to be ineffective, yielding only free aniline or substituted methyl benzoate respectively, the latter due to hydrolysis of the intermediate iminoether.

2.3.2 - Synthesis of Substituted 1,2,4-Benzothiadiazine 1-Chlorides

Substituted 1,2,4-benzothiadiazine 1-chlorides were prepared according to Route 3, by refluxing the corresponding N-arylamidine in neat thionyl chloride. This approach was successfully employed to prepare compounds $\mathbf{2 a} \mathbf{- h}$ and $\mathbf{2 k}$-l (Figure 2.3.2.1). In all instances, the benzo-fused ring was partially chlorinated, and for compounds $\mathbf{2 b}-\mathbf{e}$ the methyl groups at the 5 or 6 position were also singly chlorinated whilst methyl groups at the 8 position were unaffected. This is in contrast to the milder conditions of Route 1, where the methyl groups remain unchlorinated. ${ }^{18}$

2a

2d

$2 g$

2b

2e

2h

2c

2k

21
Figure 2.3.2.1: Substituted 1,2,4-benzothiadiazine 1-chlorides synthesised in this thesis.

The 1,2,4-benzothiadiazine 1-chlorides were isolated as yellow to red solids that were poorly soluble in most organic solvents (DCM, THF, toluene), but readily dissolved in thionyl chloride. Crystals suitable for single-crystal X-ray diffraction were grown by slow diffusion of hexane into a saturated solution of the product in SOCl_{2} or by slow cooling from boiling SOCl_{2}. Derivative 2e was isolated in high purity by NMR and elemental analysis, but no crystals suitable for SCXRD analysis were obtained.

Initial attempts to prepare 21 under standard conditions resulted in partial chlorination ($\mathrm{X}=\mathrm{Cl} \approx 45 \%$) at position X , ortho to the OMe moiety (Figure 2.3.2.2). Nevertheless, the minor product, 2r, was still fully characterised by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy using a range of 2D experiments. Repeating the reaction with decreased reflux times cleanly afforded compound 21. The red solid was observed to slowly discolour to green in both solution and solid-state over the course of several days, even
in the absence of light. The addition of trace $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ during recrystallisation to help stabilise the S^{IV} state afforded crystals identified as 2s by SCXRD ($\mathrm{X}=\mathrm{Cl} \approx 58 \%$), demonstrating the susceptibility of these species to further chlorination. Attempts to isolate $\mathbf{2 r}$ and $\mathbf{2 s}$ as analytically pure compounds were unsuccessful.

$$
\begin{aligned}
& \text { 2l: } X=Y=H \\
& \text { 2r: } X=C I, Y=H \\
& \text { 2s: } X=Y=C l
\end{aligned}
$$

Figure 2.3.2.2: Variable chlorination species observed for 1,2,4-benzothiadiazine 1chlorides derived from 11.
Attempts to prepare $\mathbf{2 i}$ yielded a yellow solid that was practically insoluble in most organic solvents and only poorly soluble in SOCl_{2}, suggesting that the pyridinium hydrochloride salt had formed. NMR data indicated that position X (Figure 2.3.2.3) was partially chlorinated ($\mathrm{X}=\mathrm{Cl} \approx 40 \%$), which implies that the position ortho to the amidine functionality is the second position on the benzo-fused ring to be chlorinated. This is expected to occur rapidly after chlorination of the position para to the amidine functionality which is believed to be chlorinated prior to, or at the same time as ringclosure (vide infra). Prolonged reflux in the presence of excess $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ and larger volumes of SOCl_{2} only increased chlorination at position X to $\approx 60 \%$ due to the poor solubility of the salt, whilst shorter refluxing times afforded other unidentified species.

In contrast, no partial chlorination was observed for compound $\mathbf{2 j}$ by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy despite also suffering from limited solubility. Crystals of $[2 \mathbf{j} . \mathbf{H}]\left[\mathrm{HCl}_{2}\right]$ grown from SOCl_{2} and hexane indicated that the $[\mathrm{Cl}-\mathrm{H}-\mathrm{Cl}]$ - salt had formed whilst elemental analysis values were between that expected for the HCl and $\mathrm{H}\left[\mathrm{HCl}_{2}\right]$ salts even after recrystallisation, likely due to the poor stability of the $\left[\mathrm{HCl}_{2}\right]$ anion and tendency to readily lose HCl . It is possible that compound $\mathbf{2 i}$ also exists as both the Cl^{-} and $\left[\mathrm{HCl}_{2}\right]^{-}$salts but elemental analysis results were inconclusive.

Figure 2.3.2.3: Synthesis of 1,2,4-benzothiadiazine 1-chloride pyridinium salts.

Attempts to deprotonate compound $\mathbf{2 i}$ with basic amines (pyridine, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DABCO}$) resulted in the immediate formation of a dark blue EPR active solution consistent with the formation of the neutral BTDA radical (vide infra), which indicates that these species are highly oxidising. Crystals of $\mathbf{3 i}$ suitable for SCXRD analysis (Figure 2.3.2.4), grown by slow cooling of the reaction mixture, confirmed the formation of the neutral radical, which unlike the parent 1,2,4-benzothiadiazine 1-chloride, is only partially chlorinated around 17% at position X.

Figure 2.3.2.4: Crystal structure of $\mathbf{3 i}$ showing the partial chlorination of fused-ring.

Following the synthesis of $\mathbf{2 d}$, slow cooling of the reserved supernatant afforded orange needles of the isomeric compound $\mathbf{2 t}$ with partial chlorination at position $\mathrm{X}(\mathrm{X}=$ $\mathrm{Cl} \approx 12 \%$ (Figure 2.3.2.5). This finding suggests that the rate of the second chlorination step of the methyl group ortho to the amidine nitrogen is comparable to the chlorination of the fused ring at position X as seen for $\mathbf{2 d}$; the former process is expected to dramatically supress further chlorination at position X due to steric constraints.

$$
\begin{aligned}
& \text { 2d: } \mathrm{X}=\mathrm{Cl}, \mathrm{Y}=\mathrm{H} \\
& \text { 2t: } \mathrm{X}=\mathrm{H}, \mathrm{Y}=\mathrm{Cl}
\end{aligned}
$$

Figure 2.3.2.5: Isomeric forms of 1,2,4-benzothiadiazine 1-chlorides derived from 1d.

No crystalline products could be isolated for the reactions of $\mathbf{1 m} \mathbf{- n}$ with SOCl_{2}. Since chlorination occurs para to the amidine functionality prior to or at the same time as ring-closure, it is believed that the presence of a methyl-group at this position inhibits the formation of the desired 1,2,4-benzothiadiazine 1-chloride. Attempts to prepare $\mathbf{2 o}$ were unsuccessful; yielding a dark brown insoluble solid assigned as a mixture of partially chlorinated species by ${ }^{1} \mathrm{H}$ NMR. A low yield of pale peach solid was obtained
during the attempted synthesis of $\mathbf{2 p}$ and colourless crystals were grown by recrystallization of the crude solid from boiling SOCl_{2}. This was identified as partially chlorinated 1p.HCl (Figure 2.3.2.6) by SCXRD suggesting that chlorination of the arylring is more rapid than ring-closure; chlorination at both positions ortho to the amidine nitrogen inhibits the formation of the fused-ring.

Figure 2.3.2.6: Isolated products from the reaction of $\mathbf{1 p}$ with SOCl_{2}.

2.4 - Structural Studies of 1,2,4-Benzothiadiazine 1-Chlorides

The structures of the crystallographically characterised 1,2,4-benzothiadiazine 1chlorides are labelled according to the general scheme shown in Figure 2.4.1.

Figure 2.4.1: Structural labelling scheme.

The deviation from planarity of the heterocyclic ring, measured as the difference in angles between the mean planes of the benzo-fused ring (C2-C7) and the S1-N1-C1-N2 fragment, shows significant variation in the formally 10π aromatic chlorides (Table 2.4.1). In all instances, N1 lies considerably above or below the plane of the fused-ring depending on the orientation of the $\mathrm{S}-\mathrm{Cl}$ bond (Figure 2.4.2). The S^{IV} 1,2,4benzothiadiazine 1 -chlorides are however more planar than the 12π protonated SII $^{\text {II }}$ derivatives. ${ }^{13}$ The torsion angles also show variety, reflecting the degree of twisting of the pendant aryl ring with respect to the heterocyclic ring. This is most noticeable for the o-tolyl substituted compounds, $\mathbf{2 g}$-h, where steric interactions of the methyl-group with either N1 or N2 disfavour a coplanar orientation. Compounds with larger N1-C1-C8-C13 and N2-C1-C8-C9 torsion angles (Table 2.4.1) were found to have a greater deviation from planarity.

Figure 2.4.2: Idealised geometry showing the orientation of the S - Cl bond with respect to the benzo-fused ring: a) Above the plane; b) Below the plane.

	Deviation from Planarity $/^{\circ}$	Torsion Angles $/^{\circ}$		S-CI Bond Length / Å	S-CI Angle $/^{\circ}$ N2-S1-Cl1
		N1-C1-C8-C13	N2-C1-C8-C9		
2a	9.38	6.00(3)	2.42(3)	2.2572(7)	102.64(4)
2b	11.13	11.90(3)	9.05(3)	2.2811(8)	102.58(4)*
2c	7.17	6.65(3)	4.18(3)	2.3412(7)	106.11(4)*
2d- α	12.88	8.64(4)	6.16(4)	2.2974(9)	102.32(5)
2f	8.07	3.83(2)	0.89(2)	2.2759(6)	104.06(3)*
2g	8.96	19.80(1)	16.08(1)	2.309(2)	106.23(1)
	15.07	10.51(1)	9.96(1)	2.229(3)	99.97(1)
2h	18.33	30.90(3)	28.91(3)	2.2689(9)	99.84(5)
2j. $\mathrm{H}\left[\mathrm{HCl}_{2}\right]$	14.28	20.56(2)	18.15(2)	2.238(4)	100.25(2)
2k	8.60	9.59(3)	5.89(3)	2.3205(8)	106.80(5)
21	7.71	8.25(5)	5.10(5)	2.279(1)	105.33(7)
2s	7.75	9.98(1)	8.45(1)	2.264(4)	103.42(2)
2t	12.63	7.01(9)	4.03(9)	2.287(2)	104.89(1)

* S-Cl bond orientated below the plane of the benzo-fused ring.

Table 2.4.1: Structural parameters of 1,2,4-benzothiadiazine 1-chlorides.
The variation in S-Cl bond lengths weakly correlate with the electronegativity of the fused-ring, with [2j.H][$\mathbf{H C l}_{2}$] having the shortest at $2.238(4) \AA$ whilst $\mathbf{2 c}$, which bears two mildly electron-donating chloromethyl-groups, has the longest $\mathrm{S}-\mathrm{Cl}$ bond length at $2.3412(7) \AA$. No apparent correlation is observed for the N2-S1-Cl1 angles, and these differences are likely to arise through external packing forces. On average, the S-Cl bonds ($2.281 \AA \AA$) are longer than the literature value for a single covalent S-Cl bond (2.072 \AA) ${ }^{26}$ and are more comparable to those seen in thiatriazines (2.283-2.357 \AA). ${ }^{27,28}$ These benzothiadiazine 1 -chorides clearly show a significantly covalent S-Cl bond and should not be classed as salts. For example, DTDA salts are considered ionic but exhibit long $\mathrm{S} \cdots \mathrm{Cl}$ contacts (2.906-2.962 \AA) ${ }^{29}$ within the sum of the van der Waals radii (3.55 A). ${ }^{30}$ The strength of the S-Cl bond is of particular interest here because it largely reflects the ease with which the system may undergo anion metathesis reactions or be reduced to the neutral radical.

2.4.1 - Crystal Structure of 2a

Compound 2a crystallises as large orange blocks in the monoclinic space group $P 2_{1} / n$ with a single molecule in the asymmetric unit (Figure 2.4.1.1). The heterocyclic ring deviates considerably from planarity at 9.38°, largely due to the position of N 1 , whilst the pendant phenyl ring only deviates from coplanarity of the fused ring by 4.02°. Despite providing satisfactory elemental and NMR analysis, crystals of 2a, grown by slow cooling of a saturated SOCl_{2} solution, showed partial additional chlorination (ca. 12.5 \%) at C6. Interestingly, previous crystallographic studies by Clark have showed that crystals of $\mathbf{2 a}$, grown by slow diffusion of hexane into a saturated solution of the compound in thionyl chloride, crystallises with two molecules in the asymmetric unit, also in the monoclinic space group $P 2_{1} / n$. This partial chlorination results in a crystal structure that is instead isostructural with the perchlorinated analogue. ${ }^{18}$
a)

b)

Figure 2.4.1.1: Crystal structure of 2a: a) Top-down view. b) Side view.

2.4.2 - Crystal Structure of 2b

Compound 2b crystallises as yellow blocks in the triclinic space group $P \overline{1}$ with a single molecule in the asymmetric unit (Figure 2.4.2.1). The heterocyclic ring deviates from planarity with respect to the fused ring by 11.13°, whilst the pendant phenyl ring remains relatively coplanar at 3.10°. The harsh ring-closing conditions results in chlorination of the methyl-group, which is orientated above the plane of the fused-ring trans to the S-Cl bond.

b)

Figure 2.4.2.1: Crystal structure of 2b: a) Top-down view. b) Side view.

2.4.3 - Crystal Structure of 2c

Compound 2c crystallises as yellow plates in the triclinic space group $P \overline{1}$ with a single molecule in the asymmetric unit (Figure 2.4.3.1). The deviation from planarity (7.17°) is lower than other structurally characterised $1,2,4$-benzothiadiazine 1 -chlorides, and the pendant phenyl ring is essentially coplanar with the benzo-fused-ring at 0.63°. Both $\mathrm{CH}_{2} \mathrm{Cl}$ groups are orientated above the plane in a cis conformation, and trans to the S-Cl bond. Additional chlorination (ca. 3.5 \%) is observed at C6, whilst minor unmodelled residual electron density in close proximity to the methyl-protons suggests that these positions are also sensitive to further chlorination.
a)

b)

Figure 2.4.3.1: Crystal structure of 2c: a) Top-down view. b) Side view.

2.4.4 - Crystal Structure of 2d- α

Crystallisation of compound 2d from boiling SOCl_{2} afforded orange needles that crystallise in the monoclinic space group $P 2_{1} / c$ with a single molecule in the asymmetric unit (Figure 2.4.4.1). The heterocyclic ring deviates significantly from planarity at 12.88° whilst the pendant phenyl ring is relatively coplanar at 2.98° despite comparatively large torsion angles. The $\mathrm{CH}_{2} \mathrm{Cl}$ group on C 3 is orientated below the plane of the fused-ring and trans to the S-Cl bond; the methyl group at C6 is not chlorinated under these conditions.
a)

b)

Figure 2.4.4.1: Crystal structure of 2d- $\boldsymbol{\alpha}$: a) Top-down view. b) Side view.

Previous studies by Clark has shown that slow diffusion of hexane into a saturated solution of $\mathbf{2 d}$ in thionyl chloride produced two distinct crystal morphologies, predominately orange needles (α-phase) with red blocks (β-phase) as the minor product. These two forms differ in the orientation of the $\mathrm{CH}_{2} \mathrm{Cl}$ group relative to the S Cl bond, a phenomenon known as conformational polymorphism. ${ }^{31}$ Attempts to grow crystals of the β-phase however, to permit direct and precise structural metric comparisons with the other 1,2,4-benzothiadiazine 1 -chlorides at the same temperature, were unsuccessful.

2.4.5 - Crystal Structure of $2 f$

Compound 2 f crystallises as dark orange blocks in the triclinic space group $P \overline{1}$ with a single molecule in the asymmetric unit (Figure 2.4.5.1). The deviation from planarity of the heterocyclic ring $\left(8.07^{\circ}\right)$ and coplanarity of the pendant phenyl ring $\left(2.76^{\circ}\right)$ is comparable to 2 a whilst the torsion angles are considerably smaller. The methoxy group is disordered such that it is orientated equally above and below the plane of the benzo-fused ring. The twisting of the methoxy group out of conjugation of the fused ring is necessary to minimise steric interactions resulting from chlorination. Despite potential steric clash, the methoxy group is located on C6 and acts as a ortho-directing electron donating group during the ring-closure, and not at C3 as a para-directing group, as previously anticipated and observed for similar systems discussed in Chapter 4.

b)

Figure 2.4.5.1: Crystal structure of 2f: a) Top-down view. b) Side view.

2.4.6 - Crystal Structure of $\mathbf{2 g}$

Compound $\mathbf{2 g}$ crystallises as orange rods in the monoclinic space group $P 2_{1}$ with two molecules in the asymmetric unit (Figure 2.4.6.1). The deviation from planarity of the heterocyclic ring is considerably larger in molecule two $\left(15.07^{\circ}\right.$ vs. 8.96° for molecule one) whilst the torsion angles are significantly greater in molecule one (19.80(1) $)^{\circ}$ and $16.08(1)^{\circ}$ vs. $10.51(1)^{\circ}$ and $9.96(1)^{\circ}$ for molecule two). The pendant ortho-tolyl ring in molecule one is twisted out of the plane by 12.61° with respect to the benzo-fused ring to minimise steric hindrance between the methyl-group and N 2 of the heterocyclic ring. In contrast, the pendant ortho-tolyl ring in molecule two is essentially coplanar with only a minor deviation of 0.39°. The dramatic difference in the conformations observed for the two molecules suggests that external packing forces have a significant influence on their solid-state structure.
a)

b)

Figure 2.4.6.1: Crystal structure of $\mathbf{2 g}$, molecule one: a) Top-down view. b) Side view. Molecule two omitted for clarity.

2.4.7 - Crystal Structure of $\mathbf{2 h}$

Compound 2 h crystallises as dark yellow blocks in the orthorhombic space group Pbca with a single molecule in the asymmetric unit (Figure 2.4.7.1). The heterocyclic ring is severely distorted and deviates significantly from planarity at 18.33°. The pendant ortho-tolyl ring is twisted out of the plane of the fused-ring by 18.56°, resulting in large N1-C1-C8-C13 and N2-C1-C8-C9 torsion angles. Unlike compound 2g, the pendant ortho-tolyl ring is orientated such that the methyl-group is closer to N1, presumably to minimise steric hindrance with the $\mathrm{CH}_{2} \mathrm{Cl}$ group at C 3 . As with $2 \mathbf{c}$, both $\mathrm{CH}_{2} \mathrm{Cl}$ groups are orientated above the plane of the fused-ring in a cis conformation, and trans to the S-Cl bond.
a)

b)

Figure 2.4.7.1: Crystal structure of $\mathbf{2 h}$: a) Top-down view. b) Side view.

2.4.8 - Crystal Structure of [2j.H][HCl_{2}]

Compound $[\mathbf{2 j} . \mathbf{H}]\left[\mathbf{H C l}_{2}\right]$ crystallises as yellow rods in the triclinic space group $P \overline{1}$ with a single ion pair in the asymmetric unit (Figure 2.4.8.1). The heterocyclic ring and pendant pyridyl ring deviate significantly from planarity/coplanarity with respect to the benzo-fused ring (14.28° and 14.59° respectively), and the torsion angles are larger than all of the other structural characterised 1,2,4-benzothiadiazine 1-chlorides except 2h. The $\mathrm{CH}_{2} \mathrm{Cl}$ groups adopt a trans conformation, with one $\mathrm{CH}_{2} \mathrm{Cl}$ group orientated above the plane of the fused-ring and the other orientated below, contrary to the conformations adopted by both $\mathbf{2 c}$ and $\mathbf{2 h}$.
a)

b)

Figure 2.4.8.1: Crystal structure of $[\mathbf{2 j} \cdot \mathbf{H}]\left[\mathbf{H C l}_{2}\right]$: a) Top-down view. B) Side-view. HCl_{2} counterion omitted for clarity.

The HCl_{2} anion adopts a severely bent geometry $\left(113.70(6)^{\circ}\right)$ with asymmetric and elongated $\mathrm{H}-\mathrm{Cl}$ bond lengths (2.001(1) and $1.809(1) \AA$) (Figure 2.4.8.2). This deviation from the model symmetric-linear geometry, which is typically observed for isolated ion pairs ($\mathrm{H}-\mathrm{Cl} \approx 1.57 \AA$), ${ }^{32}$ is consistent with strong anion-cation interactions in the solidstate. ${ }^{33}$

Figure 2.4.8.2: Crystal structure of $[\mathbf{2 j} \cdot \mathbf{H}]\left[\mathbf{H C l}_{2}\right]$ highlighting the HCl_{2} counterion.

2.4.9 - Crystal Structure of 2k

Compound $\mathbf{2 k}$ crystallises as dark red rods in the triclinic space group $P \overline{1}$ with a single molecule in the asymmetric unit (Figure 2.4.9.1). The heterocyclic ring deviates from planarity at 8.60° and the torsion angles are similar to the other 1,2,4-benzothiadiazine 1 -chlorides. The methoxy group is coplanar with the associated aryl-ring, which itself is essentially coplanar with the benzo-fused ring, with only a minor deviation of 0.91°. Whilst these features are reminiscent to $\mathbf{2 a}$, the $\mathrm{S}-\mathrm{Cl}$ bond length is significantly elongated (2.3205(8) vs 2.2572 (7) \AA), likely due to the addition of a more electron-rich pendant aryl ring.
a)

b)

b) Side view.

2.4.10 - Crystal Structure of 21

Compound $\mathbf{2 1}$ crystallises as orange needles in the triclinic space group $P \overline{1}$ with a single molecule in the asymmetric unit (Figure 2.4.10.1). The deviation from planarity of the heterocyclic ring is similar to $\mathbf{2 c}\left(7.71^{\circ} \mathrm{vs} .7 .17^{\circ}\right)$, as are the torsion angles and coplanarity of the pendant aryl ring (1.78° vs. 0.63° for $\mathbf{2 c}$). As with $\mathbf{2 k}$, the methoxy group is coplanar with the associated aryl ring. The $\mathrm{CH}_{2} \mathrm{Cl}$ groups adopt a cis orientation below the plane of the fused-ring, and trans to the S-Cl bond. The S-Cl bond length is surprisingly short at $2.279(1) \AA$; this is counter to expectations since there is an increase in S-Cl bond length from 2a to $\mathbf{2 l}$, whilst the longest distance observed across the $1,2,4$-benzothiadiazine 1 -chlories is for $\mathbf{2 c}$. This again indicates that external packing forces have a significant influence on many of the structural features.
a)
b)

Figure 2.4.10.1: Crystal structure of 21: a) Top-down view. b) Side view.

2.4.11 - Crystal Structure of 2s

Compound 2s crystallises as red blocks in the monoclinic space group $P 2_{1} / n$ with a single molecule in the asymmetric unit (Figure 2.4.11.1). The deviation from planarity of the heterocyclic ring is 7.75°, comparable to $\mathbf{2 c}$ and $\mathbf{2 l}$, whilst the pendant aryl ring is twisted slightly with a deviation of 4.93°. The partial chlorination ($\approx 58 \%$) at the position ortho to the methoxy group causes it to flip 180° to minimise steric hindrance,
however it still remains coplanar with the associated aryl ring to allow conjugation of the oxygen lone pairs into the aromatic system. This also suppresses additional chlorination at the other ortho position.
a)

b)

Figure 2.4.11.1: Crystal structure of 2s: a) Top-down view. b) Side view. Shown with partial chlorination.

2.4.12 - Crystal Structure of 2t

Compound 2t crystallises as orange rods in the monoclinic space group $P 2_{1} / n$ with a single molecule in the asymmetric unit (Figure 2.4.12.1). The deviation from planarity of the heterocyclic ring is similar to the isomeric $\mathbf{2 d - \alpha}\left(12.63^{\circ} \mathrm{vs} .12 .88^{\circ}\right)$ whilst the pendant phenyl ring is twisted slightly ($5.21^{\circ} v s .2 .98^{\circ}$ for $\mathbf{2 d} \mathbf{- \alpha}$). The position meta to the amidine nitrogen is partially chlorinated $\left(\approx 12 \%\right.$) and the CHCl_{2} group is orientated to minimise steric hindrance.
a)

b)

Figure 2.4.12.1: Crystal structure of 2t: a) Top-down view. b) Side view. Shown with partial chlorination.

2.4.13 - Conformational Polymorphism

The variation in deviations from planarity for the heterocyclic ring and pendant arylring, as well as the range of torsion angles and $\mathrm{S}-\mathrm{Cl}$ bond lengths in the solid-state, clearly reflects the conformational flexibility of the 1,2,4-benzothiadiazine 1 -chlorides. Previous studies by Clark ${ }^{18}$ found that compound 2d adopts two distinct crystal
morphologies that differ in the conformation of the $\mathrm{CH}_{2} \mathrm{Cl}$ group relative to the $\mathrm{S}-\mathrm{Cl}$ bond. $A b$ initio computational studies were employed to further understand the conformational polymorphism; the favourable energies in the gas-phase for $\mathbf{2 d} \mathbf{d} \boldsymbol{\alpha}$ suggest that it is the thermodynamic product and that $\mathbf{2 d} \mathbf{-} \boldsymbol{\beta}$ is the kinetic product. However, the barrier to interconversion between the two conformers, performed via single-point calculations, was found to be negligible. This result is consistent with the rapid interconversion observed by NMR and suggests that the conformation adopted in solid-state depends significantly on external packing forces.

Interestingly, no indication of polymorphism was observed for any of the other 1,2,4benzothiadiazine 1-chlorides, with only one distinct crystal morphology formed even when grown via different methods and using alternative solvents. This is despite the fact that differing conformations were observed for the two $\mathrm{CH}_{2} \mathrm{Cl}$ groups in $\mathbf{2 c} / \mathbf{2 h}$ vs. [$\mathbf{2 j} \mathbf{j} \mathbf{H}]\left[\mathrm{HCl}_{2}\right]$, and for the o-tolyl rings in $\mathbf{2 g} v s . \mathbf{2 h}$.

2.5 - Transformations of 1,2,4-Benzothiadiazine 1-Chlorides

The relatively short synthetic pathway and tolerance to substitution that is offered by Route 3, presents the opportunity to synthesise previously unknown or inaccessible 1,2,4-benzothiadiazines in different oxidation states. For example, the reaction of 1,2,4benzothiadiazine 1 -chlorides with two equivalents of morpholine gives the corresponding 1-morpholino derivative, ${ }^{10}$ whilst reduction with p-chlorothiophenol or 1-propanethiol affords the $S^{I I}$ benzothiadiazine. ${ }^{6}$ Besides the hydrolysis or one electron reduction of the $\mathrm{S}^{\text {IV }}$ chlorides, further transformations of these species have not been explored.

2.5.1 - Anion Metathesis

Anion metathesis reactions of S-N heterocyclic cations are typically performed to improve solubility and therefore yield higher purity material after recrystallization. Classically employed metathesis agents include AlCl_{3} and the sodium or silver salts of $\mathrm{BF}_{4}, \mathrm{ClO}_{4}-\mathrm{AsF}_{6}$ and PF_{6} although GaCl_{3} and OTf salts are now also commonly used. ${ }^{17,29,34}$ Anion metathesis reactions may also be used to probe the degree of covalency of S-Cl bond, with shorter and more covalent S-Cl bonds being less likely to undergo metathesis reactions than the ionic chloride salts. A general scheme for the proposed metathesis of 1,2,4-benzothiadiazine 1 -chlorides is shown in Scheme 2.5.1.1.

Scheme 2.5.1.1: Metathesis of 1,2,4-benzothiadiazine 1-chlorides.
The addition of GaCl_{3} to a suspension of 2a in DCM immediately afforded a dark purple solution of [4a] $\mathbf{G a C l}_{4}$. The ${ }^{1} \mathrm{H}$ NMR data differs significantly from the parent chloride, with the sole fused-ring proton being shifted $c a .1 \mathrm{ppm}$ downfield on removal of the chloride indicative of the increased electron withdrawing effects from the formal positive charge at sulfur. Crystallisation of the product from DCM and hexane confirmed its proposed identity.

Compound [4a]GaCl ${ }_{4}$ crystallises as purple hexagonal plates in the monoclinic space group $P 2_{1} / c$ with a single ion pair in the asymmetric unit (Figure 2.5.1.1). The molecule is essentially planar with only minor deviations from planarity for the heterocyclic (2.03°) and pendant phenyl ring (1.93°) with respect to the benzo-fused ring. This also leads to much smaller N1-C1-C8-C13 and N2-C1-C8-C9 torsion angles (0.36(6) ${ }^{\circ}$ and $2.57(6)^{\circ}$ respectively) compared to the 1,2,4-benzothiadiazine 1 -chlorides. Two long cation-anion interactions of $3.341(1) \AA$ and $3.463(1) \AA$ are observed between S1 and the chlorine atoms of two adjacent GaCl_{4} anions.
a)

b)

Figure 2.5.1.1: Crystal structure of [4a]GaCl4: a) Top-down view. b) Side view. Anion omitted for clarity.

Attempts to prepare [4]0Tf derivatives by treatment of 2a with TMSOTf were unsuccessful, yielding a dark red solid which was extremely insoluble in all organic solvents. SCXRD analysis of poor quality crystals grown by slow cooling of a saturated SOCl_{2} solution showed the formation of the N-protonated OTf salt, [2a.H]OTf (Figure 2.5.1.2). The true nature of the compound prior to treatment with thionyl chloride
however is unknown. In contrast, the treatment of $\mathbf{2 a}$ with $\mathrm{NaBAr}^{\mathrm{Cl}}$ in DCM resulted in a deep blue EPR active solution consistent with the formation of the neutral SIII benzothiadiazinyl radical, 3a. More oxidatively stable fluorinated tetra-aryl boronates were not explored.

[2a.H]OTf
Figure 2.5.1.2: Isolated compound from the treatment of 2a with TMSOTf.

2.5.2 - Hydrolysis

1,2,4-benzothiadiazine 1 -oxides are known to be formed from the hydrolysis of the corresponding Siv chlorides. ${ }^{10,12}$ 1,2,4-benzothiadiazine 1 -oxides have received considerably less attention than $\mathrm{S}^{\text {II }}$ benzothiadiazines since published attempts to reduce them to the $S^{\text {III }}$ benzothiadiazinyl radical have shown poor success; ${ }^{10}$ they can however be readily converted to S^{VI} species such as the 1,1-dioxide or 1-oxo-1fluoride. ${ }^{35}$ Since the hydrolysis is essentially reversible, conversion of 1,2,4benzothiadiazine 1 -oxides derived via alternative routes to the corresponding 1,2,4benzothiadiazine 1-chlorides, may allow the synthesis of derivatives inaccessible via the standard routes. This therefore offers the potential to synthesise non-chlorinated (at carbon) derivatives or those with sensitive substituents.

Although the hydrolysis of 1,2,4-benzothiadiazine 1-chlorides to give the corresponding 1 -oxides has been documented, ${ }^{10,12}$ this was merely reported as an observation and no procedure or conditions for a controlled hydrolysis accompanied the statement. Initial attempts to controllably hydrolyse 2a with aqueous base showed limited success and consistently gave a low yield of light green oil containing a mixture of products on concentration of the organic extracts. When $2 \mathbf{2 a}$ was suspended in wet methanol, an off-white, poorly soluble solid readily formed, assigned as $\mathbf{5 a} \mathbf{~ H C l}$ (Figure 2.5.2.1). Attempts to deprotonate this species with triethylamine, aqueous NaOH or $\mathrm{K}_{2} \mathrm{CO}_{3}$ however were unsuccessful. Attempts to convert this species back to 2a via dehydration were not performed.

5a. HCl

Scheme 2.5.2.1: Protonated hydrolysis product.

2.6 - S-Aryl 1,2,4-Benzothiadiazines

The facile synthesis of Siv $^{\text {IV }}$ 1,2,4-benzothiadiazines bearing alkyl, aryl and amido substituents at sulfur directly from N-arylamidines was first reported in 1978 by Rees and coworkers, ${ }^{36}$ and further expanded in 1983.37 The preparation of S-aryl derivatives from sulfenyl chlorides in the presence of N-chlorosuccinimide, followed by a basic aqueous work-up, gives the fused-ring $S^{\text {IV }}$ heterocycles in good yield (Figure 2.6.1). The required sulfenyl chlorides can conveniently be prepared in situ by treatment of corresponding disulphide with $\mathrm{SO}_{2} \mathrm{Cl}_{2}$.

Scheme 2.6.1: Synthesis of S-aryl substituted 1,2,4-benzothiadiazines.
S-alkyl benzothiadiazines can be prepared in the same way, whilst amido-substituted derivatives use sulfoxylic diamides or sulfenamides as the source of sulfur. Appropriately substituted S-alkyl and S-amido species may undergo thermally induced cycloelimination reactions to afford the $S^{\text {II }}$ benzothiadiazines (Scheme 2.6.2). This presents a more direct approach to S^{II} analogues that typically require cumbersome and multi-step syntheses.

Scheme 2.6.2: Conversion to SII 1,2,4-benzothiadiazines.

The S-aryl benzothiadiazines are of particular interest since the introduction of a 2 pyridyl moiety at sulfur presents the opportunity to develop new bidentate or tridentate chelating ligands. Hitherto unknown SIV chlorides should be accessible by the treatment of S-amido benzothiadiazines with anhydrous acid (Scheme 2.6.3), in a
reaction analogous to the deprotection of phosphorus-nitrogen bonds, ${ }^{38}$ giving access to unchlorinated (at carbon) derivatives

Scheme 2.6.3: Conversion of S-amido 1,2,4-benzothiadiazines to $S^{\text {IV }} 1$-chlorides.

2.6.1 - Structural Studies of S-Aryl 1,2,4-Benzothiadiazines

Independent syntheses of $\mathbf{6 m} \mathbf{m}$ were carried out according to Scheme 2.6.1.1 to probe the solid-state structure of the S-aryl benzothiadiazines. These were both isolated as pale yellow crystalline solids that were stable to air and moisture.

Scheme 2.6.1.1: Synthesis of S-aryl substituted 1,2,4-benzothiadiazines.

2.6.1.1 - Crystal Structure of $\mathbf{6 m}$

Compound $\mathbf{6 m}$ crystallises as pale yellow blocks in the monoclinic space group $P 2_{1} / n$ with a single molecule in the asymmetric unit (Figure 2.6.1.1.1). The heterocyclic ring adopts a bent conformation, folded along the $\mathrm{S} 1 \cdots \mathrm{~N} 2$ axis and deviates significantly from planarity with respect to the benzo-fused ring at 26.69°. The N1-C1-C8-13 and N2-C1-C8-C9 torsion angles are small (3.56(2) ${ }^{\circ}$ and $2.05(2)^{\circ}$ respectively) but the pendant aryl-ring is non-planar with the heterocyclic ring, deviating by 7.44°. The S phenyl ring is essentially perpendicular with the mean plane of the heterocyclic ring $\left(88.22^{\circ}\right)$ with a N2-S1-C $\mathrm{C}_{i p s o}$ angle of $92.49(5)^{\circ}$. The S-phenyl ring is considerably twisted with a N1-S1-C $\mathrm{C}_{\text {ispo }}-\mathrm{C}_{\text {ortho }}$ torsion of $24.22(1)^{\circ}$ whilst the $\mathrm{S}-\mathrm{C}_{\text {ipso }}$ bond length at $1.808(1) \AA$ is slightly elongated compared to a typical $\mathrm{S}^{\text {IV }}-\mathrm{C}_{A r}$ single bond $(1.790 \AA) .{ }^{36}$
a)

b)

Figure 2.6.1.1.1: Crystal structure of $\mathbf{6 m}$: a) Top-down view. b) Side view.

2.6.1.2 - Crystal Structure of $\mathbf{6 n}$

Compound $\mathbf{6 n}$ crystallises as pale yellow blocks in the monoclinic space group $P 2_{1} / n$ with a single molecule in the asymmetric unit (Figure 2.6.1.2.1). The heterocyclic ring again adopts a bent conformation, folded along the S1 $\cdots \mathrm{N} 2$ axis, but deviates from planarity with respect to the fused-ring to a lesser extent compared to $\mathbf{6 m}\left(17.62^{\circ}\right.$ vs. 26.69°). The pendant aryl-ring however is significantly twisted; the deviation from coplanarity compared to the heterocyclic ring is 32.11° and the $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 8-13$ and $\mathrm{N} 2-$ C1-C8-C9 torsion angles are $29.22(2)^{\circ}$ and $24.19(2)^{\circ}$ respectively. Again, the S-phenyl ring is essentially perpendicular with the mean plane of the heterocyclic ring (88.02°) but the $\mathrm{N} 2-\mathrm{S} 1-\mathrm{C}_{\text {ipso }}$ angle is $98.05(5)^{\circ}$. The S-phenyl ring is less twisted compared to $\mathbf{6 m}$ with a $\mathrm{N} 1-\mathrm{S} 1-\mathrm{C}_{\text {ispo }}-\mathrm{C}_{\text {ortho }}$ torsion of $9.19(1)^{\circ}$ and the $\mathrm{S}-\mathrm{C}_{\text {ipso }}$ bond length is marginally shorter at $1.803(1) \AA$, but still longer than a typical SIV $-\mathrm{C}_{A r}$ single bond ($1.790 \AA$). ${ }^{36}$
a)

b)

Figure 2.6.1.2.1: Crystal structure of $\mathbf{6 n}$: a) Top-down view. b) Side view.

2.6.2-N-Methylation

The treatment of $\mathbf{6 n}$ with one equivalent of MeOTf in DCM (Scheme 2.6.2.1) leads to an immediate loss of colour and clean conversion to [7n]OTf. The position of N methylation could not be easily assigned via 2D NMR experiments but was successfully determined by SCXRD analysis.

Scheme 2.6.2.1: N-methylation of S-aryl 1,2,4-benzothiadiazines.
Compound [7n]0Tf crystallises as colourless plates in the triclinic space group $P \overline{1}$ with a single ion pair in the asymmetric unit (Figure 2.6.2.1). The heterocyclic ring is severely distorted and folded along the $\mathrm{S} 1 \cdots \mathrm{~N} 2$ axis; the deviation from planarity with respect to the benzo-fused ring is 35.04°. The pendant aryl ring is considerably twisted to minimise steric hindrance with the N-methyl group and deviates from coplanarity of the heterocyclic ring by 43.83° with N1-C1-C8-13 and N2-C1-C8-C9 torsion angles of $36.66(2)^{\circ}$ and $33.63(2)^{\circ}$ respectively. The S-phenyl ring is again close to perpendicular relative to the mean plane of the heterocyclic ring $\left(86.07^{\circ}\right)$ and the $\mathrm{N} 2-\mathrm{S} 1-\mathrm{C}_{\text {ipso }}$ angle is $84.48(5)^{\circ}$. The S-phenyl ring is also twisted considerably compared to $\mathbf{6 n}$ such that the N1-S1- $\mathrm{C}_{\text {ispo }}-\mathrm{C}_{\text {ortho }}$ torsion angle is $58.66(1)^{\circ}$ and the $\mathrm{S}_{\mathrm{C}} \mathrm{C}_{\text {ipso }}$ distance contracts (1.793(1) \AA A). A close contact is observed between S 1 and one of the oxygens of the OTf anion (2.813(1) \AA) within the sum of the van der Waals radii $(3.22 \AA)^{30}$ which suggests that this structure is better described as a sulfur cation.
a)

b)

Figure 2.6.2.1: Crystal structure of [7n]0Tf: a) Top-down view. b) Side view. Counterion omitted for clarity.

Attempts to reduce $[\mathbf{7 n}] \mathbf{O T f}$ to the neutral $\mathrm{S}^{\text {III }}$ radical with ferrocene afforded a green solution that swiftly discoloured before any EPR spectroscopic measurements could be taken. Electrochemical studies should first be performed to determine if this radical is accessible and sufficiently long-lived, followed by controlled reductions under more rigorous conditions.

2.7-Conclusions

Substituted 1,2,4-benzothiadiazines 1 -chlorides are readily prepared by the treatment of N-arylamidines with neat thionyl chloride. Whilst the harsh ring-closing conditions result in partial chlorination of the benzo-fused ring and methyl groups at C3 and C4, the relatively short synthetic pathway and tolerance to substitution make this a versatile route to the $S^{\text {IV }}$ chlorides as precursors to the $S^{\text {III }}$ radicals. The $1,2,4-$ benzothiadiazine framework is extremely flexible as it allows fine-tuning of the substituents around the fused-ring and pendant groups; this has important implications for crystal engineering and the physical properties of the corresponding radical.

The crystallographically characterised benzothiadiazine 1 -chlorides show considerable variation in the degree of planarity of the heterocyclic ring and pendant aryl ring with respect to the fused-ring. In the case of o-tolyl substituted $\mathbf{2 g}$-h systems, the deviation away from coplanarity was severe; this may potentially be exploited to develop neutral benzothiadiazinyl radicals that suppress dimerisation in the solid-state (vide infra). The range of S-Cl bond lengths observed weakly correlate with the electronic donating or withdrawing ability of substituents, although external packing forces are also likely to be an influencing factor. Despite showing significant covalency in the solid-state, the $\mathrm{S}-\mathrm{Cl}$ bonds undergo halide abstraction with GaCl_{3}, whilst $\mathrm{NaBArcl}^{\mathrm{Cl}}$ resulted in reduction to the neutral radical.

Attempts to prepare the 1,2,4-benzothiadiazine 1 -oxides via controlled hydrolysis of the $S^{\text {IV }}$ chlorides were unsuccessful. Further work is thus necessary to optimise the reaction conditions for this transformation, as well as the reconversion of the $S^{\text {IV }} 1$ oxides back to $S^{\text {IV }}$ chlorides. The synthesis of S-aryl 1,2,4-benzothiadiazines operates under mild conditions and may potentially be exploited to prepare hitherto inaccessible $\mathrm{S}^{\text {II }}$ and $\mathrm{S}^{\text {IV }}$ species.

2.8 - Experimental

2.8.1 - Synthesis of Amidines

The substituted N-arylamidines 1a-o were prepared via standard methods through condensation of lithiated anilines with suitable carbonitriles, followed by aqueous work-up. ${ }^{22}$ Compound 1p was synthesised by Lewis-acid mediated condensation in the melt. ${ }^{23}$ The syntheses of $\mathbf{1 a}$ and $\mathbf{1 p}$ are given as exemplars. All amidines were isolated as colourless crystalline solids in good yield. 4-methoxybenzonitrile was prepared according to known literature procedures. ${ }^{39}$

2.8.1.1 - Synthesis of N-phenylbenzamidine, 1a:

Aniline ($4.56 \mathrm{~cm}^{3}, 50 \mathrm{mmol}$) was dissolved in THF ($50 \mathrm{~cm}^{3}$) and nBuLi in hexane (20 $\mathrm{cm}^{3}, 2.5 \mathrm{M}, 50 \mathrm{mmol}$) was added dropwise at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to slowly to warm to room temperature and stir for 1 hour. Benzonitrile ($4.84 \mathrm{~cm}^{3}, 50$ mmol) was then added yielding a straw-coloured solution thick with off-white precipitate. After 12 hours, the mixture was quenched with ice water ($50 \mathrm{~cm}^{3}$) and the organics extracted into DCM ($3 \times 50 \mathrm{~cm}^{3}$). The combined organic extracts were washed with water and brine ($50 \mathrm{~cm}^{3}$ each), dried over MgSO_{4}, filtered and concentrated in vacuo. The off-white solids were recrystallized from DCM and hexanes and stored at $20^{\circ} \mathrm{C}$ for two hours. The colourless microcrystalline powder was collected at the pump, washed with cold hexanes and dried in vacuo. Yield - 8.80 g ($44.8 \mathrm{mmol}, 89.7 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, DCM, $19.8^{\circ} \mathrm{C}$) $\delta: 7.87(\mathrm{bs}, 2 \mathrm{H}), 7.45(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $\left.7.04(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~} \mathbf{1}^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}(100.5 \mathrm{MHz}$, DCM, $18.4^{\circ} \mathrm{C}$) $\delta: 154.4,150.2,136.0,130.6,129.6,128.5,126.8,122.9,121.5$.

Analytical data in accordance with the literature. ${ }^{40-42}$

2.8.1.2 - Synthesis of N-(o-tolyl)-benzamidine, 1b:

Colourless needles, 70.8 \% yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 19.3^{\circ} \mathrm{C}$) $\delta: 7.89(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.46(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=7.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{t}, J=7.3 \mathrm{~Hz}$, 1H), 6.82 (d, $J=7.8 \mathrm{~Hz}$), 4.76 (bs, 2H), 2.15 (s, 3H). $\left.{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~} \mathbf{1} \mathbf{H}\right\} \mathbf{N M R}(100.5 \mathrm{MHz}, \mathrm{DCM}$, $18.5^{\circ} \mathrm{C}$) $\delta: 153.5,148.5,135.9,130.8,130.5,129.6,128.5,126.9,126.8,123.0,120.8$, 17.5.

Analytical data in accordance with the literature. ${ }^{42,43}$

2.8.1.3 - Synthesis of \boldsymbol{N}-(2,3-dimethylphenyl)-benzamidine, 1c:

Colourless needles, 86.8 \% yield. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 19.8^{\circ} \mathrm{C}$) $\delta: 7.90(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.47(\mathrm{~m}, 3 \mathrm{H}), 7.05(\mathrm{t}, J=7.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=7.8 \mathrm{~Hz}$,

1H), 4.72 (bs, 2H), $2.28(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathrm{H}\right\} \mathbf{N M R}\left(100.5 \mathrm{MHz}, \mathrm{DCM}, 18.4{ }^{\circ} \mathrm{C}\right) \delta:$ $153.5,148.3,138.1,136.0,130.5,128.5,128.0,126.8,126.2,124.6,118.5,20.3,13.4$.

Analytical data in accordance with the literature. ${ }^{41,44}$

2.8.1.4 - Synthesis of \boldsymbol{N}-(2,5-dimethylphenyl)-benzamidine, 1 d :

Colourless needles, 78.7 \% yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 19.8^{\circ} \mathrm{C}$) $\delta: 7.89(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, 2H), 7.46 (m, 3H), 7.09 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.79$ (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 4.75$ (bs, $1 \mathrm{H}), 2.29$ (s, 3H), $2.10(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}\{\mathbf{1} \mathbf{H}\}$ NMR ($100.5 \mathrm{MHz}, \mathrm{DCM}, 18.3^{\circ} \mathrm{C}$) $\delta: 153.5,148.3$, 136.6, 136.0, 130.6, 130.5, 128.5, 126.8, 126.3, 123.7, 121.4, 20.9, 17.0.

Analytical data in accordance with the literature. ${ }^{41}$

2.8.1.5 - Synthesis of \boldsymbol{N}-(3,5-dimethylphenyl)-benzamidine, 1e:

Colourless needles, 77.8 \% yield. $\mathbf{1}^{\mathbf{H}}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 19.9{ }^{\circ} \mathrm{C}$) $\delta: 7.85(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, 2H), 7.45 (m, 3H), 6.70 (s, 1H), 6.55 (s, 2H), 4.89 (bs, 2H), 2.29 (s, 6H). $\left.{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{C}{ }^{\mathbf{1}} \mathrm{H}\right\}$ NMR (100.5 MHz, DCM, $18.4^{\circ} \mathrm{C}$) $\delta: 154.2,150.0,139.3,136.1,130.5,128.5,126.8,124.6$, 119.0, 21.2 .

Analytical data in accordance with the literature. ${ }^{41,42}$

2.8.1.6 - Synthesis of \boldsymbol{N}-(3-methoxyphenyl)-benzamidine, 1f:

Synthesised in the absence of light. Colourless microcrystalline solid, 64.5% yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, DCM, $\left.17.1^{\circ} \mathrm{C}\right) \delta: 7.86(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.60(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.93(\mathrm{bs}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathrm{H}\right\}$ NMR (100.5 MHz, DCM, $18.4^{\circ} \mathrm{C}$) $\delta: 161.0,154.3,151.7,135.9,130.6,130.4,128.5,126.8$, 113.7, 108.7, 107.0, 55.3.

Analytical data in accordance with the literature. ${ }^{44,45}$

2.8.1.7 - Synthesis of N-phenyl-2-methylbenzamidine, 1 g :

Colourless microcrystalline solid, 62.8 \% yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 18.7{ }^{\circ} \mathrm{C}$) δ : 7.28 (m, 6H), 6.95 (bs, 3H), 4.84 (bs, 2H), 2.50 (bs, 3H). ${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}(100.5 \mathrm{MHz}, \mathrm{DCM}$, $18.8^{\circ} \mathrm{C}$) $\delta: 156.2,149.6,137.2,135.7,130.7,129.3,129.1,127.9,125.7,122.6,121.6$, 19.6.

Analytical data in accordance with the literature. ${ }^{42}$
2.8.1.8 - Synthesis of \boldsymbol{N}-(2,3-dimethylphenyl)-2-methylbenzamidine, 1 h :

Colourless microcrystalline solid, 66.1 \% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 18.8{ }^{\circ} \mathrm{C}$) δ : 7.49 (bs, 1H), 7.28 (m, 3H), 7.06 (bs, 1H), 6.87 (bs, 1H), 6.73 (bs, 1H), 2.55 (s, 3H), 2.30
(s, 3H), $\left.2.14(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~}{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(100.5 \mathrm{MHz}, \mathrm{DCM}, 19.0^{\circ} \mathrm{C}\right) \delta: 155.3,148.1,138.0$, $137.4,135.9,130.8,129.1,128.0,126.3,125.8,124.5,118.6,20.3,19.8,13.6$.

2.8.1.9 - Synthesis of N-phenylisonicotinamidine, 1 i :

Colourless microcrystalline powder, 87.9 \% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 18.4^{\circ} \mathrm{C}$) δ : $8.68(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=6.4,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{t}, J=6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.01(\mathrm{bs}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{\mathbf{1}^{\mathbf{H}} \mathbf{H}\right\} \mathbf{N M R}\left(100.5 \mathrm{MHz}, \mathrm{DCM}, 18.7^{\circ} \mathrm{C}\right)$ $\delta: 152.4,150.4,149.5,143.2,129.7,123.4,121.2,121.0$.

2.8.1.10 - Synthesis of \boldsymbol{N}-(2,3-dimethylphenyl)-isonicotinamidine, $\mathbf{1 j}$:

Colourless microcrystalline powder, 84.5 \% yield. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 18.8^{\circ} \mathrm{C}$) δ : $8.68(\mathrm{~d}, J 4.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{t}, J=7.3,7.8 \mathrm{~Hz} .1 \mathrm{H}), 6.89(\mathrm{~d}, J=7.3$
 (100.5 MHz, $\mathrm{DCM}^{2} 18.8^{\circ} \mathrm{C}$) $\delta: 151.6,150.4,147.6,143.1,138.2,127.8,126.3,125.0$, 121.0, 118.1, 20.2, 13.4 .

2.8.1.11 - Synthesis of N-phenyl-4-methoxybenzamidine, 1 k :

Colourless microcrystalline powder, 77.0 \% yield. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 19.6^{\circ} \mathrm{C}$) δ : $7.82(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=6.6,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{t}, J=6.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{t}, J=$ $7.3,8.2 \mathrm{~Hz}, 4 \mathrm{H}$), 4.81 (bs, 2H), $\left.3.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~} \mathbf{}^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(100.5 \mathrm{MHz}, \mathrm{DCM}, 19.2^{\circ} \mathrm{C}\right) \delta:$ 161.6, 153.7, 150.4, 129.6, 128.3, 122.7, 121.6, 113.7, 55.5.

Analytical data in accordance with the literature. $22,42,45$

2.8.1.12 - Synthesis of N-(2,3-dimethylphenyl)-4-methoxybenzamidine, 11:

Colourless microcrystalline powder, 73.7 \% yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 18.3^{\circ} \mathrm{C}$) δ : $7.85(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{t}, J=7.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{bs}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR (100.5 MHz, DCM, $19.3^{\circ} \mathrm{C}$) $\delta: 161.6,153.0,148.5,138.0,128.3,128.1$, $126.2,124.4,118.7,113.7,55.5,20.3,13.4$.
2.8.1.13 - Synthesis of N-(p-tolyl)-benzamidine, 1 m :

Colourless needles, 70.8 \% yield. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 19.3^{\circ} \mathrm{C}$) $\delta: 7.89(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}$, $2 H), 7.46(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=7.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{t}, J=7.3 \mathrm{~Hz}$, 1H), 6.82 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.91 (bs, 2H), 2.16 (s, 3H). $\left.{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~} \mathbf{1} \mathbf{H}\right\} \mathbf{N M R}(100.5 \mathrm{MHz}, \mathrm{DCM}$, $19.3^{\circ} \mathrm{C}$) $\delta: 153.5,148.5,135.9,130.8,130.5,129.6,128.5,126.9,126.8,123.0,120.8$, 17.5 .

Analytical data in accordance with the literature. ${ }^{42,44}$

2.8.1.14 - Synthesis of \boldsymbol{N}-(2,4-dimethylphenyl)-benzamidine, 1 n :

Colourless needles, 72. \% yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 18.9^{\circ} \mathrm{C}$) $\delta: 7.87(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, 2H), $7.45(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.78$ (bs, $2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}\{\mathbf{1} \mathbf{H}\} \mathbf{N M R}\left(100.5 \mathrm{MHz}, \mathrm{DCM}, 18.9^{\circ} \mathrm{C}\right) \delta: 153.8,145.7$, 136.0, 132.3, 131.5, 130.4, 129.3, 128.5, 127.5, 126.8, 120.7, 20.7, 17.5.

Analytical data in accordance with the literature. ${ }^{42}$

2.8.1.15 - Synthesis of \boldsymbol{N}-(2-biphenyl)-benzamidine, 10 :

Colourless needles, 67.5 \% yield. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 19.3^{\circ} \mathrm{C}$) $\delta: 7.70(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.50(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.29(\mathrm{~m}, 7 \mathrm{H}), 7.24(\mathrm{t}, J=7.3,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{bs}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{\mathbf{1}^{\mathbf{H}} \mathbf{H}\right\} \mathbf{N M R}\left(100.5 \mathrm{MHz}, \mathrm{DCM}, 19.7^{\circ} \mathrm{C}\right)$ $\delta: 153.7,147.4,140.4,135.9,133.9,130.9,130.5,129.1,128.7,128.5,127.9,126.8$, 126.7, 123.5, 122.1.

2.8.1.16 - Synthesis of N-phenylpivalamidine, 1p:

Aniline ($2.05 \mathrm{~cm}^{3}, 22.5 \mathrm{mmol}$), pivalonitrile ($2.49 \mathrm{~cm}^{3}, 22.5 \mathrm{mmol}$) and $\mathrm{AlCl}_{3}(3.00 \mathrm{~g}$, 22.5 mmol) were combined and heated to $130^{\circ} \mathrm{C}$ under argon. After 1 hour, the molten mixture was poured into a 12.5% aqueous $\mathrm{NaOH}\left(50 \mathrm{~cm}^{3}\right)$ and ice (50 g) mixture, and allowed to stir for 15 minutes. The suspension was extracted into DCM ($3 \times 50 \mathrm{~cm}^{3}$) and the combined organic extracts were washed with water and brine ($50 \mathrm{~cm}^{3} \mathrm{each}$), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude solids were recrystallised from DCM and hexanes, and stored at $-20^{\circ} \mathrm{C}$ for 2 hours. The colourless needles were collected at the pump, washed with cold hexanes and dried in vacuo. Yield: $1.63 \mathrm{~g}(9.25 \mathrm{mmol}, 41.0 \%) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 25.0^{\circ} \mathrm{C}$) $\delta: 7.28(\mathrm{t}, J=7.6$, $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.38(\mathrm{bs}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR (100.5 MHz, DCM, $25.0^{\circ} \mathrm{C}$) $\delta: 164.1,150.9,129.5,122.3,121.4,36.9,28.4$.

Analytical data in accordance with the literature. ${ }^{46}$

2.8.1.17 - Attempted Synthesis of 1q via Base-Catalysed Pinner reaction:

4-Nitrobenzonitrile ($1.00 \mathrm{~g}, 6.75 \mathrm{mmol}$) was degassed, flushed with argon and dissolved in a freshly prepared solution of MeONa (3.48 mmol) in anhydrous MeOH (20 cm^{3}). The pale peach solution was heated and maintained at reflux for 12 hours. Once cooled, the reaction was quenched with glacial acetic acid ($0.2 \mathrm{~cm}^{3}, 3.48 \mathrm{mmol}$) and allowed to stir for 1 hour. Aniline ($0.63 \mathrm{~cm}^{3}, 6.75 \mathrm{mmol}$) was added and the solution was returned to reflux for 16 hours. The solvent was removed in vacuo, and the residues were redissolved in DCM ($50 \mathrm{~cm}^{3}$). The organic extracts were washed with
water, saturated NaHCO_{3} solution and brine ($25 \mathrm{~cm}^{3}$ each) , dried over MgSO_{4}, filtered and evaporated to dryness yielding 0.58 g of pale amber liquid that was identified as aniline by ${ }^{1} \mathrm{H}$ NMR.

2.8.1.18 - Attempted Synthesis of 1q via Acid-Catalysed Pinner reaction:

4-Methoxybenzonitrile ($1.00 \mathrm{~g}, 6.75 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}\left(25 \mathrm{~cm}^{3}\right)$ and cooled to $0{ }^{\circ} \mathrm{C}$. TMSCl ($2.5 \mathrm{~cm}^{3}, 19.70 \mathrm{mmol}$) was added dropwise and the solution was slowly warmed to room temperature, then heated to reflux and maintained for 18 hours. The volatiles were removed in vacuo and the residues were redissolved in fresh MeOH (25 cm^{3}). Aniline ($0.63 \mathrm{~cm}^{3}, 6.75 \mathrm{mmol}$) was added and the bronze solution was returned to reflux for 20 hours. The solvent was removed in vacuo, and the residues were dissolved in DCM ($50 \mathrm{~cm}^{3}$). The organic extracts were washed with water, saturated NaHCO_{3} solution and brine ($25 \mathrm{~cm}^{3}$ each), dried over MgSO_{4}, filtered and evaporated to dryness yielding an off-white oily solid. Recrystallisation from DCM and hexanes afforded 0.41 g of colourless crystals that were identified as methyl-2,4dihydroxybenzoate by ${ }^{1} \mathrm{H}$ NMR and SCXRD.

2.8.2 - Synthesis of 1,2,4-Benzothiadiazine 1-Chlorides

The $\mathrm{S}^{\text {IV }}$ heterocycles were prepared by refluxing the corresponding N-arylamidine in excess thionyl chloride. The synthesis of $\mathbf{2 a}$ is given as exemplar. Crystals suitable for X-ray diffraction studies were grown via slow diffusion of hexane into a saturated solution of the product in SOCl_{2}. NMR spectra recorded in SOCl_{2} were arbitrarily referenced to $\mathrm{DMSO}-d_{6}$ in the capillary

2.8.2.1 - Synthesis of 1,5,6,7-tetrachloro-3-phenyl-benzo-1,2,4-thiadiazine, 2a:

1a ($1.500 \mathrm{~g}, 7.64 \mathrm{mmol}$) was degassed, flushed with argon and cooled to $-95^{\circ} \mathrm{C}$. SOCl_{2} ($15 \mathrm{~cm}^{3}, 207 \mathrm{mmol}$) was added slowly and the reaction mixture was gradually warmed to room temperature then heated at reflux for 12 hours. Once cooled to room temperature, hexane ($30 \mathrm{~cm}^{3}$) was added with rapid stirring producing a fine orange precipitate. The supernatant was removed via filter cannula and the solids were washed with hexane ($2 \times 10 \mathrm{~cm}^{3}$) then dried in vacuo. Yield: $1.980 \mathrm{~g}(5.44 \mathrm{mmol}$, 71.1 \%). Anal. Calc. for $\mathrm{C}_{13} \mathrm{H}_{6} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{~S}$: C, 42.9; H, 1.7; N, 7.7. Found: C, 42.7; H, 1.8; N, 7.4. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{SOCl}_{2}, 19.4^{\circ} \mathrm{C}$) $\delta: 8.46(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~m}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (100.5 MHz, SOCl $_{2}, 18.7^{\circ} \mathrm{C}$) $\delta: 158.3,140.4,139.5,135.3,134.6,132.9$, 132.6, 129.2, 128.7, 122.1, 116.5.
2.8.2.2 - Synthesis of 1,6,7-trichloro-5-(chloromethyl)-3-phenyl-benzo-1,2,4thiadiazine, 2b:

Orange solid, 60.8 \% yield. Anal. Calc. for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{~S}$: C, 44.5 ; H, 2.1;, N, 7.4. Found: C, 44.3; H, 2.1; N, 7.5. 1H NMR ($400 \mathrm{MHz}, \mathrm{SOCl}_{2}, 18.4^{\circ} \mathrm{C}$) $\delta: 8.43(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), $8.01(\mathrm{~s}$, $1 \mathrm{H}), 7.53(\mathrm{~m}, 3 \mathrm{H}), 5.36(\mathrm{~s}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathrm{H}\right\} \mathbf{N M R}\left(100.5 \mathrm{MHz}, \mathrm{SOCl}_{2}, 18.6^{\circ} \mathrm{C}\right) \delta: 141.7,141.4$, $136.6,135.6,132.7,132.6,129.0,128.8,124.3,116.3,37.2$.
2.8.2.3 - Synthesis of 1,7-dichloro-5,6-bis(chloromethyl)-3-phenyl-benzo-1,2,4thiadiazine, 2c:

Orange solid, 75.9 \% yield. Anal. Calc. for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{~S}$: C, 45.9; H, 2.6; N, 7.1. Found: C, 45.8; H, 2.4; N, 7.2. ${ }^{\mathbf{1} H}$ NMR ($400 \mathrm{MHz}, \mathrm{SOCl}_{2}, 19.6^{\circ} \mathrm{C}$) $\delta: 8.44$ (d, J = $8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.97 (s, $\left.1 \mathrm{H}), 7.52(\mathrm{~m}, 3 \mathrm{H}), 5.38(\mathrm{~s}, 2 \mathrm{H}), 4.96(\mathrm{~s}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~} \mathbf{1} \mathbf{H}\right\} \mathbf{N M R}\left(100.5 \mathrm{MHz}, \mathrm{SOCl}_{2}, 19.6^{\circ} \mathrm{C}\right) \delta:$ $157.5,142.4,141.3,137.9,135.6,134.0,132.6,129.0,128.7,124.4,118.1,38.6,35.2$.
2.8.2.4 - Synthesis of 1,6,7-trichloro-5-(chloromethyl)-8-methyl-3-phenyl-benzo-1,2,4-thiadiazine, 2d:
Pale yellow solid, 30.9 \% yield. Anal. Calc. for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{~S}$: C, 45.9; H, 2.6; N, 7.1. Found: C, 45.7; H, 2.6; N, 7.2. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{SOCl}_{2}, 16.6^{\circ} \mathrm{C}$) $\delta: 8.44(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $\left.2 \mathrm{H}), 7.52(\mathrm{~m}, 3 \mathrm{H}), 5.37(\mathrm{~s}, 2 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~} \mathbf{1}^{\mathbf{H}} \mathbf{H}\right\} \mathbf{N M R}\left(100.5 \mathrm{MHz}, \mathrm{SOCl}_{2}, 19.1^{\circ} \mathrm{C}\right) \delta:$ $157.5,141.8,141.6,135.5,133.9,133.5,133.0,132.7,129.0,128.8,116.8,37.7,16.7$.
2.8.2.5 - Synthesis of 1,5,7-trichloro-6-(chloromethyl)-8-methyl-3-phenyl-benzo-1,2,4-thiadiazine, 2e:
Orange solid, 39.8 \% yield. Anal. Calc. for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{~S}: \mathrm{C}, 45.9 ; \mathrm{H}, 2.6 ; \mathrm{N}, 7.1$. Found: C, 45.8; H, 2.4; N, 7.3. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{SOCl}_{2}, 17.7^{\circ} \mathrm{C}$) $\delta: 8.49(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~m}$, $3 \mathrm{H}), 5.07$ ($\mathrm{s}, 2 \mathrm{H}$), $2.81(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}\{\mathbf{1} \mathbf{H}\} \mathbf{N M R}\left(100.5 \mathrm{MHz}, \mathrm{SOCl}_{2}, 18.7^{\circ} \mathrm{C}\right) \delta: 157.6,140.6$, $139.6,135.2,134.3,133.4,132.8,130.7,129.1,128.8,119.0,41.3,16.0$.
2.8.2.6 - Synthesis of 1,5,6,7-tetrachloro-8-methoxy-3-phenyl-benzo-1,2,4thiadiazine, 2f:
Red solid, 45.5 \% yield. Anal. Calc. for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{OS}$: C, 42.7; H, 2.0; N, 7.1. Found: C, 42.5; H, 1.9; N, 7.2. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{SOCl}_{2}, 18.5^{\circ} \mathrm{C}$) $\delta: 8.47(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~m}$, $\left.3 \mathrm{H}), 4.24(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{[} \mathbf{1} \mathbf{H}\right\} \mathbf{N M R}\left(100.5 \mathrm{MHz}, \mathrm{SOCl}_{2}, 18.3^{\circ} \mathrm{C}\right) \delta: 159.1,149.3,140.6,140.4$, $135.4,132.8,129.2,128.7,124.7,112.5,62.4$.
2.8.2.7-Synthesis of 1,5,6,7-tetrachloro-3-(o-tolyl)-benzo-1,2,4-thiadiazine, $\mathbf{2 g}$:

Pale orange solid, 45.8 \% yield. Anal. Calc. for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{~S}$: C, 44.5; H, 2.1; N, 7.4. Found: C, 44.4; H, 2.1; N, 7.5. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{SOCl}_{2}, 18.4^{\circ} \mathrm{C}$) $\delta: 8.02(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.95
$(\mathrm{s}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=6.4,7,3 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=6.0 \mathrm{~Hz}, 7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathrm{H}\right\}$ NMR (100.5 MHz, SOCl $_{2}, 18.9^{\circ} \mathrm{C}$) $\delta: 160.3,139.6,139.4,135.2,134.3,132.8,132.0$, 131.6, 131.5, 126.1, 122.1, 116.1, 22.4.
2.8.2.8 - Synthesis of 1,7-dichloro-5,6-bis(chloromethyl)-3-(o-tolyl)-benzo-1,2,4thiadiazine, 2h:

Turmeric-coloured solid, 53.2 \% yield. Anal. Calc. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{~S}$: C, 47.3: H, 3.0; N, 6.9. Found: C, 47.2; H, 2.9: N, 6.7.1H NMR ($400 \mathrm{MHz}, \mathrm{SOCl}_{2}, 18.5^{\circ} \mathrm{C}$) $\delta: 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, \mathrm{~J}$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=6.0,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.32(\mathrm{~s}, 2 \mathrm{H}), 4.98(\mathrm{~s}$, $2 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(100.5 \mathrm{MHz}, \mathrm{SOCl}_{2}, 19.2^{\circ} \mathrm{C}\right) \delta: 159.9,142.5,140.9,138.8$, 138.0, 136.0, 134.4, 131.8, 131.5, 131.3, 126.1, 124.5, 117.4, 38.7, 35.4, 22.0.

2.8.2.9 - Synthesis of 1,7-dichloro-5,6-bis(chloromethyl)-3-(p-pyridinium)-

 benzo-1,2,4-thiadiazine hydrogen dichloride, $\mathbf{2 j} . \mathbf{H}^{2} \mathbf{H C l}_{2}$:Yellow solid, 86.8 \% yield. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{SOCl}_{2}, 18.2^{\circ} \mathrm{C}$) $\delta: 8.86(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H})$, 8.77 (d, $J=5.3 \mathrm{~Hz}, 2 \mathrm{H}$), $8.03(\mathrm{~s}, 1 \mathrm{H}), 5.33(\mathrm{~s}, 2 \mathrm{H}), 4.96(\mathrm{~s}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}(100.5 \mathrm{MHz}$, $\mathrm{SOCl}_{2}, 19.0^{\circ} \mathrm{C}$) $\delta: 152.2,151.7,142.9,141.4,139.8,138.3,136.8,125.4,124.8,116.3$, 38.4, 35.1.

2.8.2.10 - Synthesis of 1,5,6,7-tetrachloro-3-(4-methoxyphenyl)-benzo-1,2,4thiadiazine, 2k:

Dark red solid, 81.1 \% yield. Anal. Calc. for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{OS}$: C, 42.7; H, 2.1; N, 7.1. Found: C, 42.3; H, 2.1; N, 7.1. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{SOCl}_{2}, 18.5^{\circ} \mathrm{C}$) $\delta: 8.44$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.92 (s, $\left.1 \mathrm{H}), 7.01(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~} \mathbf{1}^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(100.5 \mathrm{MHz}, \mathrm{SOCl}_{2}, 25.0^{\circ} \mathrm{C}\right) \delta:$ $163.5,158.1,140.6,139.4,134.2,131.8,131.3,127.8,122.1,116.6,114.1,55.3$.
2.8.2.11 - Synthesis of 1,7-dichloro-5,6-bis(chloromethyl)-3-(4-methoxyphenyl)-benzo-1,2,4-thiadiazine, 2l:

Red solid, 62.5 \% yield. Anal. Calc. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}, 45.5$; H, 2.9; N, 6.6. Found: C, 45.4; H, 2.8; N, 6.8. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{SOCl}_{2}, 18.0^{\circ} \mathrm{C}$) $\delta: 8.42(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.97 (s, 1H), 7.02 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 5.39 ($\mathrm{s}, 2 \mathrm{H}$), 4.97 (s, 2H), 3.88 (s, 3H). $\left.{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{C} \mathbf{1} \mathbf{H}\right\} \mathbf{N M R}(100.5$ $\mathrm{MHz}, \mathrm{SOCl}_{2}, 19.0^{\circ} \mathrm{C}$) $\delta: 163.4,157.4,142.4,141.5,137.6,133.5,131.2,128.1,124.5$, 118.3, 114.2, 55.4, 38.7, 35.4.

2.8.2.12 - NMR Characterisation of 1,7-dichloro-5,6-bis(chloromethyl)-3-(3-

chloro-4-methoxyphenyl)-benzo-1,2,4-thiadiazine, 2 r :
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{SOCl}_{2}, 18.7^{\circ} \mathrm{C}$) $\delta: 8.45(\mathrm{~s}, 1 \mathrm{H}), 8.36(\mathrm{~m}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~s}, 2 \mathrm{H}), 4.98(\mathrm{~s}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(100.5 \mathrm{MHz}\right.$, SOCl $_{2}$,
$18.3^{\circ} \mathrm{C}$) $\delta: 158.8,156.7,142.8,138.0,133.9,131.1,129.9,129.4,124.9,123.2,118.4$, 112.3, 56.6, 39.1, 35.7.

2.8.3 - Synthesis of Siv Cations

$\mathrm{S}^{\text {IV }}$ cations were prepared by combination of 1,2,4-benzothiadiazine 1-chloride, 2, and halide abstraction agent in DCM. Attempts to isolate analytically pure samples of [4a] $\mathbf{G a C l}_{4}$ were unsuccessful. This species was found to be extremely air and moisture sensitive, and crystals of $[\mathbf{5 a} \cdot \mathbf{H}] \mathrm{GaCl}_{4}$ were isolated on a number of occasions.

2.8.3.1 -Synthesis of 5,6,7-trichloro-3-phenyl-benzo-1,2,4-thiadiazinium tetrachlorogallate, [4a]GaCl 4 :

2a ($30 \mathrm{mg}, 0.08 \mathrm{mmol}$) was suspended in $\operatorname{DCM}\left(2.5 \mathrm{~cm}^{3}\right)$ and $\mathrm{GaCl}_{3}(14.5 \mathrm{mg}, 0.08$ mmol) was added giving a dark purple solution and solids. An additional $2.5 \mathrm{~cm}^{3}$ of DCM was added and the reaction mixture was filtered to remove undissolved material. Layering of the filtrate with hexane ($10 \mathrm{~cm}^{3}$) and storage at $-20^{\circ} \mathrm{C}$ afforded purple crystals, that were filtered and dried in vacuo. Yield: 27 mg ($0.05 \mathrm{mmol}, 61.0 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 25.0^{\circ} \mathrm{C}$) $\delta: 8.92(\mathrm{~s}, 1 \mathrm{H}), 8.70(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{t}, J=7.4,7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.73$ (t, J = 7.4, 7.6 Hz, 2H).

2.8.4 - Synthesis of 1,2,4-Benzothiadiazine 1-Oxides

The $1,2,4$-benzothiadiazine 1 -chlorides rapidly hydrolyse to give off-white solids believed to be the corresponding 1 -oxide as it's hydrochloride salt. The poor solubility prevented its characterisation, and all attempts to deprotonate these species were unsuccessful.

2.8.4.1 - Synthesis of 1-oxo-5,6,7-trichloro-3-phenyl-benzo-1,2,4-thiadiazine hydrochloride, 5a.HCl:

2a ($0.25 \mathrm{~g}, 0.69 \mathrm{mmol}$) was suspended in a mixture of $\mathrm{H}_{2} \mathrm{O}\left(1 \mathrm{~cm}^{3}\right)$ and $\mathrm{MeOH}\left(15 \mathrm{~cm}^{3}\right)$ and stirred for 30 minutes. The off-white suspension was filtered and the solids were with $\mathrm{MeOH}\left(5 \mathrm{~cm}^{3}\right)$ then dried in vacuo. Yield: 0.22 g ($0.58 \mathrm{mmol}, 84.0 \%$).

2.8.5 - Synthesis of S-Aryl 1,2,4-Benzothiadiazines

S-aryl benzothiadiazines were prepared according to the general procedure developed by Rees. ${ }^{36,37}$ The synthesis of $\mathbf{6 m}$ is provided as an exemplar. Compound [7n]OTf was prepared by treatment of $\mathbf{6 n}$ with methyl triflate.

2.8.5.1 - Synthesis of 7-methyl-1,3-diphenyl-benzo-1,2,4-thiadiazine, 6m:

$\mathrm{PhSSPh}(0.268 \mathrm{~g}, 1.23 \mathrm{mmol})$ was dissolved in $\operatorname{DCM}\left(10 \mathrm{~cm}^{3}\right)$ and $\mathrm{SO}_{2} \mathrm{Cl}_{2}\left(0.1 \mathrm{~cm}^{3}, 1.23\right.$ mmol) was slowly added. After 5 minutes, the orange solution of PhSCl was added dropwise to a solution of $\mathbf{1 m}(0.516 \mathrm{~g}, 2.46 \mathrm{mmol})$ in DCM ($10 \mathrm{~cm}^{3}$) at $-20{ }^{\circ} \mathrm{C}$ and maintained at this temperature for 30 mins. N-bromosuccinimide ($0.437 \mathrm{~g}, 2.46 \mathrm{mmol}$) in DCM ($10 \mathrm{~cm}^{3}$) was then added and the reaction mixture was allowed to warm to room temperature and stir for 18 hours. The orange solution was transferred to a separatory funnel along with 10% aqueous $\mathrm{NaOH}\left(50 \mathrm{~cm}^{3}\right)$ and the organic phase was collected. The aqueous layer was further extracted with DCM ($2 \times 30 \mathrm{~cm}^{3}$) and the combined organic extracts were washed with water ($50 \mathrm{~cm}{ }^{3}$), dried over MgSO_{4}, filtered and evaporated to dryness. Recrystallisation of the crude residue from DCM and hexanes gave the product as pale yellow crystals that were washed with hexane and dried in vacuo. Yield: 0.464 g ($1.47 \mathrm{mmol}, 59.8$ \%). ${ }^{\mathbf{1} H} \mathbf{N M R}$ ($400 \mathrm{MHz}, \mathrm{DCM}$, $18.4^{\circ} \mathrm{C}$) $\delta: 8.34(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.33(\mathrm{~m}, 9 \mathrm{H}), 7.30(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~s}$, 1H), 2.41 (s, 3H). ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100.5 \mathrm{MHz}, \mathrm{DCM}, 18.5^{\circ} \mathrm{C}$) $\delta: 163.4,142.8,140.9,139.1$, $135.9,134.5,131.5,130.5,129.7,128.3,128.0,126.6,126.0,125.7,106.8,20.9$.

Analytical data in accordance with the literature. ${ }^{37}$

2.8.5.2 - Synthesis of 5,7-dimethyl-1,3-diphenyl-benzo-1,2,4-thiadiazine, $\mathbf{6 n}$:

Pale yellow crystals, 52.8 \% yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , DCM, $18.9^{\circ} \mathrm{C}$) $\delta: 8.38(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.46-7.32$ (m, 8H), 7.30 ($\mathrm{s}, 1 \mathrm{H}$), 7.12 (s, 1H), 2.50 ($\mathrm{s}, 3 \mathrm{H}), 2.38$ (s, 3H). ${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathrm{H}\right\}$ NMR (100.5 MHz, DCM, $19.3^{\circ} \mathrm{C}$) $\delta: 162.7,141.0,140.9,139.6,135.4,135.0,134.9,131.3$, 130.4, 129.6, 128.5, 127.9, 125.6, 123.6, 106.4, 20.9, 17.0.

2.9 - References

N. Finch, S. J. Ricca, L. H. Werner and R. Rodebaugh, J. Org. Chem., 1980, 34163421.
L. H. Werner, A. Halamandaris, S. Ricca, L. Dorfman and G. deStevens, J. Am. Chem. Soc., 1960, 82, 1161-1166.
A. Fretheim, BMC Fam. Pract., 2003, 4, 1-4.
P. G. Welling, Biopharm. Drug Dispos., 1986, 7, 501-535.
J. Zienkiewicz, P. Kaszynski and V. G. Young, J. Org. Chem., 2004, 69, 2551-2561.
J. Zienkiewicz, P. Kaszynski and V. G. Young, J. Org. Chem., 2004, 69, 7525-7536.
E. R. Clark, M. U. Anwar, B. J. Leontowicz, Y. Beldjoudi, J. J. Hayward, W. T. K. Chan, E. L. Gavey, M. Pilkington, E. Zysman-Colman and J. M. Rawson, Dalton Trans., 2014, 43, 12996.
K. Pringouri, M. U. Anwar, B. J. Leontowicz and J. M. Rawson, Polyhedron, 2018, 150, 110-117.
A. K. Pal, D. B. Cordes, K. Pringouri, M. U. Anwar, A. M. Z. Slawin, J. M. Rawson and E. Zysman-Colman, J. Coord. Chem., 2016, 69, 1924-1937.
E. S. Levchenko, G. S. Borovikova, E. I. Borovik and V. V. Kalinin, Russ. J. Org. Chem., 1984, 20, 176-181.
D. D. Ross and D. Lednicer, J. Heteocycl. Chem, 1982, 975.
V. G. Kresze, C. Seyfriend and A. Trede, Liebigs. Ann. Chem., 1968, 223-237.
E. R. Clark, J. J. Hayward, B. J. Leontowicz, D. J. Eisler and J. M. Rawson, CrystEngComm, 2014, 16, 1755-1762.
A. O. Abdelhamid, F. A. Khalifa and S. S. Ghabrial, Phosphorus Sulfur Relat. Elem., 2006, 40, 41-46.
L. N. Markovskii, V. S. Talanov, O. M. Polumbrik and Y. G. Shermolovich, Russ. J. Org. Chem., 1981, 17, 2338-2339.
P. Hope and L. A. Wiles, J. Chem. Soc., 1967, 1965-1967.
J. M. Rawson and G. D. McManus, Coord. Chem. Rev., 1999, 189, 135-168.
E. R. Clark, Synthesis and Chemistry of 1,2,4-Benzothiadiazines, University of Cambridge, 2008.
L. Beer, R. C. Haddon, M. E. Itkis, A. A. Leitch, R. T. Oakley, R. W. Reed, J. F. Richardson, D. G. VanderVeer, L. Beer, J. L. Brusso, A. W. Cordes, R. C. Haddon, M. E. Itkis, K. Kirschbaum, D. S. MacGregor, R. T. Oakley, A. A. Pinkerton and R. W. Reed, Chem. Commun., 2005, 124, 1218-1220.
A. a Leitch, R. T. Oakley, R. W. Reed and L. K. Thompson, Inorg. Chem., 2007, 46, 6261-70.
G. Kresze and W. Wucherpfennig, Angew. Chem. Int. Ed., 1967, 6, 149-167.
I. K. Khanna, Y. Yu, R. M. Huff, R. M. Weier, X. Xu, F. J. Koszyk, P. W. Collins, J. N. Cogburn, P. C. Isakson, C. M. Koboldt, J. L. Masferrer, W. E. Perkins, K. Seibert, A. W. Veenhuizen, J. Yuan, D. Yang and Y. Y. Zhang, Synthesis, 2000, 3168-3185.
S. I. R. Alexander, J. Chem. Soc., 1949, 449-456.
F. C. Schaefer and G. A. Peters, J. Org. Chem., 1961, 26, 412-418.
S. Caron, L. Wei, J. Douville and A. Ghosh, J. Org. Chem., 2010, 75, 945-947.
A. G. Orpen, L. Brammer, F. H. Allen, O. Kennard, D. G. Watson and R. Taylor, J. Chem. Soc., Dalt. Trans., 1987, S1-S83.
A. W. Cordes, P. J. Hayes, P. D. Josephy, H. Koenig, R. T. Oakley and W. T. Pennington, J. Chem. Soc., Chem. Commun., 1984, 1021-1022.
N. Burford, T. Chivers, M. Hojo, W. G. Laidlaw, J. F. Richardson and M. Trsic, Inorg. Chem., 1985, 24, 709-715.
J. M. Rawson, A. J. Banister and I. Lavender, Adv. Heterocycl. Chem., 1995, 62, 137-247.
A. Bondi, J. Phys. Chem., 1964, 68, 441-451.
J. Bernstein and A. T. Hagler, J. Am. Chem. Soc., 1978, 100, 673-681.
J. L. Atwood, S. G. Bott, C. M. Means, A. W. Coleman, H. Zhang and M. T. May, Inorg. Chem., 1990, 29, 467-470.
B. H. Ward, G. E. Granroth, K. A. Abboud, M. W. Meisel and D. R. Talham, Chem. Mater., 1998, 10, 1102.
C. M. Robertson, A. A. Leitch, K. Cvrkalj, D. J. T. Myles, R. W. Reed, P. A. Dube and R. T. Oakley, J. Am. Chem. Soc., 2008, 130, 14791-14801.
N. P. Kolesnik, A. B. Rozhenko, V. Kinzhybalo, T. Lis and Y. G. Shermolovich, J. Fluor. Chem., 2014, 160, 16-19.
T. L. Gilchrist, C. W. Rees and D. Vaughan, J. Chem. Soc., Chem. Commun., 1978, 1049-1050.
T. L. Gilchrist, C. W. Rees and D. Vaughan, J. Chem. Soc., Perkin Trans., 1983, 4954.
W. Voskuil and J. F. Arens, Recl. des Trav. Chim. des Pays-Bas, 1962, 81, 993-1008.
C. S. Chang, Y. T. Lin, S. R. Shih, C. C. Lee, Y. C. Lee, C. L. Tai, S. N. Tseng and J. H. Chern, J. Med. Chem., 2005, 48, 3522-3535.
M. Cortes-Salva, C. Garvin and J. C. Antilla, J. Org. Chem., 2011, 76, 1456-1459.
T. B. Nguyen, L. Ermolenko and A. Al-Mourabit, Heterocycles, 2012, 86, 555-563. Y. Wang, H. Wang, J. Peng and Q. Zhu, Org. Lett., 2011, 13, 4604-4607.
J. I. Clodt, V. D. Hack, R. Fröhlich and E. U. Würthwein, Synthesis, 2010, 1485-
1492.

44 B. L. Korbad and S. Lee, Bull. Korean Chem. Soc., 2013, 34, 1266-1268.
45 T. Yao, Tetrahedron Lett., 2015, 56, 4623-4626.
46 J. C. Zhuo, A. H. Soloway, J. C. Beeson, W. Ji, B. A. Barnum, F. G. Rong, W. Tjarks, G.
T. Jordan IV, J. Liu and S. G. Shore, J. Org. Chem., 1999, 64, 9566-9574.

Chapter 3

1,2,4-Benzothiadiazinyl Radicals

3.1 - Introduction

Short-lived persistent radicals are usually generated by homolytic bond cleavage through the application of heat or UV irradiation. Other high energy radiation or electron sources can also be used to produce free radicals. ${ }^{1}$ Stable radicals, on the other hand, are commonly prepared by one electron oxidation or reduction of a closed-shell precursor. Single electron processes typically produce charged radicals (unless the precursor is charged) which may then be protonated or deprotonated to form neutral radicals. Common methods of achieving single electron transfer are synthetic electrochemical methods or reactions with redox-active transition-metals. ${ }^{2}$ A wide variety of oxidising and reducing agents are available, depending on the electrochemical requirement of the system and whether the radical is unstable in the presence of the by-products.

Open-shell compounds are rarely air or moisture stable, and are usually extremely reactive, making radical purification problematic. Typical methods such as column chromatography are unsuitable for all but the most stable systems, ${ }^{3}$ whilst recrystallization can be difficult due to the increased sensitivity of radicals in solution. Vacuum sublimation is the favoured method for purifying radicals, ${ }^{4}$ especially for sulfur-nitrogen systems, but this is limited to those with high thermal stabilities.

3.2 - 1,2,4-Benzothiadiazinyl Radicals

1,2,4-Benzothiadiazinyl radicals were first reported in 1981 by Shermolovich ${ }^{5}$ and were generated by the oxidation of the corresponding $S^{I I}$ benzothiadiazines or reduction of the appropriate $S^{\text {IV }}$ benzothiadiazine 1 -chlorides. The radicals were reported to persist in solution but their isolation was not attempted. Later work by Kaszynski and co-workers in 2004 investigated 1,2,4-benzothiadiazinyl radicals as potential structural elements of liquid crystalline materials. ${ }^{3}$ They were successful in isolating and characterising the tetrachloro- and tetrafluoro-derivatives in solution and the solid-state (Figure 3.2.1).

Figure 3.2.1: Isolated halogenated 1,2,4-benzothiadiazinyl radicals.
These halogenated-derivatives are sufficiently stable to be purified by chromatography and vacuum sublimation, whilst other electron-poor 1,2,4-benzothiadiazinyl radicals persist only at low temperatures $\left(<-80^{\circ} \mathrm{C}\right)$ and rapidly oxidise to form the Siv 1-oxides.

The related bis-thiadiazinyl radicals show exceptional air and thermally stability in both solution and the solid-state, allowing their physical properties to be examined in great detail. ${ }^{4,6,7}$ This stability is ascribed to resonance delocalisation of the unpaired electron across the heterocyclic rings. The magnetic properties of 1,2,4benzothiadiazinyl radicals however, remains to be explored.

3.2.1 - Radical Generation via Oxidation

The one electron oxidation of $\mathrm{S}^{\text {II }}$ benzothiadiazines is the most common method of generating 1,2,4-benzothiadiazinyl radicals in the literature. This is despite the fact that the synthesis of the $S^{I I}$ species ${ }^{8,9}$ typically requires many steps in comparison to the $S^{\text {IV }}$ 1 -chlorides. ${ }^{10} \mathrm{~A}$ wide variety of oxidising agents and solvents have been investigated, ${ }^{3}$ with oxidation and subsequent radical decay occurring more rapidly in polar solvents, likely due to the inherently high $\mathrm{H}_{2} \mathrm{O}$ and O_{2} content. Initial studies utilised a large excess of PbO_{2} or AgO with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in a 9:1 mixture of dry, degassed toluene and acetonitrile. The reaction mixture is filtered after a suitable length of time (30-90 minutes), which is primarily and subjectively determined by a visual inspection of colour, followed by removal of solvent under vacuum. Unsurprisingly, these methods gave impure material with low spin yields. Reproducible and high spin yields were achieved using $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ and pyridine in dry toluene although the isolated yield of radical after purification remained low at about 10%.

3.2.2 - Radical Generation via Reduction

The generation of 1,2,4-benzothiadiazinyl radicals by one electron reduction of the $S^{\text {IV }}$ chloride ${ }^{5}$ has received considerably less attention, despite the fact that the majority of sulfur-nitrogen radicals are typically prepared from the parent S^{IV} cation. ${ }^{11}$ The chloride salts, which are the primary products after heterocyclic ring closure with SCl_{2} or $\mathrm{S}_{2} \mathrm{Cl}_{2}$, are often converted through to more soluble salts via anion metathesis prior to reduction. ${ }^{6,11}$ Typical reducing agents include ferrocene derivatives, ${ }^{6}$ metallic silver, ${ }^{12,13}$ zinc/copper couple ${ }^{12,14}$ and triphenyl antimony. ${ }^{15}$

Previous studies by Clark ${ }^{16}$ found that attempted reductions of 1,2,4-benzothiadiazine 1-chlorides with silver metal or a zinc/copper couple did not proceed smoothly; the slow reactions resulted in discoloured supernatants and no radical could be isolated. Reductions with $\mathrm{Ph}_{3} \mathrm{Sb}$ and $\mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ proceeded smoothly, and removal of solvent yielded dark blue-green EPR active solids. Attempts to purify the crude material by recrystallization or vacuum sublimation to remove the $\mathrm{Ph}_{3} \mathrm{SbCl}_{2}$ or $\left[\mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right] \mathrm{Cl}$ byproducts were unsuccessful.

3.2.3 - Radical Generation via Comproportionation

1,2,4-Benzothiadiazinyl radicals can also be prepared by comproportionation of the $S^{\text {II }}$ benzothiadiazines and SIV 1 -chlorides in the presence of base (Scheme 3.2.3.1). ${ }^{16}$

Scheme 3.2.3.1: Radical formation via comproportionation.

3.3 - Electrochemical Studies

The electrochemistry of many sulfur-nitrogen radicals has been studied in great detail, and a thorough summary is found in the review by Boeré. ${ }^{17}$ Far less is known about the electrochemical properties of redox-active six-membered S-N heterocycles, and these have generally received less study since they are often less stable and more difficult to prepare in comparison to the numerous five-membered systems known. The redox potentials are in principle however tunable to a much greater degree than fivemembered systems due to the potential for alteration of substituents at multiple positions. ${ }^{17}$ In addition, six-membered thiatriazines and benzothiadiazines show significant covalency in their $\mathrm{S}-\mathrm{Cl}$ bonds (vide infra), meaning that their electrochemical behaviour is not directly comparable to that of formal Siv cations. ${ }^{18}$

The expected redox couples for the 1,2,4-benzothiadiazinyls are shown in Scheme 3.3.1. The reduction of the $S^{\text {IV }}$ chloride to the $S^{\text {III }}$ neutral radical, denoted as the $0 / 1^{+}$couple, is of particular interest for this chapter.

Scheme 3.3.1: Redox scheme for 1,2,4-benzothiadiazinyls.

Cyclic voltammetry studies were performed under an argon atmosphere in anhydrous and degassed DCM with $\left[{ }^{n} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ electrolyte, glassy carbon working-electrode, platinum wire counter-electrode and silver-wire pseudo-reference electrode. The internal potentials were referenced and reported against the $\mathrm{Fc} / \mathrm{Fc}^{+}$couple as an internal standard. ${ }^{19}$ The 1,2,4-benzothiadiazine 1 -chlorides 2a-h and 2k-l studied by cyclic voltammetry, whose syntheses are discussed in Chapter 2, are shown in Figure 3.3.1.

2a

2d

$2 g$

Cl
2b

2e

2h

2c

2f

2k

21

Figure 3.3.1: 1,2,4-benzothiadiazine 1-chlorides studied via cyclic voltammetry.

3.3.1 - Cyclic Voltammetry Results

The 1,2,4-benzothiadiazine 1-chlorides all displayed similar electrochemical behaviour, and the cyclic voltammogram of $\mathbf{2 a}$ is typical of this (Chart 3.3.1.1). The two, oftenoverlapping, reversible processes at 0.096 and 0.444 V are assigned to the $0 / 1^{+}$ (SIII/SIV) couple, whilst the irreversible process at -1.457 V is attributed to the $1 / 0$ ($\mathrm{SII}^{I I} / \mathrm{S}^{\text {III }}$) couple. The redox potentials of the 1,2,4-benzothiadiazines 1 -chlorides are shown in Table 3.3.1.1. The difference in peak reduction and oxidation potentials for an ideal Nernstian process is $57 / n \mathrm{mV}$ at $25{ }^{\circ} \mathrm{C}$, where n is the number of electrons transferred. ${ }^{20}$ Although the values indicate significant deviation from Nernstian behaviour, likely due to Ohmic drop as a result of high resistance, ${ }^{21}$ the observation of values larger than 57 mV indicate that they are all associated with $1 e$ - transfer processes.

Chart 3.3.1.1: Cyclic voltammogram of 2a.

	110	$0 / 1^{+} \text {(VImer) }$			Ulı+ (ivionomer)		
	$E_{\text {red }} / \mathrm{V}$	$E_{\text {red }} / \mathrm{V}$	$E_{o x} / \mathrm{V}$	$E_{1 / 2} / \mathrm{V}$	$E_{\text {red }} / \mathrm{V}$	$E_{o x} / \mathrm{V}$	$E_{1 / 2} / \mathrm{V}$
2a	-1.457	0.013	0.179	0.096	0.371	0.518	0.444
2b	-1.511	-0.112	0.084	-0.014	/	0.449	/
2c	-1.649	-0.094	0.054	-0.020	1	0.501	1
2d	-1.654	-0.084	0.036	-0.024	1	0.441	1
2e	-1.473	-0.027	0.142	0.057	0.336	0.469	0.403
2f	-1.557	-0.083	0.111	0.014	0.379	0.508	0.443
2g	-1.446	-0.011	0.226	0.108	0.400	0.481	0.440
2h	-1.599	-0.040	0.123	0.041	/	0.479	1
2k	-1.450	0.028	0.144	0.086	0.300	0.397	0.349
21	-1.620	-0.071	0.035	-0.018	/	0.558	/

Table 3.3.1.1: Redox potentials for 1,2,4-benzothiadiazine 1 -chlorides. Potentials referenced against the $\mathrm{Fc} / \mathrm{Fc}^{+}$couple.

The two $0 / 1^{+}$redox couples indicate the presence of radical monomers and dimers in solution. This monomer-dimer equilibrium has also been observed for 6-membered thiatriazines ${ }^{17}$ and independently confirmed by quantitative EPR measurements. ${ }^{22}$ The radical monomer-dimer equilibria was qualitatively assessed via variable concentration studies on 2a (Chart 3.3.1.2). These studies confirmed the initial assignment of the two $0 / 1^{+}$redox couples; it is assumed that the one electron reduction potential on the monomer is positive relative to the dimer. ${ }^{17}$ At low concentrations the monomer is favoured whilst at high concentrations the CV is dominated by signals for the dimer. In addition, the 0/1- reduction wave splits into two well resolved peaks at
low concentrations, further confirming the presence of radical monomers and dimers in solution

Chart 3.3.1.2: Cyclic voltammogram of $\mathbf{2 a}$ at various concentrations.

The irreversible process at -1.457 V is attributed to the reduction of the neutral SIII radical to the $S^{\text {II }}$ anion. This process is expected to be irreversible if there is an $E C$ process (i.e. chemical reaction after an electrochemical process). If a salt of the cation is used as the source of bulk material in the electrochemical cell, the $0 / 1^{+}$process is always reversible whilst the $1 / 0$ process is always irreversible. ${ }^{23}$ This electrochemical irreversibility is attributed to a rapid comproportionation reaction between the electro-generated S^{II} anion and bulk $\mathrm{S}^{\text {IV }}$ cation, and has been observed for several sulfur-nitrogen systems. ${ }^{17}$ This process is thermodynamically favourable if there is sufficient cation at the electrode to quench the anion generated, or if the rate of diffusion of the cation from the bulk solution to the electrode is fast on the electrochemical timescale. Use of the middle species of the redox triad, the neutral radical, prevents this comproportionation reaction and electrochemical studies on pure neutral radical are important to assess the stability of various redox states.

The $E_{1 / 2}$ potentials for the $0 / 1^{+}$(dimer) couples follow the expected trend, with 1,2,4benzothiadiazine 1-chlorides bearing electron-withdrawing groups (Cl) such as $\mathbf{2 a}, \mathbf{2 g}$ and $\mathbf{2 k}$ being more easily reduced those with electron-donating groups (Me) such as $\mathbf{2 b}$-d. The substituents on the benzo-fused ring were found to have a greater influence on the electrochemical behaviour and redox potentials compared to substituents on
the pendant aryl ring. This is supported by DFT studies (section 3.6.2) which indicate that there is negligible delocalisation of the unpaired electron onto the pendant aryl ring but significant π-delocalisation across the benzo-fused and heterocyclic ring. There are, however, only minor changes observed across the $0 / 1^{+} E_{1 / 2}$ potentials for the substituted benzothiadiazine 1-chlorides, spanning 0.132 V . A slightly larger potential range of 0.208 V is observed for the reduction of the neutral radical to the $\mathrm{S}^{I I}$ anion, and these follow the same trend as the $E_{1 / 2}$ potentials for the $0 / 1^{+}$couple.

In several cases, additional peaks were also observed around -0.80 V and -0.45 V which are attributed to the daughter products resulting from trace water and/or oxygen contamination.

Further insight into the electrochemical behaviour was provided by recording multiple CV at different scan-rates for $\mathbf{2 f}$ (Chart 3.3.1.3). These can be superimposed upon one another, although the peak-to-peak separation increases with scan-rate, suggesting that the redox chemistry for the $0 / 1^{+}$couple is quasi-reversible. ${ }^{21}$ The 1% couple is believed to be associated with an $E_{r} C_{i}$ process; a reversible electron transfer followed by an irreversible chemical reaction. For a typical $E_{r} C_{i}$ mechanism, the ratio of the anodic to cathodic peak currents decreases because the reduced species (i.e. the $\mathrm{S}^{\text {II }}$ anion) is consumed by a subsequent chemical reaction (i.e. comproportionation), resulting in fewer species to oxidise on the anodic scan. As the scan rate is increased, the time scale of the experiment competes with the time scale of the chemical step. This results in relatively more reduced species left for reoxidation, and for sufficiently fast scan rates, the electrochemical feature will regain reversibility. No evidence of quasireversibility was observed for the $1 / 0$ couple for scan rates up to $2 \mathrm{~V} / \mathrm{s}$, indicating that the comproportionation reaction is extremely rapid.

Chart 3.3.1.3: Cyclic voltammogram of 2 f at variable scan rates.

A plot for each of the maximum and minimum peak currents against the square root of the scan rate gave a linear correlation with R^{2} values close to 1 . The plots for the $0 / 1^{+}$ dimer redox couple are shown in Graph 3.3.1.1. This indicates an electrochemically reversible electron transfer process involving a freely diffusing redox species according to the Randles-Sevcik equation, and confirms that the analyte is not adsorbed to the electrode surface. ${ }^{24}$

Graph 3.3.1.1: Peak current as a function of the square root of the scan rate.

3.3.2 - Computational Studies of the Redox Process

Theoretical calculations, performed at the UB3LYP/6-31g level, indicate that the form of the single occupied molecular orbital (SOMO) is independent of the substitution around the benzo-fused and pendant aryl rings. The SOMO geometry for radical 3a, which is typical of all the 1,2,4-benzothiadiazinyls, is shown in Figure 3.2.2.1.

Figure 3.3.2.1: SOMO geometry for $\mathbf{3 a}$ (isovalue $=0.04$).

Many studies on the redox properties of sulfur-nitrogen radicals have found good correlation between the $E_{1 / 2}$ potentials for the $0 / 1^{+}$couple with both the calculated energies of the LUMO of the S ${ }^{\text {IV }}$ cations, and the SOMO of the radical. ${ }^{25}$ DFT (UB3LYP/631g) gas-phase optimised geometries of the 1,2,4-benzothiadiazine 1-chlorides 2a-h and $\mathbf{2 k} \mathbf{- l}$ were calculated, along with their corresponding free radicals $\mathbf{3 a}-\mathbf{h}$ and $\mathbf{3 k} \mathbf{- l}$. The results, summarised in Table 3.3.2.1, were found to give poor correlation with experimental electrochemical results although systems bearing electron-withdrawing groups did tend to have SOMOs with lower (more negative) energies, whilst those bearing electron-donating groups had SOMOs with higher (less negative) energies. As with the $E_{1 / 2}$ potentials for the $0 / 1^{+}$couple, the range of values observed for the calculated LUMO and SOMO energies was small, further indicating that the substituents on the benzo-fused and pendant aryl ring have only a minor influence on the electronic structure of the radical.

	LUMO Energy $l \mathbf{e V}$	SOMO Energy $/ \mathbf{e V}$	$E_{1 / 2} / \mathbf{V}$
\mathbf{a}	-4.5013	-6.1177	0.096
\mathbf{b}	-4.5165	-6.1231	-0.014
\mathbf{c}	-4.4951	-6.0913	-0.020
\mathbf{d}	-4.4836	-6.0477	-0.024
\mathbf{e}	-4.4733	-6.0447	0.057
\mathbf{f}	-4.2687	-6.0371	0.014
\mathbf{g}	-4.4997	-6.0872	0.108
\mathbf{h}	-4.4970	-6.0700	0.041
\mathbf{k}	-4.3974	-6.0273	0.086
\mathbf{l}	-4.5413	-6.0037	-0.018

Table 3.3.2.1: Calculated LUMO and SOMO energies of the 1,2,4-benzothiadiazine 1chlorides and the corresponding radicals. Potentials referenced against the $\mathrm{Fc} / \mathrm{Fc}^{+}$ couple.

3.4 - Synthesis and Isolation of 1,2,4-Benzothiadiazinyl Radicals

Previous attempts to generate the 1,2,4-benzothiadiazinyl radicals via one electron reduction of the $S^{\text {IV }} 1$-chloride found both $\mathrm{Ph}_{3} \mathrm{Sb}$ and $\mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ to be effective reducing agents, but attempts to remove the by-products and isolate the pure radical were unsuccessful. ${ }^{16}$ Preliminary small-scale studies utilising $\mathrm{Ph}_{3} \mathrm{P}$ as the reducing agent in a variety of common organic solvents were promising, immediately yielding dark blue-green EPR active solutions, with the formation of $\mathrm{Ph}_{3} \mathrm{PCl}_{2}$ or $\left[\mathrm{Ph}_{3} \mathrm{PCl}\right] \mathrm{Cl}$ observed by ${ }^{31} \mathrm{P}$ NMR spectroscopy depending on the choice of solvent. ${ }^{26}$ Solutions of the radicals generated in DCM, toluene and THF swiftly discoloured to give cloudy yellow-brown suspensions, whilst the radicals were only poorly soluble in MeCN. The solutions of the radical were observed to become a rich blue colour on cooling in liquid nitrogen which is believed to originate from the monomer-dimer equilibrium, with the formation of closed-shell dimers being favoured at low temperatures.

A family of substituted 1,2,4-benzothiadiazinyl radicals, 3a-h and 3k-l (Figure 3.4.1), were prepared by the treatment of the parent $\mathrm{S}^{\text {IV }}$ chlorides, $\mathbf{2 a} \mathbf{- h}$ and $\mathbf{2 k}-\mathbf{l}$, with $\mathrm{Ph}_{3} \mathrm{P}$ in thoroughly degassed and anhydrous MeCN (Scheme 3.4.1). Despite the poor solubility of the SIV chlorides in MeCN, the radicals formed cleanly and rapidly, and precipitated as dark purple-green solids that were subsequently isolated by filtration and washed prior to drying under vacuum. The washings were found to swiftly discolour, even when stored at $-20^{\circ} \mathrm{C}$, and in several cases crystals of the $\mathrm{S}^{\mathrm{IV}} 1$-chloride, $\mathrm{S}^{\text {IV }} 1$-oxide or $S^{\text {II }}$ benzothiadiazine were isolated from the mother liquor.

3a

3d

$3 g$

3b

$3 e$

3h

3c

$3 f$

3k

31

Figure 3.4.1: Substituted 1,2,4-benzothiadiazinyl radicals studied in this chapter.

Scheme 3.4.1: Synthesis of substituted 1,2,4-benzothiadiazinyl radicals.

3.5 - Structural Studies of 1,2,4-Benzothiadiazinyl Radicals

The growth of crystals suitable for SCXRD analysis was severely hampered by the poor stability of the 1,2,4-benzothiadiazinyl radicals in solution, with several approaches (slow cooling, vapour diffusion) and solvents (DCM, THF, toluene, pyridine, hexane, $\mathrm{Et}_{2} \mathrm{O}$) giving only rapid discolouration and formation of yellow/brown precipitates. Single crystals suitable for SCXRD analysis of 3a and 3c were successfully grown by rapidly mixing the parent $\mathrm{S}^{\text {IV }} 1$-chloride and reducing agent in DCM, and allowing the radical to slowly crystallise out of solution. This method however, was found to be
extremely unreproducible and often afforded micro-crystalline material unsuitable for diffraction studies. Crystals of $\mathbf{3 e}$ on the other hand, readily grew from saturated toluene solutions.

3.5.1 - Crystal Structure of 3a

Compound 3a crystallises as dark purple blocks in the orthorhombic space group Pbcn with a single radical molecule in the asymmetric unit and half a molecule of DCM (Figure 3.5.1.1). The molecule is essentially planar with only minor deviations of 1.76° for the heterocyclic ring and 2.53° for the pendant phenyl ring with respect to the benzo-fused ring; the N1-C1-C8-C13 and N2-C1-C8-C9 torsion angles are $1.14(5)^{\circ}$ and $0.67(5)^{\circ}$.
a)

b)

c)

Figure 3.5.1.1: Crystal structure of 3a: a) Top-down view; b) Side view; c) Structural labelling scheme. Solvents of crystallisation omitted for clarity.

Molecules of 3a form non-parallel dimer pairs with short S1 $\cdots \mathrm{N} 1$ contacts (2.866(4) \AA) between the heterocyclic rings within the sum of the van der Waals radii $(3.26 \AA)^{27}$ (Figure 3.5.1.2). The angle between the mean planes of the heterocyclic rings is 7.82°. The molecules are further associated through π-stacking of the chlorinated fused-ring and pendant aryl rings (Figure 3.5.1.3), reminiscent of the electron-rich/electron-poor stacking in the $\mathrm{C}_{6} \mathrm{~F}_{6} / \mathrm{C}_{6} \mathrm{H}_{6}$ co-crystal, ${ }^{28}$ which is favoured by the anti-parallel alignment of molecular dipoles. This results in offset distorted π-stacks of alternating parallel and non-parallel planes; the distance between parallel planes is $3.281 \AA$, within the upper limit for true π-stacking of $3.40 \AA .{ }^{29}$ The 1D chain propagates along the crystallographic c axis through the centre of the unit cell, with neighbouring offset chains located along the unit cell edges that are non-parallel by 23.41° and 24.72°.
a)

b)

Figure 3.5.1.2: Dimer pairs of 3a: a) Top-down view; b) Side view.

Figure 3.5.1.3: Crystal packing of 3a looking down the crystallographic b axis.

3.5.2 - Crystal Structure of 3c

Compound 3c crystallises as dark purple rods in the monoclinic space group $P 2_{1} / c$ with a single molecule in the asymmetric unit (Figure 3.5.2.1). The deviation from planarity of the heterocyclic ring with respect to the fused-ring is marginally smaller than the parent S^{IV} chloride ($6.38^{\circ} \mathrm{vs} .7 .17^{\circ}$ for $\mathbf{2 c}$) whilst the pendant aryl ring is less coplanar with both the heterocyclic and fused-ring despite the smaller N1-C1-C8-C13 and N2-C1-C8-C9 torsion angles. The $\mathrm{CH}_{2} \mathrm{Cl}$ groups adopt a trans conformation with one orientated below the plane and the other above, contrary to $2 \mathbf{c}$ where the two $\mathrm{CH}_{2} \mathrm{Cl}$ groups adopt a cis conformation.
a)

b)

Figure 3.5.2.1: Crystal structure of 3c: a) Top-down view; b) Side view.

Molecules of 3c form parallel dimer pairs related through an inversion centre with S1 $\cdots \mathrm{N} 2$ contacts between the heterocyclic rings of $3.087(2) \AA$, within the sum of the van der Waals radii $(3.26 \AA)^{27}$ (Figure 3.5.2.2). The dimer pairs propagate through the lattice to form offset parallel π-stacks along the crystallographic b axis with alternating interplanar distances of $3.104 \AA$ and $3.585 \AA$ (Figure 3.5.2.3). Independent 1D chains of molecule run diagonally through the lattice at 59.53°, perpendicular to the crystallographic $a b$ plane.
a)

b)

Figure 3.5.2.2: Dimer pairs of 3c: a) Top-down view; b) Side view.

Figure 3.5.2.3: Crystal packing of 3c looking down the crystallographic c axis.

3.5.3 - Crystal Structure of 3e

Compound $3 \mathbf{e}$ crystallises as purple parallelepipeds in the triclinic space group $P \overline{1}$ with two molecules in the asymmetric unit (Figure 3.5.3.1). The heterocyclic rings deviate from planarity at 5.38° and 5.55° and the pendant aryl ring is twisted compared to 3a and $3 \mathbf{c}$ such that the deviations from coplanarity with respect to the fused ring are 6.31° and 10.94° for molecules one and two respectively.
a)

b)

Figure 3.5.3.1: Crystal structure of $\mathbf{3 e}$: a) Top-down view; b) Side view. One molecule of the asymmetric unit omitted for clarity.

Molecules of $3 \mathbf{e}$ form non-parallel dimer pairs associated through S1 \cdots S1 contacts ($2.846(1) \AA \AA$) between the heterocyclic rings, within the sum of the van der Waals radii ($3.60 \AA)^{27}$ (Figure 3.5.3.2). The angle between the mean planes of the heterocyclic rings is 10.45°. Molecules are further associated through π-stacking of the chlorinated fusedring and pendant aryl rings, as seen in 3a, resulting in offset distorted π-stacks of alternating parallel and non-parallel planes; the distance between parallel planes is $3.231 \AA$ (Figure 3.5.3.3). The 1D chains propagate diagonally through the crystallographic a and b axes, running parallel to neighbouring chains such that the parallel and anti-parallel planes of molecules intersect.
a)

b)

Figure 3.5.3.2: Dimer pairs of $\mathbf{3 e}$: a) Top-down view; b) Side view.

Figure 3.5.3.3: Crystal packing of $3 \mathbf{e}$ looking down the crystallographic c axis.

3.5.4 - Comparison of Solid-State Structures

The crystallographically characterised 1,2,4-benzothiadiazinyl radicals are all dimeric in the solid-state and feature short contacts between the heteroatoms. Different configurations of dimer (Figure 3.5.4.1) were observed for each of the radicals, all of which involve a $\pi^{*}-\pi^{*}$ bonding interaction between the single occupied molecular orbitals. Compound 3a dimerises in a twisted suprafacial motif (A) with two short identical S1 $\cdots \mathrm{N} 1$ contacts (2.866(4) \AA); the heterocyclic rings are non-parallel with an interplanar angle of 7.82°. Compound 3c adopts a trans-antarafacial dimer motif (B) featuring two short identical S1 $\cdots \mathrm{N} 2$ contacts (3.087(2) \AA) and parallel heterocyclic rings. Compound 3e dimerises in a trans-suprafacial motif (C) with a single short S1 \cdots S1 contact (2.846(1) Å) and a non-parallel arrangement of the heterocyclic rings; the angle between the planes is 10.45°.

A

B

C

Figure 3.5.4.1: Dimerisation motifs observed for 1,2,4-benzothiadiazinyl radicals: (A) twisted suprafacial; (B) trans-antarafacial; (C) trans-suprafacial.

The solid-state structures of the two previously crystallographically characterised 1,2,4-benzothiadiazinyl radicals, $\mathbf{3 x}$ and $\mathbf{3 y}$ (Figure 3.5.4.2), are essentially planar with only minor deviations from planarity for the heterocyclic rings of 0.18° and 1.14° respectively. ${ }^{3}$

Figure 3.5.4.2: Previously reported structurally characterised 1,2,4benzothiadiazinyl radicals.

Compound $\mathbf{3 x}$ adopts parallel offset planes associated through π-stacking of the perchlorinated-fused ring and the pendant aryl ring; the interplanar spacing is almost equal at $3.398 \AA$ and $3.395 \AA$, which is approaching the upper limit for true π-stacking $\left(3.40 \AA\right.$ A). ${ }^{29}$ Each molecule forms a weak dimer pair with an inversion related molecule within a neighbouring slipped stack, with a single long S1 \cdots S1 contact of $3.365(6) \AA$ within the sum of the van der Waals radii. This dimerisation motif may regarded as a pseudo-cis-oid (D) (Figure 3.5.4.3) due to the presence of two additional long S1 $\cdots \mathrm{N} 1$ contacts of $3.530(1) \AA$. Molecules of $\mathbf{3 y}$ adopt equally spaced non-parallel stacks associated through the heterocyclic rings with two non-identical S1 $\cdots \mathrm{N} 1$ contacts of $3.193(4) \AA$ and $3.213(4) \AA$. The molecules are further associated with neighbouring molecules in a slightly offset stack through two equal $\mathrm{S} 1 \cdots \mathrm{~N} 1$ contacts of $3.269(3) \AA$, resulting in a ladder-type structure. Each molecule thus forms a single cis-oid and two twisted suprafacial heterocyclic associations (E) with neighbouring molecules.

D

E

Figure 3.5.4.3: Heterocyclic association motifs observed for 1,2,4-benzothiadiazinyl radicals: (D) pseudo-cis-oid; (E) cis-oid, twisted suprafacial.

Sulfur-nitrogen radicals are well known to dimerise in the solid-state, especially those based on less delocalised five-membered ring systems such as dithiadiazolyls (DTDAs) for which several dimer configurations have been observed. ${ }^{30}$ Since dimerisation
results in spin-pairing, rendering the material diamagnetic, a great deal of effort has been directed at overcoming dimerisation in the solid-state. Steric shielding through the introduction of bulky substituents is most commonly employed, but this can also prevent magnetic communication in the solid-state as orbital overlap is diminished. Similarly, increasing the degree of delocalisation of the unpaired electron can have both positive and negative effects, and the balance is often subtle and unpredictable. ${ }^{31}$

The trans configuration of the $\mathrm{CH}_{2} \mathrm{Cl}$ groups in $\mathbf{3 c}$ helps to prevent close contact of the fused-rings such that the contacts between heteroatoms is significantly longer than those observed for 3a and 3e. The addition of substituents to the pendant aryl ring is also likely to have a significant influence on the solid-state structure. Radicals $\mathbf{3 g}$ and 3h in particular are potentially promising candidates since the o-tolyl ring is expected to twist considerably with respect to the fused-ring, as observed for the parent S^{IV} chlorides, and suppress close contact of radical centres. However, attempts to crystallise these radicals were unsuccessful.

The three radicals may be considered as Peierls distorted π-stacks with alternating short and long intermolecular contacts along the stacking direction. This packing motif is thermodynamically favourable and all one-dimensional stacks have an inherent instability with respect to spin-Peierls. ${ }^{32}$ For such systems however, a transition to a configuration featuring evenly spaced π-stacks may be accessible at high temperatures. This transition between the enthalpically favoured low temperature phase and entropically favoured high temperature has been observed in a number of benzodithiazolyls (BDTAs) ${ }^{33}$ resulting in magnetic bistability with a well-defined hysteresis. ${ }^{34,35}$ Variable temperature X-ray diffraction studies on the 1,2,4benzothiadiazyl radicals are therefore highly desirable to explore these potential properties.

3.6 - Electron Paramagnetic Resonance

Preliminary EPR studies of the 1,2,4-benzothiadiazinyl radicals were performed by in situ reduction of the parent $\mathrm{Siv}^{\mathrm{IV}}$ chloride with ferrocene in toluene. The later isolation of pure samples of the radicals allowed consistent measurements at a set concentration of radical to be performed. Prior attempts to collect frozen-solution spectra to obtain anisotropic data for orbital coefficient studies were unsuccessful, resulting in loss of resolution such that no spectral features could be extracted. ${ }^{16}$ This is attributed to rapid dimerisation on cooling.

3.6.1-EPR Results

The EPR spectra of the 1,2,4-benzothiadiazinyl radicals $\mathbf{3 a}$-h and $\mathbf{3 k}$-l were recorded in toluene at ambient temperature on a continuous wave (CW) X-band spectrometer. EPR spectral simulation and analysis were performed using the EasySpin computational package. ${ }^{36}$ The experimental and simulated spectra are shown in Figures 3.6.1.1 to 3.6.1.10.

Figure 3.6.1.1: EPR spectra of $\mathbf{3 a}$.

Figure 3.6.1.2: EPR spectra of $\mathbf{3 b}$.

Figure 3.6.1.3: EPR spectra of 3c.

Figure 3.6.1.4: EPR spectra of 3d.

Figure 3.6.1.5: EPR spectra of $\mathbf{3 e}$.

Figure 3.6.1.6: EPR spectra of $\mathbf{3 f}$.

Figure 3.6.1.7: EPR spectra of $\mathbf{3 g}$.

Figure 3.6.1.8: EPR spectra of $\mathbf{3 h}$.

Figure 3.6.1.9: EPR spectra of $\mathbf{3 k}$.

Figure 3.6.1.10: EPR spectra of 31 .

The EPR spectra for the 1,2,4-benzothiadiazinyl radicals are all based upon distorted 1:2:3:2:1 quintets arising from coupling to two similar but non-identical nitrogens within the heterocyclic ring. Significant line-broadening is observed in all cases arising from chlorination of the fused ring. Since both ${ }^{35} \mathrm{Cl}$ and ${ }^{37} \mathrm{Cl}$ are quadrupolar nuclei with $I=3 / 2$, the spectra consist of multiple superimposed spectra for each possible isotopalogue resulting in net loss of resolution and increased-line broadening, and so all features beyond nitrogen coupling are lost. ${ }^{4}$ A summary of EPR results and parameters for the radicals are shown in Table 3.6.1.1.

	\boldsymbol{g}-value	Line-Width $\boldsymbol{I} \mathbf{~ M H z}$	$\boldsymbol{a}_{\mathrm{N} 1}$ $I \mathrm{MHz}$	$\boldsymbol{a}_{\mathrm{N} 2}$ $I \mathrm{MHz}$
3a	2.00369	0.2696	15.662	13.132
3b	2.00346	0.2633	15.635	13.505
3c	2.00341	0.3097	15.804	13.599
3d	2.00431	0.3106	15.102	13.102
3e	2.00463	0.3694	14.687	13.298
3f	2.00453	0.3258	14.561	13.226
3g	2.00461	0.2689	15.883	13.354
3h	2.00449	0.3388	15.606	13.705
3k	2.00410	0.2904	15.821	12.892
3I	2.00411	0.3767	14.731	13.980

Table 3.6.1.1: EPR parameters for the 1,2,4-benzothiadiazinyl radicals.
The similarity in the g-values and nitrogen hyperfine coupling constants across the 1,2,4-benzothiadiazinyl radicals indicates that the electronic structure is only slightly perturbed by substitution of the benzo-fused and pendant aryl ring. This is in good agreement with electrochemical studies where the variation in $E_{1 / 2}$ potentials for the $0 / 1^{+}$redox couple was small. Indeed, the SOMO geometry (Figure 3.6.1.11), calculated at the UB3LYP/cc-pVDZ level at the UB3LYP/6-31G geometry, reveals that it is largely independent of the substitution around the benzo-fused and pendant aryl rings. Although significant delocalisation is observed across the benzo-fused ring framework, the low abundance (1.1%) of ${ }^{13} \mathrm{C}$ nuclide ($I=1 / 2$) will have negligible contribution to the EPR spectra and was therefore excluded from simulations of experimental data. In addition, the hyperfine coupling constants to H atoms on the benzo-fused or pendant aryl ring are small and further contribute to line broadening. ${ }^{3}$

Figure 3.6.1.11: SOMO geometry for $\mathbf{3 a}$ (isovalue $=0.04$).

3.6.2 - Computational Studies

Systematic and comprehensive studies of sulfur-nitrogen radicals has shown that DFT calculations using the UB3LYP/6-31G* method gives excellent correlation to experimental EPR parameters. ${ }^{37,38}$ However, the absolute accuracy of the calculated hyperfine coupling constants were typically poor and showed significant basis set sensitivity. As such, appropriate scaling factors have been developed for each nuclei and basis set. Calculations were performed at the UB3LYP/cc-pVDZ level of theory at the UB3LYP/6-31G optimised geometry following established methods for 1,2,4benzothiadiazinyl radicals. ${ }^{3}$ The hyperfine coupling constants were found to be significantly overestimated even after scaling (0.73 for ${ }^{14} \mathrm{~N}$) whilst the ratio of $a_{N 1}$ to $a_{N 2}$ was inconsistent and gave poor correlation to experimental data. A table of unscaled calculated hyperfine coupling constants and the estimated spin densities on N1, N2 and S1 are shown in Table 3.6.2.1.

	$\mathrm{a}_{\mathrm{N} 1}$	$a_{\text {N2 }}$	Spin Densities		
	/ MHz	/ MHz	N1	N2	S1
3a	23.181	20.460	0.3766	0.3359	0.2389
3b	22.772	20.328	0.3694	0.3293	0.2427
3c	23.043	20.633	0.3750	0.3348	0.2358
3d	22.604	20.437	0.3679	0.3313	0.2359
3 e	23.320	20.851	0.3810	0.3432	0.2261
3 f	23.122	20.436	0.3752	0.3361	0.2457
3 g	21.362	21.433	0.3500	0.3514	0.2323
3h	21.922	21.269	0.3588	0.3449	0.2302
3k	23.949	19.921	0.3886	0.3272	0.2396
31	23.787	20.144	0.3866	0.3269	0.2364

Table 3.6.2.1: Calculated hyperfine coupling constants and spin densities for the 1,2,4benzothiadiazinyl radicals.

The correlation between the calculated hyperfine coupling constants and spin densities on N 1 and N 2 are close to linear ($R^{2}=0.9938$ for N 1 and $R^{2}=0.9175$ for N 2) in accordance with the McConnell relationship, ${ }^{39}$ however considerable variation across the radicals was observed. The calculated spin density and hence hyperfine coupling constant for N 1 in $\mathbf{3 g}$ was found to be less than N 2 , and only marginally larger in $\mathbf{3 h}$. This is contrary to radicals 3a-f, where the spin density on N 1 is typically $\approx 11-12 \%$ greater than N 2 whilst this increases to $\approx 18-19$ \% for $\mathbf{3 k}-\mathrm{l}$. This suggests that whilst substitution on the pendant aryl ring has little effect on the energy of the SOMO and hence electrochemical behaviour, it may have a marked effect on the spin distribution of the radicals which, in combination with the added sterics or alternative packing interactions, could have a significant influence on the association of radical centres in the solid-state and any resultant magnetic communication.

The poor correlation between theoretical and experimental EPR results may be attributed to a number of factors. Primarily, the calculations are all performed in the gas-phase on a static optimised model. In contrast, EPR measurements were recorded in the solution-state on a dynamic system and represent a weighted average of all contributing geometries. This will have an amplified impact for the 1,2,4benzothiadiazinyl radicals for which the conformational preference of both the pendant aryl ring and the substituents on the benzo-fused ring must be considered. Additionally, hyperfine coupling constants are sensitive to experimental conditions as well the geometry. ${ }^{38}$

3.7 - Magnetic Studies

The magnetic properties of a selection of the 1,2,4-benzothiadiazinyl radicals obtained in a pure form based on elemental analysis, were examined through a combination of experimental and theoretical studies. Whilst the crystallographic data indicates that these radicals form dimer pairs in the solid-state, the observation of a magnetic phasetransition at a finite temperature is not uncommon for other dimeric sulfur-nitrogen radicals. $31,34,40$

3.7.1 - SQUID Results

Variable temperature magnetic susceptibility measurements were recorded between $2-300 \mathrm{~K}$ in either a 1000 Oe or 10000 Oe applied magnetic field. The poor magnetic response of the radicals became evident during sample centring, with each sample giving a very weak signal unless cooled to 5 K in a 10 kOe applied field. Preliminary studies on 3c (Chart 3.7.1.1) displayed what appeared to be paramagnetic behaviour
with a slight increase in the magnetic susceptibility on warming to 47 K and 57 K , which then steadily decreases as the sample approaches room temperature. On cooling in the presence of the applied field, the magnetic susceptibility begins to steadily increase towards 65 K before a brief plateau followed by a rapid increase on further cooling. This feature was maintained for several cycles of heating and cooling in the absence or presence of the field.

Chart 3.7.1.1: Paramagnetic susceptibility as a function of temperature for $\mathbf{3 c}$.

This behaviour was observed for duplicate measurements of a freshly prepared sample of $\mathbf{3 c}$, as well as for radicals $\mathbf{3 a}$ and $\mathbf{3 e}$ (Charts 3.7.1.2 and 3.7.1.3). The origin of this behaviour is attributed to the antiferromagnetic transition of trace oxygen contamination within the sample. ${ }^{41}$

Chart 3.7.1.2: Paramagnetic susceptibility as a function of temperature for $\mathbf{3 a}$.

Chart 3.7.1.3: Paramagnetic susceptibility as a function of temperature for $\mathbf{3 e}$.

This feature was not observed during magnetic measurements of 3d, which was not structurally characterised, but the magnitude of the response is significantly lower than that for 3a, 3c and 3e. Initial examination of the data showed that the magnetic susceptibility was directly proportional to the temperature (Chart 3.7.1.4). The CurieWeiss plot (Chart 3.7.1.5) however was non-linear, as would be expected for an ideal Curie paramagnet with $S=1 / 2 .{ }^{42}$ Extrapolation of the high temperature data above 150

K gave a Curie constant of $C=0.0369 \mathrm{emu} \mathrm{K} \mathrm{mol}^{-1}$ and θ value of -370 K which is consistent with extremely strong AFM interactions between radicals pairs such that they are spin-paired and hence essentially diamagnetic. The paramagnetic shape of the magnetic susceptibility plot may be attributed either to residual unpaired spins at the surface of the finely ground material or due to a trace paramagnetic impurity. These would explain the poor magnetic response from this sample and the calculated effective magnetic moment of $0.54 \mu \mathrm{~B}$, which is much lower than expected for a $\operatorname{spin} S=$ $1 / 2$ centre.

Chart 3.7.1.4: Paramagnetic susceptibility as a function of temperature for $\mathbf{3 d}$. $X_{p} T v s . T$ plot shown in inset. T

Chart 3.7.1.5: Curie-Weiss plot for 3d.

Magnetic measurements were also performed on radical 3e. Although structural data were not obtained, it was reasoned that the methoxy-group may prevent close contact of radical centres and suppress dimerisation in the solid-state. The magnetic susceptibility plot (Figure 3.7.1.6) is similar to 3d, however an additional feature was observed at approximately 225 K . On warming in the applied magnetic field (zero-field cooled, ZFC), there is a sudden increase in the magnetic susceptibility, albeit very small, followed by a steady decline on further heating. As the sample is cooled back down towards 2 K in the field (field-cooled, FC) however, there is no concomitant decrease in the magnetic susceptibility around 225 K . This behaviour may be indicative of a minor structural phase transition which is locked in the presence of an applied magnetic field. This feature was observable on repeated ZFC-FC cycles indicating that the removal of the external magnetic field returns the material to its original state. Further studies on this compound, primarily via variable temperature X-ray diffraction, are highly desirable to further investigate this phenomenon.

Chart 3.7.1.6: Paramagnetic susceptibility as a function of temperature for $\mathbf{3 f}$.

3.7.2 - Magnetic Exchange Interactions

Broken-symmetry calculations were performed to estimate the single-triplet exchange energies for closely interacting pairs of radicals, and to explore the origins of the magnetic properties in the structurally characterised 1,2,4-benzothiadiazinyl radicals. ${ }^{43,44,45}$ This approach has been successfully applied to a variety of heterocyclic sulfur-nitrogen radicals.7,35,46 Individual pairwise exchange energies, J, based on the Heisenberg Hamiltonian $H_{e x}=-2 J\left\{S_{1} \cdot S_{2}\right\}$, were estimated in terms of the difference between the UB3LYP/6-311G(d,p) total energies of the triplet (TS) and broken symmetry singlet (BSS) states and the respective expectation values of the two states according to the expression:

$$
\begin{equation*}
J=-\frac{\left(E_{T S}-E_{B S S}\right)}{\left\langle S^{2}\right\rangle_{T S}-\left\langle S^{2}\right\rangle_{B S S}} \tag{1}
\end{equation*}
$$

Exchange energies were calculated with a simple dinuclear nearest-neighbour exchange model using a variety of pairwise combinations of radicals, with atomic coordinates taken from crystallographic data. For radical 3a, there are strong antiferromagnetic (AFM) interactions along the $J_{\pi 1}$ exchange pathway, indicative of spin-pairing arising through two short $\mathrm{S} \cdots \mathrm{N}$ contacts between the heterocyclic rings (Figure and Table 3.7.2.1). A much weaker, but still relatively strong AFM interaction ${ }^{47}$ is estimated for the $J_{\pi 2}$ exchange pathway whilst both J_{3} and J_{3} are essentially zero.

Figure 3.7.2.1: Magnetic exchange pathways in 3a.

	$E_{T S} /$ Hartrees	${ }^{\left\langle S^{2}\right\rangle_{T S} \text { }}$	$E_{B S S} /$ Hartrees	$\left\langle S^{2}\right\rangle_{B S S}$	$J^{\prime \mathrm{cmm}_{-1}}$
$J_{\pi_{1}}$	-4774.51052355	2.0263	-4774.52988085	0.9989	-4135.138
$J_{\pi_{2}}$	-4774.53000748	2.0273	-4774.53044164	0.9994	-92.701
J_{3}	-4774.53327083	2.0290	-4774.53327407	1.0000	-0.691
J_{4}	-4774.53468043	2.0291	-4774.53468038	1.0000	0.011

Table 3.7.2.1: Calculated exchange energies for 3a.
Similar results were obtained for 3c, but the larger interplanar spacing between radical pairs results in significantly smaller exchange energies compared to 3a, especially for $J_{\pi 1}$, but these are still strongly antiferromagnetic and indicative of spin-pairing and overall diamagnetism (Figure and Table 3.7.2.2).

Figure 3.7.2.2: Magnetic exchange pathways in 3c.

	$E_{T S} /$ Hartrees	$\left\langle S^{2}\right\rangle_{T S}$	$E_{B S S} /$ Hartrees	$\left\langle S^{2}\right\rangle_{B S S}$	$J^{\prime \mathrm{cm}}-1$
$\mathrm{J}_{\pi_{1}}$	-4931.92924166	2.0329	-4931.93785381	0.9984	-1827.115
$J_{\pi_{2}}$	-4931.94238034	2.0330	-4931.94253497	0.9996	-32.841
J_{3}	-4931.94504518	2.0348	-4931.94504480	1.0000	0.081
J_{4}	-4931.94527360	2.0347	-4931.94527371	1.0000	-0.023

Table 3.7.2.2: Calculated exchange energies for 3c.

For radical 3e, the exchange along the $J_{\pi 1}$ pathway is again strongly antiferromagnetic due to the short $S \cdots S$ contacts between radicals (Figure and Table 3.7.2.3). The magnetic exchange along the $J_{\pi 2}$ and $J_{\pi 3}$ pathways are also very large and negative, whilst both J_{4} and J_{5} are negligible.

Figure 3.7.2.3: Magnetic exchange pathways in $\mathbf{3 e}$.

	$E_{T S} /$ Hartrees	${ }^{\langle } S^{2>}{ }_{T S}$	$E_{B S S} /$ Hartrees	$\left\langle S^{2}\right\rangle_{B S S}$	$J^{\prime \mathrm{cm}}{ }^{\text {-1 }}$
$J_{\pi_{1}}$	-4931.83391003	2.0309	-4931.85623662	0.9934	-4723.013
$J_{\pi_{2}}$	-4931.89695375	2.0319	-4931.89802333	0.9987	-227.203
$J_{\pi 3}$	-4931.81925623	2.0310	-4931.81968459	0.9989	-91.090
J_{4}	-4931.86338358	2.0330	-4931.86338389	1.0000	-0.066
J_{5}	-4931.82426099	2.0324	-4931.82426100	1.0000	-0.002

Table 3.7.2.3: Calculated exchange energies for $\mathbf{3 e}$.
Variable temperature single-crystal X-ray diffraction studies for $3 \mathbf{e}$ at $100 \mathrm{~K}, 150 \mathrm{~K}$ and 200 K were performed to examine the effect of temperature on the solid-state structure and the resulting magnetic properties. As expected, the unit cell parameters increase on heating, as does the $\mathrm{S} \cdots \mathrm{S}$ distance between radical centres and interplanar spacing. This results in a decrease in the AFM interactions along each of the exchange pathways (Table 3.7.2.4). Given that this decrease is small over the measured 100 K temperature range, it is unlikely that the entropically-favoured arrangement of equally spaced π stacks will exist below 400 K , however further experimental studies are required to confirm this.

Temperature $/ \mathbf{K}$	S-S Distance $/ \AA \AA \boldsymbol{J}_{\pi_{\mathbf{1}}} / \mathbf{c m}^{\mathbf{- 1}}$	$\mathbf{J}_{\pi_{\mathbf{2}}} / \mathbf{c m}^{\mathbf{- 1}}$	$\boldsymbol{J}_{\pi_{\mathbf{3}}} / \mathbf{~ c m}^{\mathbf{- 1}}$	
100	$2.846(1)$	-4723.013	-227.203	-91.090
150	$2.853(8)$	-4596.365	-212.739	-82.557
200	$2.864(8)$	-4388.673	-202.020	-68.238

Table 3.7.2.4: Calculated exchange energies and S-S distances at variable temperatures for $\mathbf{3 e}$.

Calculations were also performed on the perchlorinated, $\mathbf{3 x}$, and perfluorinated, $\mathbf{3 y}$, derivatives previously reported by Kaszynski ${ }^{3}$ to compare the magnetic exchange pathways of the crystallographically known systems. These were both observed to form slipped π-stacks in the solid-state at 173 K with additional long contacts to neighbouring molecules through $\mathrm{S} 1 \cdots \mathrm{~S} 1$ or $\mathrm{S} 1 \cdots \mathrm{~N} 1$ contacts. The calculations for $\mathbf{3 x}$ differ considerably to the other radicals, and features two, almost equal and weak antiferromagnetic interactions along the $J_{\pi 1}$ and $J_{\pi 2}$ exchange pathways, consistent with a 1D AFM chain (Figure and Table 3.7.2.5). Surprisingly, the exchange energy along the J_{3} pathway, associated with the single $\mathrm{S} \cdots \mathrm{S}$ contact between molecules, is close to zero suggesting that the interchain interaction is minimal due to the poor SOMO overlap.

Figure 3.7.2.5: Magnetic exchange pathways in $\mathbf{3 x}$.

	$E_{T S} /$ Hartrees	$\left\langle S^{2}\right\rangle_{T S}$	$E_{B S S} /$ Hartrees	$\left\langle S^{2}\right\rangle_{B S S}$	$J^{1 \mathrm{~cm}_{-1}}$
$J_{\pi_{1}}$	-5693.991834	2.0301	-5693.991900	0.9998	-14.066
$J_{\pi_{2}}$	-5693.991559	2.0301	-5693.991626	0.9997	-14.147
J_{3}	-5693.993244	2.0312	-5693.993247	0.9998	-0.726
J_{4}	-5693.994372	2.0314	-5693.994372	1.0000	-0.111

Table 3.7.2.5: Calculated exchange energies for $\mathbf{3 x}$.
In contrast, the antiferromagnetic interactions along the π-stack for $\mathbf{3 y}$ are extremely strong, with essentially equal exchange energies for both $J_{\pi 1}$ and $J_{\pi 2}$ (Figure and Table 3.7.2.6). The AFM interchain interactions along the J_{3} pathway is of significant strength whilst J_{4} is negligible resulting in an offset ladder structure; the infinite $J_{\pi 1}$ and $J_{\pi 2}$ stacks form 1D AFM chains representing the side-rails whilst the J_{3} pathway represent the rungs of the ladder.

Figure 3.7.2.6: Magnetic exchange pathways in $3 y$.

	$E_{T S} /$ Hartrees	${ }^{\left\langle S^{2}\right\rangle_{T S}}$	$E_{B S S} /$ Hartrees	$\left\langle S^{2}\right\rangle_{B S S}$	$J^{\prime \mathrm{cm}}-1$
$J_{\pi_{1}}$	-2811.148837	2.0314	-2811.157064	0.9994	-1749.632
$J_{\pi_{2}}$	-2811.148869	2.0314	-2811.157097	0.9994	-1749.985
J_{3}	-2811.156895	2.0321	-2811.157033	1.0000	-29.326
J_{4}	-2811.158509	2.0329	-2811.158509	1.0000	-0.002

Table 3.7.2.6: Calculated exchange energies for $\mathbf{3 y}$.
The solid-state structures adopted by $\mathbf{3 x}$ and $\mathbf{3 y}$ may give rise to interesting magnetic effects. For radical $\mathbf{3 x}$, the regular π-stacks of weakly interacting molecules is likely to result in paramagnetic behaviour, whilst the strong interaction along the π-stacks in $\mathbf{3 y}$ may lead to antiferromagnetic ordering at a finite temperature. Similarly, radicals $\mathbf{3 x}$ and 3y may exhibit conductivity as a result of a non-zero density of states at the Fermi level due to the regular bands of half-filled orbitals (SOMOs). ${ }^{48}$ Experimental magnetic and conductivity measurements of both compounds are therefore highly desirable.

3.8 - Conclusions

Electrochemical studies on the 1,2,4-benzothiadiazine 1-chlorides showed that there is little variation in the redox potentials across the prepared derivatives, which indicate that the substituents on the benzo-fused and pendant aryl rings have little effect on the electronic structure. The electrochemical behaviour was further examined via variable concentration studies to qualitatively assess the radical monomer-dimer equilibria, and via variable scan rate studies to probe the reversibility of the electron transfer processes.

1,2,4-Benzothiadiazine 1 -chlorides are reduced under mild conditions to afford analytically pure samples of the corresponding radical. These were found to be shortlived in solution and thermally unstable, severely hampering the growth of crystals suitable for SCXRD studies. The solid-state structures of $\mathbf{3 a}, \mathbf{3 c}$ and $\mathbf{3 e}$ consisted of
dimer pairs of planar radicals, which lead to distorted π-stacks with alternating short and long interplanar contacts.

The EPR spectra for the 1,2,4-benzothiadiazinyl radicals all show distorted 1:2:3:2:1 quintets due to coupling to two non-identical but similar nitrogens within the heterocyclic ring. The minor variation in experimental g-values and hyperfine coupling constants across the series of radicals further indicates that the substituents have little effect on the electronic structure. The correlation between experimental and DFT UB3LYP/cc-pVDZ/6-31G calculated EPR parameters was poor, and showed considerable variation especially for the radicals bearing substituents on the pendant aryl ring. Further studies are required to develop a more suitable model for these complex systems.

Magnetic studies showed that the crystallographically characterised radicals are dimeric in the solid-state; the pseudo-paramagnetic behaviour is attributed to residual free spins or trace paramagnetic impurities. Broken-symmetry single-point calculations at the DFT UB3LYP $/ 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ level confirmed that the interactions between radical dimer pairs are strongly antiferromagnetic, consistent with spin pairing and overall diamagnetism. Theoretical examination of the known crystalline radicals, $\mathbf{3 x}$ and $\mathbf{3 y}$, suggest that these materials may exhibit interesting magnetic properties which result from regular 1D π-stacks with either weak ($\mathbf{3 x}$) or strong (3y) interactions between radical centres.

3.9 - Future Work

The substituents on the benzo-fused and pendant aryl ring were shown to have little effect on the electronic properties of the radicals but have a significant influence on the solid-state structure. The examination of the crystal structures of the remaining radicals is thus highly desirable and requires the successful growth of single crystals suitable for analysis. The o-tolyl systems, $\mathbf{3 g}$ and $\mathbf{3 h}$, in particular are likely to be promising candidates for systems that overcome the tendency to dimerise and hence display interesting magnetic behaviour.

Co-crystallisation with other π-stacking species is an alternative approach that is being employed to suppress dimerisation in sulfur-nitrogen radicals,30,49,50 and samples of the 1,2,4-benzothiadiazinyl radicals have been sent to Professor Delia Haynes at the University of Stellenbosch to investigate their co-crystallisation with DTDA radicals.

3.10 - Experimental

3.10.1 - Synthesis of 1,2,4-Benzothiadiazinyl Radicals

The radicals 3a-h and $3 \mathbf{k}-\mathbf{l}$ were prepared by one electron reduction of the corresponding 1,2,4-benzothiadiaze 1-chloride with triphenylphosphine. The synthesis of $3 \mathbf{a}$ is given as exemplar. $\mathrm{Ph}_{3} \mathrm{P}$ was recrystallised prior to use from DCM and hexanes.
3.10.1.1 - Synthesis of 1,5,6,7-tetrachloro-3-phenyl-benzo-1,2,4-thiadiazinyl, 3a: 2a ($0.400 \mathrm{~g}, 1.10 \mathrm{mmol}$) was suspended in $\operatorname{MeCN}\left(5 \mathrm{~cm}^{3}\right)$ and degassed with three freeze-thaw-pump cycles and backfilled with argon. A solution of $\mathrm{Ph}_{3} \mathrm{P}(0.145 \mathrm{~g}, 0.55$ mmol) in degassed MeCN ($5 \mathrm{~cm}^{3}$) was added resulting in an immediate darkening of colour. After 5 minutes of rapid stirring, the supernatant was removed via filter cannula and the solids were washed with $\operatorname{MeCN}\left(5 \mathrm{~cm}^{3}\right)$ and dried in vacuo to afford a dark purple powder. Yield 0.247 g ($0.75 \mathrm{mmol}, 68.3$ \%).

3.10.1.2 - Synthesis of 1,6,7-trichloro-5-(chloromethyl)-3-phenyl-benzo-1,2,4thiadiazinyl, 3b:

Dark blue powder, 51.1 \% yield.
3.10.1.3 - Synthesis of $\mathbf{1 , 7}$-dichloro-5,6-bis(chloromethyl)-3-phenyl-benzo-1,2,4thiadiazinyl, 3c:

Dark purple powder, 71.8 \% yield. Anal. Calc. for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{~S}$: C, 50.5; H, 2.8; N, 7.9. Found: C, 50.4; H, 2.7; N, 8.0.

3.10.1.4 - Synthesis of 1,6,7-trichloro-5-(chloromethyl)-8-methyl-3-phenyl-

 benzo-1,2,4-thiadiazinyl, 3d:Dark purple powder, 59.7 \% yield. Anal. Calc. for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{~S}$: C, 50.5; H, 2.8; N, 7.9. Found: C, 50.5; H, 2.9; N, 8.0.

3.10.1.5 - Synthesis of 1,5,7-trichloro-6-(chloromethyl)-8-methyl-3-phenyl-

 benzo-1,2,4-thiadiazinyl, 3e:Dark purple powder, 67.5 \% yield. Anal. Calc. for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{~S}$: C, 50.5; H, 2.8; N, 7.9. Found: C, 50.3; H, 2.7; N, 7.9.
3.10.1.6 - Synthesis of 1,5,6,7-tetrachloro-8-methoxy-3-phenyl-benzo-1,2,4thiadiazinyl, 3f:

Dark purple/green powder, 58.3 \% yield.

3.10.1.7 - Synthesis of 1,5,6,7-tetrachloro-3-(o-tolyl)-benzo-1,2,4-thiadiazinyl,

 3g:Dark green powder, 64.1 \% yield.
3.10.1.8 - Synthesis of $\mathbf{1}, 7$-dichloro-5,6-bis(chloromethyl)-3-(o-tolyl)-benzo-

1,2,4-thiadiazinyl, 3h:
Dark purple powder, 57.4 \% yield.
3.10.1.9 - Synthesis of 1,5,6,7-tetrachloro-3-(4-methoxyphenyl)-benzo-1,2,4thiadiazinyl, 3k:

Dark blue powder, 48.6 \% yield.

3.10.1.10 - Synthesis of 1,7-dichloro-5,6-bis(chloromethyl)-3-(4-

 methoxyphenyl)-benzo-1,2,4-thiadiazinyl, 31:Dark blue powder, 67.7 \% yield.

3.10.2 - Computational Methods

DFT calculations were performed using the Gaussian16 ${ }^{51}$ suite of programs. Structures were optimised from single-crystal X-ray diffraction data at the DFT52 UB3LYP/6-31G53 level of theory. The Fermi contacts and spin densities were calculated at the UB3LYP/cc-pVDZ54 level of theory from previously optimised geometries. Single-point broken symmetry calculations were performed at the UB3LYP/6-311G(d,p) ${ }^{55}$ level of theory, with pairwise exchange interactions based on atomic coordinates from SCXRD data.

3.11 - References

M. J. Perkins, Radical Chemistry: The Fundamentals, Oxford Chemistry Primers, 2000.
V. Chechik, E. Carter and D. Murphy, Electron Paramagnetic Resonance, Oxford Chemistry Primers, 2015.
J. Zienkiewicz, P. Kaszynski and V. G. Young, J. Org. Chem., 2004, 69, 7525-7536.
A. a Leitch, R. T. Oakley, R. W. Reed and L. K. Thompson, Inorg. Chem., 2007, 46, 6261-70.
L. N. Markovskii, V. S. Talanov, O. M. Polumbrik and Y. G. Shermolovich, Russ. J. Org. Chem., 1981, 17, 2338-2339.
L. Beer, R. C. Haddon, M. E. Itkis, A. A. Leitch, R. T. Oakley, R. W. Reed, J. F. Richardson, D. G. VanderVeer, L. Beer, J. L. Brusso, A. W. Cordes, R. C. Haddon, M. E. Itkis, K. Kirschbaum, D. S. MacGregor, R. T. Oakley, A. A. Pinkerton and R. W. Reed, Chem. Commun., 2005, 124, 1218-1220.
S. M. Winter, K. Cvrkalj, P. A. Dube, C. M. Robertson, M. R. Probert, J. A. K. Howard and R. T. Oakley, Chem. Commun., 2009, 7306.
J. Zienkiewicz, P. Kaszynski and V. G. Young, J. Org. Chem., 2004, 69, 2551-2561.
E. R. Clark, J. J. Hayward, B. J. Leontowicz, D. J. Eisler and J. M. Rawson, CrystEngComm, 2014, 16, 1755-1762.
E. S. Levchenko, G. S. Borovikova, E. I. Borovik and V. V. Kalinin, Russ. J. Org. Chem., 1984, 20, 176-181.
J. M. Rawson and G. D. McManus, Coord. Chem. Rev., 1999, 189, 135-168.
J. M. Rawson, A. J. Banister and I. Lavender, Adv. Heterocycl. Chem., 1995, 62, 137-247.
A. Alberola, R. J. Collis, S. M. Humphrey, R. J. Less and J. M. Rawson, Inorg. Chem., 2006, 45, 1903-1905.
A. Alberola, D. Eisler, R. J. Less, E. Navarro-Moratalla and J. M. Rawson, Chem. Comтип., 2010, 46, 6114-6116.
T. M. Barclay, L. Beer, A. W. Cordes, R. T. Oakley, K. E. Preuss, J. Nicholas and R. W. Reed, 1999, 175, 531-532.
E. R. Clark, Synthesis and Chemistry of 1,2,4-Benzothiadiazines, University of Cambridge, 2008.
T. Boere, T. L. Roemmele and C. T. K. M, Coord. Chem. Rev., 2000, 210, 369-445.
A. W. Cordes, P. J. Hayes, P. D. Josephy, H. Koenig, R. T. Oakley and W. T. Pennington, J. Chem. Soc., Chem. Commun., 1984, 1021-1022.
G. Gritzner and J. Kuta, Int. Union Pure Appl. Chem., 1984, 1, 462-466.
P. Atkins and J. De Paula, Physical Chemistry, Oxford University Press, 9th edn., 2010.
N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart and J. L. Dempsey, J. Chem. Educ., 2018, 95, 197-206.
R. T. Oakley, R. W. Reed, A. W. Cordes, S. L. Craig and J. B. Graham, J. Am. Chem. Soc., 1987, 109, 7745-7749.
A. J. Banister, I. Lavender, J. M. Rawson, W. Clegg, B. K. Tannerc and R. J. Whiteheadc, J. Chem. Soc., Dalt. Trans., 1993, 1421-1429.
A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamental and Applications, John Wiley \& Sons, NJ, 2nd edn., 2001.
R. T. Boeré, K. H. Moock and M. Parvez, ZAAC - J. Inorg. Gen. Chem., 1994, 620, 1589-1598.
D. B. Denney, D. Z. Denney and B. C. Chang, J. Am. Chem. Soc., 1968, 90, 63326335.
A. Bondi, J. Phys. Chem., 1964, 68, 441-451.
J. S. W. Overell and G. S. Pawley, Acta Cryst., 1982, 38, 1966-1972.
G. R. Desiraju, Crystal Engineering, Elsevier, Amsterdam, 1989.
D. A. Haynes, CrystEngComm, 2011, 13, 4793-4805.
C. P. Constantinides and P. A. Koutentis, Adv. Heterocycl. Chem., 2016, 119, 173207.
R. C. Peierls, Quantum Theory of Solids, Oxford University Press, London, 1953.
T. M. Barclay, A. W. Cordes, N. A. George, R. C. Haddon, M. E. Itkis and R. T. Oakley, Chem. Commun., 1999, 2269-2270.
G. D. McManus, J. M. Rawson, N. Feeder, J. van Duijn, E. J. L. McInnes, J. J. Novoa, R. Burriel, F. Palacio and P. Oliete, J. Mater. Chem., 2001, 11, 1992-2003.
D. Bates, C. M. Robertson, A. A. Leitch, P. A. Dube and R. T. Oakley, J. Am. Chem. Soc., 2018, 140, 3846-3849.
S. Stoll and A. Schweiger, J. Magn. Reson., 2006, 178, 42-55.
P. Kaszynski, J. Phys. Chem. A, 2001, 105, 7626-7633.
P. Kaszynski, J. Phys. Chem. A, 2001, 105, 7615-7625.
H. M. McConnell and D. B. Chesnut, J. Chem. Phys., 1958, 28, 107-117.
J. L. Brusso, O. P. Clements, R. C. Haddon, M. E. Itkis, A. A. Leitch, R. T. Oakley, R. W. Reed and J. F. Richardson, J. Am. Chem. Soc., 2004, 126, 14692-14693.
N. Feeder, R. J. Less, J. M. Rawson, P. Oliete and F. Palacio, Chem. Commun., 2000, 2, 2449-2450.
A. F. Orchard, Magnetochemistry, Oxford Chemistry Primers, Oxford, 2003.
L. Noodleman and E. R. Davidson, Chem. Phys., 1986, 109, 131-143.
L. Noodleman, J. Chem. Phys., 1981, 74, 5737-5743.
N. Deumal, M. A. Robb and J. J. Novoa, in Topics in the Theory Of Chemical and Physical Systems, Springer US, 2007, pp. 271-289.
S. M. Winter, A. R. Balo, R. J. Roberts, K. Lekin, A. Assoud, P. A. Dube and R. T. Oakley, Chem. Commun., 2013, 49, 1603.
C. P. Constantinides, A. A. Berezin, M. Manoli, G. M. Leitus, M. Bendikov, J. M. Rawson and P. A. Koutentis, New J. Chem., 2014, 38, 949-954.
R. Hoffmann, Angew. Chem. Int. Ed., 1987, 26, 846-878.
S. Domagała, K. Kosc, S. W. Robinson, D. A. Haynes and K. Woźniak, Cryst. Growth Des., 2014, 14, 4834-4848.
S. W. Robinson, D. A. Haynes and J. M. Rawson, CrystEngComm, 2013, 15, 1020510211.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, G. A. Cheeseman, J. R. Scalmani, G.; Barone, V. Petersson, X. Nakatsuji, H.; Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F.; Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. Montgomery, J. A., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian 16, Revision B. 01 2016.
R. G. Parr and W. Yang, Density-functional theory of atoms and molecules, Oxford University Press, 1989.
R. Ditchfield, W. J. Hehre and J. A. Pople, J. Chem. Phys., 1971, 54, 724-728.
T. H. Dunning, J. Chem. Phys., 1989, 90, 1007-1023.
A. D. McLean and G. S. Chandler, J. Chem. Phys., 1980, 72, 5639-5648.

Chapter 4

1,2,4-Benzophosphadiazines

"I'm afraid that my condition has left me cold to your pleas of mercy."

4.1 - Introduction to Fused-Ring Phosphorus Nitrogen Heterocycles

Fused-ring phosphorus-nitrogen heterocycles have found emerging applications in ligands for catalysis, pesticides, and flame-retardant materials, and are important building blocks for drug discovery. ${ }^{1}$ Phosphorus-carbon bond formation is an important step in the construction of these molecules, and the development of general, mild reaction conditions with good functional group tolerance is highly desirable. The most common method of $\mathrm{P}-\mathrm{C}_{\text {aryl }}$ bond formation involves the addition of an organic nucleophile to a phosphorus electrophile, typically a chlorophosphine. Since these are poor electrophiles, strong organic nucleophiles such as Grignard ${ }^{2}$ or aryl-lithium reagents ${ }^{3}$ are often needed. The direct phosphination of electron-rich aromatics/heteroaromatics has also been shown to be a straightforward method to access fused-ring phosphorus-heterocycles. ${ }^{4}$

Alternatively, the electrophilicity of phosphorus can be enhanced via chloride abstraction, which results in a highly reactive and Lewis-acidic phosphenium intermediate. This approach has been applied to the Friedel-Crafts addition of phosphine units to aromatic substrates and has been established for over a century. ${ }^{5}$ Nevertheless, the harsh conditions, long reaction times, and low yields mean that this approach has found limited use. Substitution of AlCl_{3} or ZnCl_{2}, the typical superstoichiometric Lewis acids employed in phospha-Friedel-Crafts chemistry, with catalytic quantities of superacid has however considerably lowered the reaction temperatures and improved product isolation for fused-ring derivatives. ${ }^{6}$ The use of ionic liquids in phospha-Friedel-Crafts chemistry has also been investigated. ${ }^{7}$

4.1.1 - An Overview of 1,2,4-Benzophosphadiazines

The incorporation of larger or heavier heteratoms into stable radicals has been shown to improve both the conductivity and magnetic exchange interactions, due to a greater intermolecular orbital overlap in the solid-state. ${ }^{8,9}$ This prompted us to prepare 1,2,4benzophosphadiazines, as phosphorus containing analogues of the 1,2,4benzothiadiazines discussed in Chapters 2 and 3, and heavier congeners of the wellknown Blatter radicals. ${ }^{10-15}$

The synthesis of 1,2,4-benzophosphadiazines was first reported in 1984 by Levchenko, ${ }^{16}$ by treatment of N -chloroarylamidines with PCl_{3} in the presence of base (Scheme 4.1.1.1) to give the P^{V} 1,1-dichloro 1,2,4-benzophosphadiazine (A), analogous to their earlier work on the preparation of 1,2,4-benzothiadiazines. ${ }^{17}$ This was reported to be the dimeric heterocycle based on molecular mass measurements;
crystals suitable for single-crystal X-ray analysis could not be grown. However, the lack of additional reported analytical data for this compound, such as NMR or IR spectra, leaves some doubt as to the true nature of the product.

A
Scheme 4.1.1.1: Reported synthesis of 1,2,4-benzophosphadiazines.
The synthesis of 1,2,4-benzophosphadiazines (B) through phosphination of electronrich substituted N, N 'diarylureas was reported in 2001 by Volochnyuk ${ }^{18}$ and later extended to N -arylamidines and N, O-diarylcarbamates. ${ }^{4}$ The synthesis proceeds under mild conditions for systems bearing electron-donating groups (EDG) para to the C nucleophilic centre, giving facile access to a family of substituted 1,2,4benzophosphadiazines (Scheme 4.1.1.2). Attempted cyclisations with trihalophosphines were unsuccessful for ureas ($\mathrm{Y}=\mathrm{NH}$), where the resulting benzophosphadiazine ($\mathrm{R}=\mathrm{X}$) is believed to polymerise due to the presence of an additional nucleophilic NH fragment. Conversely, the reaction of PBr_{3} or PCl_{3} with $\mathrm{N}, \mathrm{O}-$ diarylcarbamates ($\mathrm{Y}=0$) gave the corresponding 1-halo-1,2-4-benzophosphazines, which react with alcohols or secondary amines to afford P-substituted derivatives. Attempts to extend the reaction to the corresponding thioureas were unsuccessful, which was attributed to the affinity of the phosphorus atom for sulfur in such reactions.

```
EDG = Me_N, MeO
Y = NH,O
Ar = Ph, 3,4-Cl2 --C6
R = Ph, 2-furyl, etc.
X=Cl,Br
```


B

Scheme 4.1.1.2: Synthesis of substituted 1,2,4-benzophosphazines from N, N^{\prime} diarylureas and N, O-diarylcarbamates.

1,2,4-benzophosphadiazine derivatives (C) have recently found applications in medicinal chemistry as novel hepatitis C allosteric NS5B RdRp inhibitors, by replacement of sulfur in the 1,2,4-benzothiadiazine pharmacophore with phosphorus. ${ }^{19}$ The potential of phosphorus chemistry as a bioisostere strategy is an important tool in medicinal chemistry that has been shown to improve potency, selectivity, physicochemical properties, and the pharmokinetic profile of key compounds. ${ }^{20}$ The
synthetic approach to this fused-ring heterocycle relied on the condensation of a 2aminoarylphosphonate with a substituted nitrile in the presence of AlMe_{3}, the former phosphonate being prepared by the palladium-catalysed phosphorylation of the corresponding 2-bromoaniline (Scheme 4.1.1.3).

Scheme 4.1.1.3: Synthesis of non-nucleoside inhibitors containing the 1,2,4benzophosphadiazine scaffold.

4.2 - Attempted Syntheses of 1,2,4-Benzophosphadiazines

4.2.1 - Initial Studies with P^{v} Sources

Following the facile synthesis of 1,2,4-benzothiadiazine 1-chlorides from the reaction of N -arylamidines with neat SOCl_{2}, the analogous reaction was attempted with phosphorus oxychloride. Refluxing N-phenylbenzamidine, 1a, in neat POCl_{3} for 16 hours, followed by layering with dry hexane afforded colourless crystals of the phosphoramidic dichloride 8a (Scheme 4.2.1.1). Attempts to encourage cyclisation through the use of an electron rich N-arylamidine such as $\mathbf{1 r}$ (vide infra) and prolonged refluxing were unsuccessful.

Scheme 4.2.1.1: Reaction of N -arylamidines with POCl_{3}.
Compound 8a was found to be poorly soluble in most organic solvents but dissolved readily in pyridine. NMR analysis exhibited a major singlet ($\approx 85 \%$ by integration) at δ +1.2 ppm in the ${ }^{31} \mathrm{P}$ NMR spectrum, assigned to 8 aa , and a minor peak at -7.0 ppm (Figure 4.2.1.1). Heating this solution at $100{ }^{\circ} \mathrm{C}$ overnight resulted in complete consumption of $\mathbf{8 a}$, and conversion through to a single new major species, along with a few minor products. This is postulated to be the 1,2,4-benzophosphadiazine 1 -chloro-1-oxide, 9a, based on the ${ }^{31} \mathrm{P}$ NMR chemical shift, ${ }^{21}$ resulting from the loss of one equivalent of HCl from 8 a according to Scheme 4.2.1.2. Repeated attempts to isolate the product to enable further characterisation were unsuccessful.

Figure 4.2.1.1: ${ }^{31} \mathrm{P}$ NMR spectra of 8 a in pyridine.

Scheme 4.2.1.2: Proposed scheme for the reaction of $8 \mathbf{8}$ with excess pyridine.
When 8a is refluxed in o-DCB for 72 hours at $180{ }^{\circ} \mathrm{C}$ with excess AlCl_{3}, the resulting ${ }^{31} \mathrm{P}$ NMR spectrum exhibits a major doublet at $\delta+24.1 \mathrm{ppm}$ with ${ }^{2} J_{P-H}=21.8 \mathrm{~Hz}$, assigned as $[\mathbf{9 a . H}]\left[\mathrm{AlCl}_{4}\right]$. The AlCl_{3} is believed to promote cyclisation through the formation of an intermediate Lewis-acidic phosphonium; whilst proton-migration results in the formation of the N-protonated heterocycle as the AlCl_{4} salt (Scheme 4.2.1.3). A single sharp peak at $\delta+105.9 \mathrm{ppm}$ in the ${ }^{27} \mathrm{Al}$ NMR spectrum confirmed the presence of the $\mathrm{AlCl}_{4}{ }^{-}$anion. Attempts to deprotonate this species to confirm its proposed relationship with 9a gave a mixture of unidentified products.

Scheme 4.2.1.3: Proposed scheme for the reaction of $\mathbf{8 a}$ with excess AlCl_{3}.

Although there was evidence to suggest that cyclisation of the intermediate 8a does occur under these conditions, it was evident that further steps would be necessary to first optimise the ring-closing step, and then transform the 1,2,4-benzophosphadiazine 1 -oxide into a suitable radical precursor. Reactions of N-arylamidines with PCl_{5} were also fraught with problems, and yielded a mixture of products when performed in range of solvents (DCM, THF, toluene) with and without base ($\mathrm{Et}_{3} \mathrm{~N}$, pyridine, DABCO). In light of these observations, further reactions with P^{v} species were not attempted.

4.2.2 -Initial Studies with P ${ }^{\text {III }}$ Sources

Given the utility of SII sources for the direct synthesis of SIV radical precursors, ${ }^{22}$ PIII halides were examined as phosphinating agents for the construction of 1,2,4benzophosphadiazines. For the initial attempts, we opted for harsh reaction conditions given the literature precedence of P-Caryl bond-formation for unactivated species. ${ }^{23}$ Refluxing N-phenylbenzamidine in neat PCl_{3} afforded a poorly soluble material that exhibited a number of phosphorus-containing species by ${ }^{31} \mathrm{P}$ NMR ranging from $\delta-7$ to +220 ppm . Stoichiometric reactions were repeated in a range of solvents (THF, DCM, DMF, PhCl) with and without base ($\mathrm{NaH}, \mathrm{DABCO}$, pyridine), but repeatedly gave intractable and insoluble materials. These are believed to be polymeric materials arising from the rapid formation of three $\mathrm{P}-\mathrm{N}$ bonds, with either of the two amidine nitrogens, to give compounds such as \mathbf{D} shown in Figure 4.2.2.1.

D
Figure 4.2.2.1: Potential polymeric material resulting from the reaction of N arylamidines with PCl_{3}.

Analogous reactions with aryldichlorophosphines also provided limited success. The treatment of N -phenylbenzamidine with PhPCl_{2} under mild conditions in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ however, afforded the six-membered heterocyclic species, 10a (Scheme 4.2.2.1). Further discussion of 10a, along with the synthesis of other non-fused ring phosphorus-nitrogen heterocycles is provided in Chapter 5. This result further indicates that the formation of a second $\mathrm{P}-\mathrm{N}$ bond is much more rapid than $\mathrm{P}-\mathrm{C}_{\text {aryl }}$ bond formation and cyclisation.

Scheme 4.2.2.1: Reaction of N-phenylbenzamidine with PhPCl_{2} under mild conditions.

4.3 - N, N-Substituted Amidines

The initial reactions of N-arylamidines with PCl_{3} and PhPCl_{2} suggested that cyclisation is unfavourable in the presence of the second nucleophilic N - H fragment, since P-N bond formation is rapid, especially in the presence of base. To prevent this, we investigated the reactions of aryldichlorophosphines with N, N^{\prime} - (E) and $N, N-$ substituted (F) amidines (Figure 4.3.1).

E

F

Figure 4.3.1: N, N^{\prime} - and N, N-substituted amidines.

4.3.1 - Synthesis of N, N-substituted Amidines

N-methyl and N-phenyl derivatives (Figure 4.3.1.1) were prepared according to known literature procedures: 11a via condensation of a primary amine with a N-substituted nitrillium salt; ${ }^{24}$ 12a via condensation of a primary amine with a substituted imidoyl chloride; ${ }^{25}$ and 13a via Lewis-acid mediated condensation of a secondary amine and nitrile in the melt. ${ }^{26}$

11a

12a

13a

Figure 4.3.1.1: N, N^{\prime} - and N, N-substituted amidines prepared in this thesis.

4.3.2 - Reactions with PhPCl_{2}

The reaction of 11a, 12a and 13a with PhPCl_{2} and $\mathrm{Et}_{3} \mathrm{~N}$ in THF resulted in clean conversion to the monosubstituted products (Figure 4.3.2.1) which all exhibited a major single sharp peak in the ${ }^{31} \mathrm{P}$ NMR spectra.

	11a'	12a'	13a'
${ }^{31} \mathrm{P}$ NMR δ / ppm	+124.9	+101.8	+120.7

Figure 4.3.2.1: Monosubstituted products from the reaction of N, N^{\prime} - or N, N-substituted amidines with PhPCl_{2}, and their ${ }^{31} \mathrm{P}$ NMR chemical shifts.

A number of different approaches were attempted to form the corresponding fusedring 1,2,4-benzophosphadiazine from compounds 11a', 12a' and 13a'. Heating solutions of these species with and without base lead only to slow decomposition and formation of cyclic $[\mathrm{PhP}]_{\mathrm{n}}$ species. No changes were observed by ${ }^{31} \mathrm{P}$ NMR on the addition of Lewis acid $\left(\mathrm{AlCl}_{3}, \mathrm{GaCl}_{3}, \mathrm{TMSOTf}, \mathrm{NaBAr}{ }^{\mathrm{Cl}}\right)$ to 11a' or 13a', whilst the addition of GaCl_{3} to $\mathbf{1 2 a}$ ' resulted in an immediate downfield shift to $\delta+161.5 \mathrm{ppm}$ (Figure 4.3.2.2). This is consistent with the formation of the four-membered heterocycle [14a][GaCl $\mathbf{G a}_{4}$, analogous to Grubbs' 1,3,2-diazophosphetine salts (G) (Figure 4.3.2.3), derived from the corresponding formamidine and which are precursors to stable four-membered N -heterocyclic carbenes. ${ }^{27}$ On heating at $60{ }^{\circ} \mathrm{C}$ for one hour, the signal for [14a][$\mathbf{G a C l}_{4}$] is lost and several minor peaks are observed between $\delta+37$ and -37 ppm in the ${ }^{31} \mathrm{P}$ NMR spectrum. Heating overnight resulted in clean conversion to a single major phosphorus-containing species at $\delta+16.6 \mathrm{ppm}$. Attempts to isolate this species and $[\mathbf{1 4 a}]\left[\mathbf{G a C l}_{4}\right]$ to allow for further characterisation were unsuccessful, affording colourless crystals of $\mathbf{1 2 a} \mathbf{~} \mathbf{H C l}$ on a number of occasions, likely due to $\mathrm{P}-\mathrm{N}$ bond cleavage through contamination with trace air or moisture.

Figure 4.3.2.2: ${ }^{31} \mathrm{P}$ NMR spectra showing the addition of GaCl_{3} to $\mathbf{1 2 a}$.

[14a][GaCl $\left.{ }_{4}\right]$

G

Figure 4.3.2.3: Four-membered 1,3,2-diazophosphetines.

4.4 - Electron-Rich Aromatics

Following the poor success of these amidines derived from aniline itself at forming the desired 1,2,4-benzophosphadiazine, we turned our attention to alternative methods. Rather than increasing the electrophilicity at phosphorus through the addition of Lewis-acid to form an intermediate phosphenium, the nucleophilicity at $\mathrm{C}_{\text {aryl }}$ can be increased through the introduction of electron-donating groups. This has in the past been successfully applied to a range of N, N^{\prime}-diarylureas and N, O-diarylcarbamates to give the corresponding 1,2,4-benzophosphadiazines, ${ }^{4,18}$ although the synthesis of benzo-fused $\mathrm{P}-\mathrm{N}$ heterocycles from N-arylamidines is limited to a single example (Scheme 4.4.1). ${ }^{28}$ The introduction of a $\mathrm{Me}_{2} \mathrm{~N}$ group meta to the amidine nitrogen (\mathbf{H}) acts as electron donating and para-directing substituent, allowing the 1,2,4benzophosphadiazine (I) to be formed under mild conditions. The isoindole framework also avoids complications that may arise due to the presence of a second nucleophilic N-H fragment.

Scheme 4.4.1: Literature precedence for the construction of 1,2,4benzophosphadiazines from amidines.

4.4.1 - Initial Studies with Electron-Rich N, N^{\prime}-Diarylureas

The synthesis of 1,2,4-benzophosphadiazines from electron-rich N, N-diarylureas was initially attempted to confirm the applicability of established methods. The reaction of electron-rich urea 16r, derived from 3 -amino- N, N^{\prime}-dimethylaniline $15 r$ and phenyl isocyanate, with PhPCl_{2} under standard literature procedures ${ }^{18}$ afforded the fused-ring heterocycle $\mathbf{1 7 r}$ in low yield (Scheme 4.4.1.1). A similar species has been prepared by Volochnyuk by using 5-methyl-2-furyl-dibromophosphine as the phosphinating agent.

Scheme 4.4.1.1: Synthesis of 1,2,4-benzophosphadiazines from electron-rich N, N^{\prime} diarylureas.

Single crystals of $\mathbf{1 7 r}$, grown by slow diffusion of hexane into a saturated solution of the product in DCM, confirmed the formation of the fused-ring heterocycle. Compound $\mathbf{1 7 r}$ crystallises as colourless blocks in the triclinic space group $P \overline{1}$ with two enantiomers in the asymmetric unit (Figure 4.4.1.1). These two crystallographically inequivalent molecules differ in the relative orientation of the P-phenyl ring. The heterocyclic ring is non-planar and is folded along the P $\cdots \mathrm{NH}$ axis by 37.3° and 32.9° for the two isomers. The P-phenyl rings are close to perpendicular to the heterocyclic rings with $\mathrm{NH} \cdots \mathrm{P}-\mathrm{C}_{\text {ispo }}$ angles of $79.5(4)^{\circ}$ and $84.9(4)^{\circ}$.
a)

b)

Figure 4.4.1.1: Crystal structure of 17r; a) Top-down view; b) Side view. Single molecule (S isomer) shown for clarity.
Repeating the reaction with N, N^{\prime}-diphenylurea 16a or the asymmetric system derived from m-anisidine 16 under identical conditions afforded the N, N^{\prime}-chelating fourmembered heterocycle $\mathbf{1 8}$ (Scheme 4.4.1.2). These species were hypothesised to be intermediates in the formation of the fused-ring species $\mathbf{1 7}$ but could not be detected by ${ }^{31} \mathrm{P}$ NMR; this was attributed to rapid equilibrium between the open and cyclic species. If a stronger base such as $\mathrm{Et}_{3} \mathrm{~N}$ is used for the reaction of electron-rich urea $16 \mathbf{r}$ with PhPCl_{2}, the four-membered heterocycle $\mathbf{1 8 r}$ is instead formed as the sole product. This species was observed to slowly isomerise to give the fused-ring 1,2,4benzophosphadiazines (see section 5.6).

Scheme 4.4.1.2: Synthesis of 1,3,2-diazophosphetines from N, N^{\prime}-diarylureas.
The four-membered heterocycle is also obtained when the electron-rich urea $\mathbf{1 6 r}$ is treated with $\mathrm{N}^{2} \mathrm{Pr}_{2} \mathrm{PCl}_{2}$ with no evidence of the fused-ring species (see section 5.6). These results indicate that there are three major factors that influence whether the benzo-fused or non-fused, N, N^{\prime}-chelating heterocycle is formed; the C-nucleophilicity of the aromatic ring, the electrophilicity of the phosphine, and the strength of the base employed in the reaction. The desired 1,2,4-benzophosphadiazine is formed for electron-rich aromatics and electrophilic phosphines when a moderately weak base such as pyridine is used. The synthesis of non-fused phosphorus-nitrogen heterocycles derived from N, N^{\prime}-diarylureas is further discussed in Chapter 5.

4.4.2 -Electron-Rich N-Arylamidines

4.4.2.1 -Synthesis of N-Arylamidines

The novel electron rich N-arylamidine $\mathbf{1 r}$ was synthesised via standard literature procedures via condensation of lithiated 3 -amino- N, N-dimethylaniline with benzonitrile followed by aqueous work-up, ${ }^{29}$ according to Scheme 4.4.2.1. The aniline $15 r$ was first prepared by reduction ${ }^{30}$ of the commercially available 3-nitro- N, N dimethylaniline, yielding a colourless oil that rapidly polymerises on exposure to air. In contrast, the amidine was isolated as an air- and moisture-stable, colourless crystalline solid.

Scheme 4.4.2.1: Synthesis of electron-rich N-arylamidines.

4.4.2.2 - Synthesis of 1,2,4-Benzophosphadiazines

The treatment of electron-rich N -arylamidine $\mathbf{1 r}$ with PhPCl_{2} and $\mathrm{Et}_{3} \mathrm{~N}$ in pyridine at $0{ }^{\circ} \mathrm{C}$, following the reaction conditions employed for compound $\mathbf{J},{ }^{28}$ afforded a dark amber solution containing a mixture of products ranging from $\delta+5$ to +133 ppm in the ${ }^{31} \mathrm{P}$ NMR spectrum. Conversely, when the reaction was repeated without $\mathrm{Et}_{3} \mathrm{~N}$, a bright yellow solution immediately formed that contained a major product exhibiting a multiplet at $\delta+4.1 \mathrm{ppm}$ in the ${ }^{31} \mathrm{P}$ NMR spectrum, that collapsed to a sharp singlet in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum. This again suggests that in the presence of the stronger base $E t_{3} \mathrm{~N}$, secondary phosphorus-nitrogen bond forming reactions are more rapid than cyclisation to give the desired 1,2,4-benzophosphadiazine as previously observed.

Attempts to isolate this major species by removal of solvent under vacuum followed by extraction into toluene or THF were unsuccessful due to the poor solubility of the product; no signal was observed in the ${ }^{31} \mathrm{P}$ NMR spectra of the extracts. Dissolution of the residues in DCM followed by aqueous workup to remove the pyridinium hydrochloride resulted in a mixture of hydrolysis products. The reaction was also performed using NaH as the base, reasoning that the by-products would be either gaseous (H_{2}) or insoluble in DCM (NaCl), allowing for easy product isolation. This however was found to produce other phosphorus-containing species likely due to the competing P-N bond forming reactions.

The poor solubility of the product suggested that it was the hydrochloride salt of the 1,2,4-benzophosphadiazine (J) (Figure 4.4.2.2.1). This was confirmed by repeating the
reaction in THF with a single equivalent of pyridine; dissolution of the yellow precipitate in DCM gave a complex multiplet at $\delta+4.6 \mathrm{ppm}$ in the ${ }^{31} \mathrm{P}$ NMR spectra with several P-H couplings. The addition of $\mathrm{Et}_{3} \mathrm{~N}$ however resulted in a mixture of products by ${ }^{31}$ P NMR - subsequent isolation of the neutral fused ring (vide infra) indicated that none of these peaks corresponded to the desired species.
a)

b)

Figure 4.4.2.2.1: a) Proposed identity of the product; b) ${ }^{31} \mathrm{P}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra in DCM showing the complex P-H coupling.

Since it was evident that a mild base was sufficient to form the 1,2,4benzophosphadiazine, we chose to use an excess of finely ground and dried potassium carbonate whilst performing the reaction in DCM. The dropwise addition of PhPCl_{2} to a mixture of $\mathbf{1 r}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in DCM at $0{ }^{\circ} \mathrm{C}$ (Scheme 4.4.2.2.1) afforded a bright yellow suspension, which after 1 hour had consumed approximately 50% of the PhPCl_{2}. After stirring at room temperature overnight, the suspension was filtered through Celite to remove KCl and excess $\mathrm{K}_{2} \mathrm{CO}_{3}$, then concentrated to give a yellow solid which could be thoroughly washed and dried to give the target 1,2,4-benzophosphadiazine 19r.HCl in high yields. The ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{1 9 r} \mathbf{H C l}$ was consistent with the spectra shown in Figure 4.4.2.2.1.

Scheme 4.4.2.2.1: Synthesis of 1,2,4-benzophosphadiazines under mild conditions.

4.4.2.3 - Crystal Structure of 19r.HCl

Crystals of $19 \mathrm{r} . \mathrm{HCl}$ suitable for SCXRD analysis, grown by slow cooling of a saturated solution of the product in DCM, confirmed the formation of the benzo-fused P-N heterocycle. Compound $19 \mathrm{r} . \mathrm{HCl}$ crystallises as yellow hexagonal rods in the chiral monoclinic space group $P 2_{1}$ with two ion pairs and two molecules of DCM in the asymmetric unit. A single ion pair and the corresponding structural labelling scheme are shown in Figure 4.4.2.3.1.
a)

b)

Figure 4.4.2.3.1: a) Single ion pair of $19 \mathrm{r} . \mathbf{H C l}$. Solvents of crystallisation omitted for clarity; b) Structural labelling scheme.

Compound 19r.HCl crystallises as an equal mixture of both enantiomers; these isomers differ in the relative orientation of the P-phenyl ring (Figure 4.4.2.3.2). The two crystallographically inequivalent enantiomers in the asymmetric unit are associated through a hydrogen bonded network with $\mathrm{H} 1 \cdots \mathrm{Cl} 1$ and $\mathrm{H} 2 \cdots \mathrm{Cl} 1$ contacts ranging from $2.17(9) \AA$ to $2.39(8) \AA$, leading to infinite chains that propagate along the crystallographic a axis.

Figure 4.4.2.3.2: Asymmetric unit of $\mathbf{1 9 r} . \mathrm{HCl}$ showing the $\mathrm{H} \cdots \mathrm{Cl}$ contacts. Solvents of crystallisation omitted for clarity.

In both molecules, the C7-N2 distance is marginally shorter (1.311(9) \AA and 1.317 (9) \AA) than the C7-N1 distance (1.329(1) \AA for both molecules) indicating that the former has slightly more double bond character and that the structure is better represented as 19r.HCl and not as \mathbf{J} (Figure 4.4.2.3.3) as was earlier hypothesised based on the structure of 8a and the analogous SII 1,2,4-benzothiadiazines. This was further confirmed by the isolation of the corresponding neutral 1,2,4-benzophosphadiazine in which the hydrogen atom is located on N 1 (vide infra).

19r.HCI

J

Figure 4.4.2.3.3: Representations of protonated 1,2,4-benzophosphadiazines.
The heterocyclic and benzo-fused rings deviate significantly from planarity at 19.5° and 13.1°, with a fold along the P1 $\cdots \mathrm{N} 2$ axis such that the phosphorus atom sits slightly above or below the mean plane (Figure 4.4.2.3.4). The pendant phenyl rings are considerably twisted relative to the heterocyclic ring with deviations from coplanarity 38.2° and 42.6°, and $\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C13}$ and $\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$ torsion angles of $35.7(9)^{\circ} / 37.4(1)^{\circ}$ and $39.6(1)^{\circ} / 40.7(1)^{\circ}$ for the two molecules respectively. The P -
phenyl rings are essentially perpendicular to the heterocyclic ring with deviations of 87.8° and 87.0°, with C2-C1-P1-C19 torsion angles close to 0°.

Figure 4.4.2.3.4: Side view of a single ion pair (S isomer) of $\mathbf{1 9 r} \mathbf{r} \mathbf{H C l}$ showing the deviation from planarity. Solvents of crystallisation omitted for clarity.

4.5 - Electron-Neutral Aromatics

Having established optimal conditions for the synthesis of 1,2,4-benzophosphadiazines from electron-rich N-arylamidines, the reactions were attempted with weaker nucleophiles to test the necessity of electron-donating groups in the formation of the fused-ring $\mathrm{P}-\mathrm{N}$ heterocycle. The reaction of N-phenylbenzamidine $1 \mathbf{a}$ with PhPCl_{2} and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in DCM resulted in several pairs of doublets in the ${ }^{31} \mathrm{P}$ NMR spectrum, indicative of the formation of P-P coupled species (Figure 4.5.1). These P-P species are believed to be related to compounds discussed in Chapter 5 (see section 5.2), but attempts to isolate and identify these were unsuccessful. The consumption of PhPCl_{2} was extremely slow, taking three weeks to convert 92% of the chlorophosphine. The major species after this time however, had chemical shifts similar to $\mathbf{1 9 r} \mathbf{H C l}(\delta+4.6 \mathrm{ppm})$ suggesting that ring-closure may be achievable under similar conditions. Heating the reaction to help drive the reaction to completion lead primarily to the formation of $[\mathrm{PhP}]_{\mathrm{n}}$ species, with minor peaks around $\delta+5.5,+3.4$ and +3.1 ppm in the ${ }^{31} \mathrm{P}$ NMR spectrum. The reductive coupling of PhPCl_{2} to form the $[\mathrm{PhP}]_{n}$ species implies that the amidine is either oxidised to the N-chloroarylamidine or that an aryl-carbon is chlorinated to give a protonated amidine hydrochloride.

Figure 4.5.1: ${ }^{31} \mathrm{P}$ NMR spectra of the reaction of N-phenylbenzamidine $1 \mathbf{a}$ with PhPCl_{2} in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$.

The reaction of the more nucleophilic N-arylamidine, $\mathbf{1 f}$, derived from m-anisidine, under the same conditions showed promise but was again extremely slow. After two weeks, the PhPCl_{2} was fully consumed to give two major species in the ${ }^{31} \mathrm{P}$ NMR spectrum at $\delta+10.0$ and +6.3 ppm (Figure 4.5 .2). These peaks are believed to be the two isomers of the corresponding protonated fused-ring heterocycle, $\mathbf{1 9 f} \mathbf{H C l}$ and 19f'. $\mathbf{H C l}$ (Figure 4.5.3); the ratio of these two products is approximately $0.82: 1$ for the peaks at $\delta+10.0$ and +6.3 ppm respectively for the isolated material.

The considerably slower reaction times of the methoxy-substituted amidine $\mathbf{1 f}$ compared to the dimethylamino amidine $\mathbf{1 r}$ is expected due to the decreased C nucleophilicity of the former species. The related phosphination of N, N^{\prime}-diarylureas bearing alkoxy groups para to the C-nucleophilic centre require more activated phosphorus electrophiles such as PBr_{3} to form the fused-ring 1,2,4benzophosphadiazine. ${ }^{4}$ The reaction does not occur with aryldibromophosphines for N, N^{\prime}-diarylureas whilst N, O-diarylcarbamates simply required increased reaction times. No evidence for the formation of two isomers were observed for either of these species and the alkoxy-group was assigned to be para to the C-P bond in all cases based on ${ }^{1} \mathrm{H}$ NMR data. Attempted reactions of $\mathbf{1 f}$ with PBr_{3} favoured the formation of non-fused ring heterocyclic species [see Chapter 5].

Figure 4.5.2: ${ }^{31} \mathrm{P}$ NMR spectra of the reaction of N-(3-methoxyphenyl)-benzamidine $\mathbf{1 f}$ with PhPCl_{2} in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$.
Cl^{-}

$19 \mathrm{f} . \mathrm{HCl}$
Cl^{-}

19f'. HCl

Figure 4.5.3: Proposed isomeric forms of $19 \mathrm{f} . \mathbf{H C l}$.

4.6 - Functionalisation of 1,2,4-Benzophosphadiazines

Having developed synthetic routes to prepare the protonated fused-ring P-N heterocycle $19 \mathrm{r} . \mathrm{HCl}$ in high yields under mild conditions, further steps were necessary to transform this parent compound into a suitable radical precursor, as the presence of the protic $\mathrm{N}-\mathrm{H}$ fragments is expected to lead to additional potential degradation pathways. ${ }^{31}$

4.6.1 - Deprotonation

Compound $19 \mathrm{r} . \mathrm{HCl}$ is readily deprotonated with $\mathrm{Et}_{3} \mathrm{~N}$ in DCM to give the neutral 1,2,4benzophosphadiazine 19r (Scheme 4.6.1.1).

Scheme 4.6.1.1: Synthesis of neutral 1,2,4-benzophosphadiazines.
The ${ }^{31} \mathrm{P}$ NMR spectrum exhibits a broad singlet at $\delta+0.2 \mathrm{ppm}$, which is upfield shifted relative to $\mathbf{1 9 r} . \mathrm{HCl}(\delta+4.6 \mathrm{ppm})$. The broadening of this signal and lack of observable $\mathrm{P}-\mathrm{H}$ coupling is thought to arise through rapid tautomerism in solution (Scheme 4.6.1.2), leading to a time-averaged signal in the NMR spectrum.

Scheme 4.6.1.2: Tautomerism of 1,2,4-benzophosphadiazines.
Single crystals suitable for X-ray diffraction analysis were grown by slow diffusion of hexane into a saturated solution of the product in DCM at -20 ${ }^{\circ} \mathrm{C}$. Compound 19 r crystallises as colourless plates in the monoclinic space group $P 2_{1} / n$ with a single molecule in the asymmetric unit (Figure 4.6.1.1). The heterocyclic ring deviates from planarity relative to the fused ring at 17.8°, folded along the $\mathrm{P} 1 \cdots \mathrm{~N} 2$ axis such that the nitrogen adjacent to phosphorus, N 1 , and C7 of the heterocyclic ring are raised significantly above the plane of the fused ring. The pendant phenyl ring is disordered equally across two sites and twisted by 41.5° relative to each site. In both positions, the pendant phenyl ring deviates significantly from coplanarity relative to heterocyclic ring at 25.2° and 31.9°, with $\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 13$ and $\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$ torsion angles of $19.4(3)^{\circ} / 10.4(4)^{\circ}$ and $30.1(3)^{\circ} / 21.7(4)^{\circ}$ respectively for the two sites. The P-phenyl ring is orientated below the plane of the molecule (R isomer) and is essentially perpendicular to the heterocyclic ring at 84.8°. Many of the structural features are similar to the parent HCl salt excluding the C2-C1-P1-C19 torsion angle which is $73.6(2)^{\circ}\left(c f .6 .5(7)^{\circ}\right.$ and $8.3(7)^{\circ}$ for 19r.HCI).
a)

b)

Figure 4.6.1.1: Crystal structure of 19r: a) Top-down view; b) Side view.

4.6.2 - Oxidation

Two electron oxidation of the PIII 1,2,4-benzophosphadiazine in the presence of base, followed by one electron reduction may afford a neutral Piv radical, analogous to the reduction of 1,2,4-benzothiadiazine 1 -chlorides discussed in Chapter 3. A general scheme for the proposed synthetic pathway is shown in Scheme 4.6.2.1.

Scheme 4.6.2.1: Proposed scheme for the synthesis of neutral 1,2,4benzophosphadiazinyl radicals.

The treatment of $\mathbf{1 9 r} \mathbf{H C l}$ with a slight excess of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ (Scheme 4.6.2.2) gave a number of species by ${ }^{31} \mathrm{P}$ NMR, with a major multiplet (approximately 69% by integration) at $\delta+42.8 \mathrm{ppm}$, and minor multiplets at $\delta+40.9,+39.3$ and + 35.0 ppm , which all collapsed to sharp singlets in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum. Layering of this solution with hexane afforded colourless crystals identified as $\mathbf{2 0 r}$; the excess $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ results in chlorination of the fused ring and partial chlorination at position $\mathrm{X}(\mathrm{X}$ $=\mathrm{Cl} \approx 17 \%$). The major species observed by ${ }^{31} \mathrm{P}$ NMR at $\delta+42.8 \mathrm{ppm}$ can therefore be assigned tentatively as 20 r with $\mathrm{X}=\mathrm{H}$, whilst the next major species at $\delta+40.9 \mathrm{ppm}$ is $\mathbf{2 0 r}$ with $\mathrm{X}=\mathrm{Cl}$. The other minor species are believed to be other partially chlorinated and protonated systems.

Scheme 4.6.2.2: Oxidation of $19 \mathrm{r} . \mathrm{HCl}$ with $\mathrm{SO}_{2} \mathrm{Cl}_{2}$.
Compound 20r crystallises as pale yellow blocks in the monoclinic space group $P 2_{1} / n$ with a single molecule in the asymmetric unit (Figure 4.6.2.1). The heterocyclic ring again deviates from the plane of the fused-ring by 15.9° as does the pendant phenyl ring at 21.1°, similarly to $\mathbf{1 5 r}$ and 15 r.HCl. The P-phenyl ring is essentially perpendicular to the fused ring with a deviation from coplanarity at 89.1°. Unlike $15 \mathbf{r}$ and $15 \mathrm{r} . \mathrm{HCl}$, the NMe_{2} group is twisted out conjugation with the association ring due to the increased steric hindrance that arises through chlorination of the fused-ring.
a)

b)

Figure 4.6.2.1: Crystal structure of $20 r$ shown with partial chlorination: a) Topdown view; b) Side view.

Reactions performed with controlled addition of stoichiometric $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ gave a mixture of products suggesting that chlorination at phosphorus and of the fused-ring are competitive. The addition of excess $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ was found to change the product distribution but a single species could not be obtained even in the presence of excess base. A mixture of unidentified products, inconsistent with 20r, was obtained with PhICl_{2} as oxidant.

Oxidations with elemental bromine gave better results provided that the neutral fusedring heterocycle 19 r was used as the starting material, to avoid halogen exchange problems that may arise in the presence of both HCl and HBr salts. The treatment of 19r with a single equivalent of Br_{2} and $\mathrm{Et}_{3} \mathrm{~N}$ according to Scheme 4.6.2.3 gave a single major species in the ${ }^{31} \mathrm{P}$ NMR spectrum at $\delta+36.8 \mathrm{ppm}$ assigned as 21 r but attempts to isolate this compound were unsuccessful, likely due to hydrolysis.

Scheme 4.6.2.3: Oxidation of 19 r with Br_{2}.

4.6.3-N-Functionalisation

4.6.3.1 - N-Methylation

N-Methylation has been shown to be a necessary step prior to one electron reduction for Oakley's bis-1,2,4-thiadiazinyl radicals; reduction of the former N - H containing species led to proton-migration and degradation of the resulting radical. ${ }^{31}$ The treatment of $\mathbf{1 9 r}$ with ${ }^{n} \mathrm{BuLi}$ followed by MeI according to Scheme 4.6.3.1.1 afforded air- and moisture-stable crystals of 22r.HI. The formation of the phosphonium species indicates that the PIII centre is more nucleophilic than either of the two heterocyclic nitrogens, despite initial deprotonation by ${ }^{n} \mathrm{BuLi}$. Attempted reactions in DMF with excess NaH yielded identical results.

Scheme 4.6.3.1.1: Attempted N-methylation of $19 r$.

Compound 22r.HI crystallises as pale yellow parallelepipeds in the triclinic space group $P \overline{1}$ with a single ion pair in the asymmetric unit (Figure 4.6.3.1.1). The deviation from planarity of the heterocyclic ring with respect to the benzo-fused ring is significantly smaller than the PIII or PIV 1,2,4-benzophosphadiazines at 7.3° and the pendant phenyl ring is essentially coplanar with the heterocyclic ring (deviation of
2.3°). The P-phenyl ring is non-perpendicular with respect to the heterocyclic ring such that the $\mathrm{HN} \cdots \mathrm{P}-\mathrm{C}_{\text {ispo }}$ angle $\left(125.1(2)^{\circ}\right)$ is more obtuse and further from 90° compared to the PIII species. The phosphonium center adopts a tetrahedral geometry with angles between the four substituents ranging from $107.7(1)^{\circ}$ to $110.0(1)^{\circ}$, close to the idealised $\approx 109.5^{\circ}$ for a perfect tetrahedron.
a)

b)

Figure 4.6.3.1.1: Crystal structure of 22r.HI: a) Top-down view; b) Side view.
Counterion omitted for clarity.
The DFT optimised geometry of 19r, performed at the M062X-6-311g(d,p) level of theory, indicates that HOMO -2 (Figure 4.6.3.1.2) is largely localised (24.2 \%) on phosphorus and suggests that P-methylation is driven by the nucleophilicity of the electron-rich phosphorus centre. The HOMO - 1 is significantly more delocalised across the fused-ring, such that the orbital populations on N 1 and N 2 are 10.5% and 17.3% respectively; the HOMO is solely delocalised across the fused-ring and $\mathrm{Me}_{2} \mathrm{~N}$ group.
a) $\quad \mathrm{HOMO}-1$
(-7.377 eV)

b) HOMO -2 (-7.959 eV)

Figure 4.6.3.1.2: Frontier molecular orbitals and energies of 19 r : a) HOMO -1 ; b) HOMO -2 (isovalue $=0.05$).

Nucleus independent chemical shift (NICS 0) calculations ${ }^{32}$ (Figure 4.6.3.1.3) show that P-methylation (22r. \mathbf{H}^{+}) results in increased anti-aromaticity for the heterocyclic ring compared to $\mathbf{1 9 r}$, given by an increase and positive number for the isotropic magnetic shielding tensor, whilst the hypothetical N-methylated analogues \mathbf{X} and \mathbf{Y} are both calculated to be weakly aromatic (negative chemical shift). P-methylation does however lead to a greater increase in the aromaticity of the benzo-fused ring (cf. -8.50 ppm for benzene) and 22r. \mathbf{H}^{+}is significantly lower in energy than both \mathbf{X} and \mathbf{Y}. This indicates that formation of the P-Me bond is enthalpically favoured and that N methylation is not likely to be achieved.

Figure 4.6.3.1.3: Calculated isotropic magnetic shielding tensors and energy differences for P - and N-methylated systems.

4.6.3.2 - N-Phosphination

The use of bulkier R-X species to favour functionalisation of one of the heterocyclic nitrogens over the phosphorus atom and remove the $\mathrm{N}-\mathrm{H}$ proton was also attempted. The reaction of $\mathbf{1 9 r}$, generated in situ by deprotonation of $\mathbf{1 9 r}$. $\mathbf{H C l}$ with excess $\mathrm{Et}_{3} \mathrm{~N}$, with $\mathrm{Ph}_{2} \mathrm{PCl}$ (Scheme 4.6.3.2.1) resulted in a pair of doublets in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum at $\delta+21.9$ and -18.9 ppm with ${ }^{1} J_{P-P}=269.0 \mathrm{~Hz}$.

Scheme 4.6.3.2.1: Attempted N-phosphination of 15r.

Crystals suitable for SCXRD analysis, grown by slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a solution of the product in DCM, confirmed the formation of the P-P coupled 1,2,4-
benzophosphadiazine as the chloride salt, 23.HCl. This can regarded as an autoionisation product which results from the electron-rich phosphane activating $\mathrm{Ph}_{2} \mathrm{PCl}$, followed by tautomerism. Autoionisation of $\mathrm{P}-\mathrm{Cl}$ bonds is not typically observed for phosphines, suggesting that 19 r may potentially be exploited as a strong σ donating ligand.

Compound 23r.HCl crystallises as yellow plates in the monoclinic space group $P 2_{1} / n$ with a single ion pair in the asymmetric unit (Figure 4.6.3.2.1). The deviation from planarity of the heterocyclic ring relative to the benzo-fused ring is 8.0° and similar to 22r.HI at 7.3°. The pendant phenyl ring deviates marginally from coplanarity to the heterocyclic ring at 10.7° whilst the $\mathrm{HN} \cdots \mathrm{P}-\mathrm{C}_{\text {ispo }}$ angle increases to $136.8(6)^{\circ}(c f$. $92.5(7)^{\circ}$ for the parent PIII 1,2,4-benzophosphadiazine, 19r). The heterocyclic phosphorus atom adopts a pseudo-tetrahedral geometry with A-P-B (where A and B are any two of the four substituents) angles in the range of $101.8(5)^{\circ}$ to $115.9(5)^{\circ}$. This distortion away from uniform values close to $\approx 109.5^{\circ}$ as observed for $\mathbf{1 8 r} . \mathbf{H I}$ is expected due to the increased steric bulk of the - PPh_{2} fragment. The $\mathrm{P}-\mathrm{P}$ bond length is 2.2022(6) \AA which is at the lower end of the range of other P-P systems (2.197-2.249 Å). ${ }^{33}$
a)

b)

Figure 4.6.3.2.1: Crystal structure of 19r.HCl: a) Top-down view; b) Side view. Counterion omitted for clarity.

4.6.4 - One Electron Oxidation

In light of the failure to obtain an N-methylated derivative, the one electron oxidation of the neutral 1,2,4-benzophosphadiazine 19 r in the presence of base was attempted according the Scheme 4.6.4.1.

Scheme 4.6.4.1: Proposed one electron oxidation of $19 r$ in the presence of base.
No reaction was observed with $\mathrm{AgBAr}^{\mathrm{F}}$ in the presence of $\mathrm{Et}_{3} \mathrm{~N}^{\text {. The use of }} \mathrm{NOBF}_{4}$ as the oxidising agent afforded a deep red solution that was EPR inactive and showed a number of species by ${ }^{31} \mathrm{P}$ NMR spectroscopy. An immediate deep blue solution formed on addition of DDQ to a solution of $\mathbf{1 9 r}$ and $\mathrm{Et}_{3} \mathrm{~N}$ in DCM at $-95{ }^{\circ} \mathrm{C}$, but swiftly decolourised on warming to room temperature to afford a dark brown solution. The ${ }^{31} \mathrm{P}$ NMR of this solution displayed a single major phosphorus species at $\delta+38.2 \mathrm{ppm}$ which is believed to be the phosphine-oxide of $\mathbf{1 9 r}$ resulting from deoxygenation of the DDQ radical anion.

4.7 - Conclusions

The methods developed for the sulfur-nitrogen heterocycles discussed in Chapter 2 were found to not be directly transferable to the isoelectronic phosphorus systems and attempts to prepare 1,2,4-benzophosphadiazines directly from N-arylamidines with P^{V} or PIII sources were unsuccessful. The use of electron-rich N, N^{\prime}-diarylureas or N arylamidines however allowed the desired fused-ring heterocycles to prepared under mild conditions, whilst the use of a stronger base resulted in the formation of nonfused P-N heterocycles; these species are discussed in detail in Chapter 5.

The protonated 1,2,4-benzophosphadiazine $\mathbf{1 9 r} . \mathbf{H C l}$ is readily deprotonated to give the neutral heterocycle 19r but attempts at further transforming this species into a suitable radical precursor showed poor success. Oxidation of 19 r with $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ or Br_{2} to form the corresponding PV^{V} heterocycle showed promise but a single species could not be isolated. Attempts to N-methylate instead gave the P-methylated phosphonium species 22r.HI, whilst similar reactions with $\mathrm{Ph}_{2} \mathrm{PCl}$ resulted in the formation of a phosphane-stabilised phosphenium cation 23r.HCl. Direct one electron oxidation of 19 r with a range of oxidising agents was unsuccessful.

4.8 - Future Work

Whilst the utility of the reaction conditions developed for the synthesis of 1,2,4benzophosphadiazines was found to be limited to the more electron-rich aromatics, a library of compounds of type \mathbf{K} (Figure 4.8.1) may nevertheless be accessible by
changing the carbonitrile used in the preparation of the N-arylamidine, or the substituent on phosphorus.

K

Figure 4.8.1: Accessible 1,2,4-benzophosphadiazines via the routes developed in this chapter.

Further optimisation of reaction conditions are necessary to obtain the $\mathrm{Pv} 1,2,4$ benzophosphadiazine via oxidation of the neutral heterocycle 19r. Following this, investigations into the electrochemical behaviour are required to determine whether the corresponding neutral P^{IV} radical, formed via one electron reduction, is accessible and stable. N-methylation of an electron-rich N-arylamidine prior to the synthesis of the fused-ring P-N heterocycle may be a viable approach to overcome the problems encountered with attempted post-synthetic modifications of the 1,2,4benzophosphadiazines.

4.9 - Experimental

4.9.1 - Synthesis of N-Arylamidines

The electron rich N-arylamidine $\mathbf{1 r}$ was prepared via standard methods, through condensation of lithiated aniline $\mathbf{1 4 r}$ with benzonitrile, followed by aqueous work-up. The aniline $14 \mathbf{r}$ was synthesised by reduction of the corresponding nitro-derivative according to known literature procedures.

4.9.1.1 - Synthesis of 3-amino- N, N-dimethylaniline, 14 r ;

3-nitro- N, N-dimethylaniline ($5.00 \mathrm{~g}, 30.1 \mathrm{mmol}$) was partially dissolved in degassed EtOH ($100 \mathrm{~cm}^{3}$) and heated to $80{ }^{\circ} \mathrm{C} . \mathrm{SnCl}_{2}(22.80 \mathrm{~g}, 120.4 \mathrm{mmol})$ was added slowly under a blanket of argon. The dark purple suspension was maintained at reflux for 16 hours and then carefully quenched with a solution of $\mathrm{KOH}(13.50 \mathrm{~g}, 240.8 \mathrm{mmol})$ in degassed $\mathrm{H}_{2} \mathrm{O}\left(100 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The reaction mixture was extracted into $\mathrm{Et}_{2} \mathrm{O}(3 \times 50$ cm^{3}) and the combined organic extracts were dried over degassed MgSO_{4}, filtered and evaporated to dryness. Vacuum distillation of the crude red oil $\left(120-130^{\circ} \mathrm{C}\right.$ at $\approx 1 \times 10^{-3}$ Tor) afforded the product as a colourless, air-sensitive liquid. Yield: $2.41 \mathrm{~g}(17.7 \mathrm{mmol}$, 58.8 \%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}^{2}, 26.0^{\circ} \mathrm{C}$) $\delta: 6.87(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.04-5.98(\mathrm{~m}$, 3H), 4.76 (bs, 2H), 2.83 (s, 6H). ${ }^{13} \mathbf{C} \mathbf{~}{ }^{\mathbf{1} H\}} \mathbf{~ N M R ~ (1 0 0 . 5 ~ M H z , ~ D C M , ~} 26.6^{\circ} \mathrm{C}$) $\delta: 152.1,147.9$, 129.8, 104.1, 103.5, 99.5, 40.5.

4.9.1.2 - Synthesis of \boldsymbol{N}-(3-dimethylamino-phenyl)-benzamidine, 1 r :

$14 \mathbf{r}(1.47 \mathrm{~g}, 10.8 \mathrm{mmol})$ was dissolved in THF ($30 \mathrm{~cm}^{3}$) and cooled to $0^{\circ} \mathrm{C}$. ${ }^{n} \mathrm{BuLi}(2.5 \mathrm{M}$ in hexane, $4.32 \mathrm{~cm}^{3}, 10.8 \mathrm{mmol}$) was added dropwise and the yellow solution was warmed to room temperature. After two hours, benzonitrile ($1.04 \mathrm{~cm}^{3}, 10.8 \mathrm{mmol}$) was slowly added and allowed to stir for 12 hours. The thick cream reaction mixture was quenched with water ($25 \mathrm{~cm}^{3}$) and extracted into DCM (3 x $25 \mathrm{~cm}^{3}$). The combined organic extracts were washed with water and brine ($25 \mathrm{~cm}^{3}$ each), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude off-white solids were recrystallised from DCM and hexanes to give the product as a colourless microcrystalline powder. Yield: $2.19 \mathrm{~g}(9.1 \mathrm{mmol}, 84.5 \%) .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 20.1^{\circ} \mathrm{C}$) $\delta: 7.86(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.52-7.39 (m, 3H), $7.22(\mathrm{t}, J=7.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{dd}, J=2.4,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.35-6.29(\mathrm{~m}$, 2H), 5.07 (bs, 2H), 2.94 (s, 6H). ${ }^{13} \mathbf{C}\left\{\mathbf{1}^{\mathbf{1} H}\right\} \mathbf{N M R}\left(100.5 \mathrm{MHz}\right.$, DCM, $20.3^{\circ} \mathrm{C}$) $\delta: 154.3,152.2$, $150.9,136.1,130.4,130.0,128.5,126.8,109.4,107.5,105.6,40.5$.

4.9.2 - Synthesis of N, N^{\prime} - and N, N^{\prime}-Substituted Arylamidines

N, N^{\prime} - and N, N-substituted arylamidines were prepared according to known literature procedures: 11a via condensation of a primary amine with a N-substituted nitrilium
salt; ${ }^{24} \mathbf{1 2 a}$ via condensation of a primary amine with a substituted imidoyl chloride; ${ }^{25}$ and 13a via Lewis-acid mediated condensation of a secondary amine and nitrile in the melt. ${ }^{26} N$-methylbenzonitrilium triflate was synthesised via standard literature procedures and recrystallized from DCM and hexanes prior to use. ${ }^{24}$

4.9.2.1 - Synthesis of N-methyl- N^{\prime}-phenylbenzamidine, 11a:

Aniline $\left(0.5 \mathrm{~cm}^{3}, 5.5 \mathrm{mmol}\right)$ was added dropwise to a suspension of N methylbenzonitrilium triflate ($1.47 \mathrm{~g}, 5.5 \mathrm{mmol}$) in toluene ($15 \mathrm{~cm}^{3}$) and allowed to stir for 90 minutes. The supernatant was removed via filter cannula and the solids were washed with hexane ($10 \mathrm{~cm}^{3}$) then dried in vacuo. The solids were dissolved in DCM ($20 \mathrm{~cm}^{3}$) and quenched with a solution of $\mathrm{KOH}(0.50 \mathrm{~g}, 8.9 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}\left(20 \mathrm{~cm}^{3}\right)$. The organic layer was collected and the aqueous phase was further extracted with portions of DCM ($2 \times 20 \mathrm{~cm}^{3}$). The combined organic extracts were washed with water ($20 \mathrm{~cm}^{3}$), dried over MgSO_{4}, filtered and evaporated to dryness. The residues were crystallised from DCM and hexane to give 11a as colourless needles. Yield: $0.82 \mathrm{~g}(3.9 \mathrm{mmol}$, 71.3 \%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 17.8^{\circ} \mathrm{C}$) $\delta: 7.31-7.16(\mathrm{~m}, 5 \mathrm{H}), 7.03(\mathrm{t}, J=6.9,7.3 \mathrm{~Hz}$, 2 H), 6.78 (t, $J=6.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.74(\mathrm{bs}, 1 \mathrm{H}), 3.01(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($100.5 \mathrm{MHz}, \mathrm{DCM}, 18.3^{\circ} \mathrm{C}$) $\delta: 158.1,151.6,135.6,129.1,128.7,128.4$, 128.2, 123.0, 121.0, 28.7.

Analytical data in accordance with the literature. ${ }^{24}$

4.9.2.2 - Synthesis of N, N^{\prime}-diphenylbenzamidine, 12a:

Benzanilide ($5.0 \mathrm{~g}, 25.4 \mathrm{mmol}$) was partially dissolved in SOCl_{2} ($11.1 \mathrm{~cm}^{3}, 152.1 \mathrm{mmol}$) and heated at reflux for 15 hours. The dark yellow solution was cooled to room temperature and volatiles were removed in vacuo. The residues were redissolved in toluene ($15 \mathrm{~cm}^{3}$) and evaporated to dryness. The off-white solids were dissolved in DCM ($20 \mathrm{~cm}^{3}$) and added slowly to a solution of aniline ($4.6 \mathrm{~cm}^{3}, 50.8 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}$ ($10.6 \mathrm{~cm}^{3}, 76.2 \mathrm{mmol}$) in DCM ($20 \mathrm{~cm}^{3}$). The colourless suspension was heated to $50^{\circ} \mathrm{C}$ for 2 hours. Once cooled to room temperature, the reaction mixture was poured into brine ($100 \mathrm{~cm}^{3}$) and extracted into DCM ($3 \times 50 \mathrm{~cm}^{3}$). The combined organic extracts were washed with brine ($50 \mathrm{~cm}^{3}$), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude residues were recrystallised from DCM and hexane to afford 12a as on offwhite solid. Yield: $5.07 \mathrm{~g}(18.6 \mathrm{mmol}, 73.4 \%) . \mathbf{1 H}^{\mathbf{H}}$ NMR (400 MHz, DMSO, $19.6{ }^{\circ} \mathrm{C}$) δ : 9.10 (bs, 1H), 7.82 (d, J = $6.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.18(\mathrm{~m}, 7 \mathrm{H}), 7.04-6.89(\mathrm{~m}, 3 \mathrm{H}), 6.70(\mathrm{~m}, 1 \mathrm{H})$, $6.52(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.100.5 \mathrm{MHz}, \mathrm{DMSO}, 20.3^{\circ} \mathrm{C}\right) \delta: 155.2,151.1,141.9$, 135.3, 129.4, 128.8, 128.5, 122.8, 122.4, 121.4, 120.0.

Analytical data in accordance with the literature. ${ }^{25}$

4.9.2.3 - Synthesis of N-methyl- N-phenylbenzamidine, 13a:

N-methylaniline ($2.0 \mathrm{~cm}^{3}, 18.5 \mathrm{mmol}$), benzonitrile ($1.9 \mathrm{~cm}^{3}, 18.5 \mathrm{mmol}$) and AlCl_{3} ($2.46 \mathrm{~g}, 18.5 \mathrm{mmol}$) were combined under argon and heated to $100^{\circ} \mathrm{C}$ for 13 hours. The purple melt was allowed to cool to room temperature, crushed into a fine powder and slurried in $12.5 \% \mathrm{NaOH}\left(6.25 \mathrm{~g}\right.$ in $50 \mathrm{~cm}^{3} \mathrm{H}_{2} \mathrm{O}$). The organics were extracted into DCM ($50 \mathrm{~cm}^{3}+2 \times 25 \mathrm{~cm}^{3}$), washed with $12.5 \% \mathrm{NaOH}$, water and brine ($25 \mathrm{~cm}^{3}$ each), dried over MgSO_{4}, filtered and concentrated in vacuo. The cruse purple oil was crystallised from toluene to give 13a as colourless needles. Yield: $2.45 \mathrm{~g}(11.7 \mathrm{mmol}$, 66.0 \%). \%). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 19.5^{\circ} \mathrm{C}$) 8: 7.32-7.27 (m, 2H), 7.22-7.17 (m, 3H), $7.14(\mathrm{t}, J=7.8,7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.02-6.95(\mathrm{~m}, 3 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\} \mathbf{N M R}(100.5 \mathrm{MHz}$, DCM, $20.3^{\circ} \mathrm{C}$) $\delta: 168.3,147.3,139.0,128.8,128.1,127.9,126.5,124.7,39.9$.

Analytical data in accordance with the literature. ${ }^{26}$

4.9.3 - Synthesis of N^{\prime}-Phosphanyl- N-Arylamidines

N '-phosphanyl- N-arylamidines, 11-13a', were prepared by treating the corresponding N, N^{\prime} - or N, N-substituted arylamidines, $\mathbf{1 1 - 1 3 a}$, with PhPCl_{2} in the presence of base. The synthesis of 11a is given as exemplar.

4.9.3.1 - Synthesis of N-(chlorophenylphosphanyl)- N-methyl- N^{\prime} phenylbenzamidine, 11a':

$\mathrm{PhPCl}_{2}\left(0.2 \mathrm{~cm}^{3}, 1.5 \mathrm{mmol}\right)$ was added dropwise to a solution of $\mathbf{1 1 a}(0.35 \mathrm{~g}, 1.6 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}\left(0.21 \mathrm{~cm}^{3}, 1.5 \mathrm{mmol}\right)$ in THF $\left(15 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The colourless suspension was warmed to room temperature and allowed to stir for 20 hours. The solvent was removed in vacuo and the residues were extracted into hexane ($2 \times 10 \mathrm{~cm}^{3}$) then filtered through celite. Removal of the solvent in vacuo afforded 11a' as a colourless paste. Yield: $0.27 \mathrm{~g}(0.8 \mathrm{mmol}, 51.9 \%) .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 17.6^{\circ} \mathrm{C}$) $\delta: 7.72(\mathrm{t}, \mathrm{J}=$ $6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.09(\mathrm{t}, J=7.6,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{~s}, 3 \mathrm{H}) .{ }^{31} \mathbf{P}$ NMR ($161.8 \mathrm{MHz}, \mathrm{DCM}, 17.9^{\circ} \mathrm{C}$) $\delta:$ 123.9 (s). ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(100.5 \mathrm{MHz}, \mathrm{DCM}, 18.5^{\circ} \mathrm{C}\right) \delta: 161.1\left(\mathrm{~d}, J_{C-P}=36.4 \mathrm{~Hz}\right), 149.8(\mathrm{~s})$, $138.1\left(\mathrm{~d}, J_{C-P}=32.6 \mathrm{~Hz}\right), 133.6\left(\mathrm{~d}, J_{C-P}=5.8 \mathrm{~Hz}\right), 130.4\left(\mathrm{~d}, J_{C-P}=1.9 \mathrm{~Hz}\right), 130.2\left(\mathrm{~d}, J_{C-P}=\right.$ 22.5 Hz), $129.5\left(\mathrm{~d}, J_{C-P}=5.3 \mathrm{~Hz}\right), 129.3(\mathrm{~s}), 128.9\left(\mathrm{~d}, J_{C-P}=4.3 \mathrm{~Hz}\right), 128.5(\mathrm{~s}), 128.4(\mathrm{~s})$, 122.3 (s), 121.9 (s , 33.1 ($\mathrm{d}, J_{c \cdot P}=8.2 \mathrm{~Hz}$).

4.9.3.2 - Synthesis of N-(chlorophenylphosphanyl)- N, N^{\prime}-diphenylbenzamidine,

 12a':Off-white solid, 86.1 \% yield. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 25.0^{\circ} \mathrm{C}$) $\delta: 7.52(\mathrm{t}, J=7.5,7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.366(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=7.1,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 5 \mathrm{H}), 7.08-6.99(\mathrm{~m}$, $6 \mathrm{H})$, , 6.89-6.80 (m, 2H),6.70-6.62 (m, 2H). ${ }^{31} \mathbf{P}$ NMR ($161.8 \mathrm{MHz}, \mathrm{DCM}, 25.0^{\circ} \mathrm{C}$) $\delta: 101.7$ (s).

4.9.3.3 - Synthesis of N-(chlorophenylphosphanyl)- N^{\prime}-methyl- N^{\prime} -

phenylbenzamidine, 13a':
Off-white solid, 72.3 \% yield. ${ }^{1} \mathbf{H}$ NMR (400 MHz , THF, $23.0^{\circ} \mathrm{C}$) $\delta: 7.82-7.77$ (m, 2H), 7.33-7.28 (m, 2H), 7.17-7.09 (m, 6H), 7.09-7.04 (m, 2H), 6.98 (t, $J=1.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.29$ ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{31}{ }^{\mathbf{P}}$ NMR ($161.8 \mathrm{MHz}, \mathrm{DCM}, 17.9^{\circ} \mathrm{C}$) $\delta: 123.7$ (s).

4.9.4 - Synthesis of N, N^{\prime}-Diarylureas

N, N 'diarylureas were prepared via standard literature procedures through condensation of a substituted aniline with phenylisocyanate. ${ }^{34}$ The synthesis of $\mathbf{1 6 a}$ is given as exemplar.

4.9.4.1 - Synthesis of N, N^{\prime}-diphenylurea, 16a:

Phenylisocyanate ($\left.5.0 \mathrm{~cm}^{3}, 46 \mathrm{mmol}\right)$ and $\mathrm{Et}_{3} \mathrm{~N}\left(13.0 \mathrm{~cm}^{3}, 93 \mathrm{mmol}\right)$ were dissolved in DCM ($30 \mathrm{~cm}^{3}$) and cooled to $0{ }^{\circ} \mathrm{C}$. Aniline ($5 \mathrm{~cm}^{3}, 55 \mathrm{mmol}$) was added dropwise affording a fine colourless precipitate. The reaction mixture was stirred at room temperature for 15 hours, after which the supernatant was removed via filter cannula and the colourless solids were washed with DCM $\left(2 \times 10 \mathrm{~cm}^{3}\right)$ and dried in vacuo. Yield: $9.34 \mathrm{~g}(44 \mathrm{mmol}, 95.7 \%) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{THF}, 25.0^{\circ} \mathrm{C}$) $8: 7.71(\mathrm{bs}, 2 \mathrm{H}), 7.40(\mathrm{~d}, \mathrm{~J}=$ $7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.14(\mathrm{t}, J=7.7,8.3 \mathrm{~Hz}, 4 \mathrm{H}), 6.85(\mathrm{t}, J=7.3,7.4 \mathrm{~Hz}, 2 \mathrm{H})$.

Analytical data in accordance with the literature. ${ }^{34}$

4.9.4.2 - Synthesis of N-3-methoxyphenyl- N^{\prime}-diphenylurea, 16f:

Colourless solid, 87.4 \% yield. ${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{THF}, 25.7^{\circ} \mathrm{C}$) $\delta: 7.75$ (d, J = 6.9 Hz , $2 \mathrm{H}), 7.41(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=2.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{t}, J=7.7,8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.03$ $(\mathrm{t}, J=8.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{t}, J=7.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~m}, 1 \mathrm{H}), 6.45(\mathrm{dd}, J=2.4,8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100.5 \mathrm{MHz}, \mathrm{THF}, 26.8^{\circ} \mathrm{C}$) $\delta: 160.7,152.5,141.5,140.3$, 129.3, 128.7, 122.0, 118.6, 110.7, 107.7, 104.5, 54.6.

Analytical data in accordance with the literature. ${ }^{34}$

4.9.4.3 - Synthesis of N-3-dimethylaminophenyl- N^{\prime}-diphenylurea, 16 r :

Colourless solid, 73.6 \% yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{THF}, 19.2^{\circ} \mathrm{C}$) $\delta: 7.75$ (bs, 1H), 7.68 (bs, 1H), $7.41(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{t}, J=7.6,8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.96$ (t, $J=8.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{t}, J=7.3,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.57$ (dd, $J=1.7,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.29$ (dd, J $\left.=2.4,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~s}, 6 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{C} \mathbf{1} \mathbf{H}\right\} \mathbf{N M R}\left(100.5 \mathrm{MHz}, \mathrm{THF}, 20.3^{\circ} \mathrm{C}\right) \delta: 152.7,151.6$, $140.9,140.5,129.0,128.7,121.8,118.5,107.2,106.9,103.3,40.0$.

4.9.5 - Synthesis of 1,2,4-Benzophosphadiazines

The 1,2,4-benzophosphadiazine $\mathbf{1 7 r}$ derived from electron-rich N, N^{\prime}-diarylurea $\mathbf{1 6 r}$ was prepared according to literature procedures. All other 1,2,4benzophosphadiazines were synthesised via alternative methods. Attempts to prepare and isolate clean samples of $20 r$ and $21 r$ were unsuccessful.

4.9.5.1 - Synthesis of 1,2-diphenyl-6-dimethylamino-4-hydro-1,2,4-benzophosphadiaz-3-one, 17r:

$\mathbf{1 6 r}$ ($94 \mathrm{mg}, 0.37 \mathrm{mmol}$) was dissolved in pyridine ($1.5 \mathrm{~cm}^{3}$) and added dropwise to a solution of $\mathrm{PhPCl}_{2}\left(50 \mu \mathrm{~m}^{3}, 0.37 \mathrm{mmol}\right)$ in pyridine $\left(1.5 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$. The yellow reaction mixture was warmed to room temperature and after 3 days, $E t_{3} \mathrm{~N}\left(150 \mu^{3}\right.$, 1.08 mmol) was added. The solvent was removed in vacuo and the resides were extracted into toluene ($2 \times 5 \mathrm{~cm}^{3}$) and decanted via filter cannula. The filtrate was evaporated to dryness and the crude solids were washed with MeCN ($2 \times 2.5 \mathrm{~cm}^{3}$) to give $\mathbf{1 7 r}$ as a colourless solid. Yield: $26 \mathrm{mg}(0.07 \mathrm{mmol}, 19.8 \%) .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , DCM, $18.5^{\circ} \mathrm{C}$) $\delta: 8.55$ (bs, 1H), 7.44-7.21 (m, 11H), 6.51 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.21 (bs, 1H), 2.91 (s, 6H). ${ }^{\mathbf{3 1}} \mathbf{P}$ NMR (161.8 MHz, DCM, $18.2^{\circ} \mathrm{C}$) $\delta: 35.6$ (s). ${ }^{\mathbf{1 3} \mathbf{C} \mathbf{C} \mathbf{1} \mathbf{H}\} \text { NMR (100.5 MHz, }}$ DCM, $18.4^{\circ} \mathrm{C}$) $\delta: 155.9\left(\mathrm{~d}, J_{C-P}=7.7 \mathrm{~Hz}\right), 152.6(\mathrm{~s}), 143.5\left(\mathrm{~d}, J_{C-P}=18.2 \mathrm{~Hz}\right), 142.5(\mathrm{~s})$, $140.8\left(\mathrm{~d}, J_{C-P}=26.8 \mathrm{~Hz}\right), 132.3\left(\mathrm{~d}, J_{C-P}=46.0 \mathrm{~Hz}\right), 129.7\left(\mathrm{~d}, J_{C-P}=20.1 \mathrm{~Hz}\right), 129.3(\mathrm{~s})$, $128.9(\mathrm{~s}), 128.7\left(\mathrm{~d}, J_{C-P}=5.8 \mathrm{~Hz}\right), 127.6\left(\mathrm{~d}, J_{C-P}=6.7 \mathrm{~Hz}\right), 126.4(\mathrm{~s}), 107.6\left(\mathrm{~d}, J_{C-P}=14.4\right.$ Hz), 98.9 (s), 40.4 (s).

4.9.5.2 - Synthesis of 1,3-diphenyl-6-dimethylamino-2,4-dihydro-1,2,4benzophosphadiazine chloride, 19r.HCl:

1r ($0.71 \mathrm{~g}, 2.95 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.82 \mathrm{~g}, 5.90 \mathrm{mmol})$ were combined in DCM ($35 \mathrm{~cm}^{3}$) and cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{PhPCl}_{2}\left(0.4 \mathrm{~cm}^{3}, 2.95 \mathrm{mmol}\right)$ was added dropwise, giving an immediate yellow suspension. The reaction mixture was slowly warmed to room temperature and stirred for 14 hours. The suspension was filtered through celite and the solids were washed with DCM ($2 \times 10 \mathrm{~cm}^{3}$). The combined filtrate was evaporated to dryness and the resulting oil was triturated with hot $\mathrm{MeCN}\left(5 \mathrm{~cm}^{3}\right)$, washed with
$\mathrm{Et}_{2} \mathrm{O}\left(2 \times 5 \mathrm{~cm}^{3}\right)$ and dried in vacuo to give a pale yellow solid. Yield: $0.99 \mathrm{~g}(2.59 \mathrm{mmol}$, 87.7 \%). ${ }^{\mathbf{1}}{ }^{(H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 25.0^{\circ} \mathrm{C}$) $\delta: 13.30$ (bs, 1 H), 10.96 (d, $J_{H-P}=26.6 \mathrm{~Hz}$, 1H), 8.32 ($\mathrm{s}, 1 \mathrm{H}$), 8.06 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.39-7.08 (m, 10H), 3.00 (s, 6H). ${ }^{31} \mathbf{P}$ NMR ($161.8 \mathrm{MHz}, \mathrm{DCM}, 25.0^{\circ} \mathrm{C}$) $\mathrm{\delta}: 4.6$ (m).

4.9.5.3 - Synthesis of 1,3-diphenyl-6-dimethylamino-2-hydro-1,2,4benzophosphadiazine, 19r:

19r.HCl ($0.66 \mathrm{~g}, 1.73 \mathrm{mmol}$) was partially dissolved in DCM ($20 \mathrm{~cm}^{3}$) and $\mathrm{Et}_{3} \mathrm{~N}(0.24$ $\mathrm{cm}^{3}, 1.73 \mathrm{mmol}$) was added. The yellow solution was stirred for 30 minutes and then evaporated to dryness. The residues were extracted into hot toluene ($2 \times 15 \mathrm{~cm}^{3}$) and filtered, concentrated to $c a .5 \mathrm{~cm}^{3}$ in vacuo and stored at $-20^{\circ} \mathrm{C}$ overnight. The supernatant was removed via filter cannula, and the pale yellow crystalline solids were washed with $\mathrm{Et}_{2} \mathrm{O}\left(5 \mathrm{~cm}^{3}\right)$ and dried in vauo. Yield: $0.32 \mathrm{~g}(0.91 \mathrm{mmol}, 52.8 \%) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 25.0^{\circ} \mathrm{C}$) $\delta: 7.88(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.20(\mathrm{~m}, 5 \mathrm{H})$, 6.77 (bs, 1H), 6.66 (d, J = $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.07$ (bs, 1H), $3.01(\mathrm{~s}, 6 \mathrm{H}) .{ }^{31} \mathbf{P}$ NMR (161.8 MHz , DCM, $25.0^{\circ} \mathrm{C}$) $\delta: 0.2$ (bs). ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100.5 \mathrm{MHz}, \mathrm{DCM}, 19.4{ }^{\circ} \mathrm{C}$) $\delta: 153.0$ (s), 152.7 (d, $J_{C-P}=8.8 \mathrm{~Hz}$), $143.7\left(\mathrm{~d}, J_{C \cdot P}=27.9 \mathrm{~Hz}\right), 137.0(\mathrm{~s}), 132.6\left(\mathrm{~d}, J_{C-P}=44.8 \mathrm{~Hz}\right), 130.8(\mathrm{~s}), 129.8$ (d, $\left.J_{c \cdot p}=19.8 \mathrm{~Hz}\right), 129.0(\mathrm{~s}), 128.7$ (s), 128.4 (d, $J_{C-P}=5.9 \mathrm{~Hz}$), 127.2 (s$), 110.1$ (d, $J_{C-P}=$ 14.7 Hz), 40.3 (s).

4.9.5.4 - Synthesis of 1-methyl-1,3-diphenyl-6-dimethylamino-4-hydro-1,2,4benzodiazaphosphonium iodide, 22 r.HI:

To a suspension of $\mathrm{NaH}(0.24 \mathrm{~g}, 10.0 \mathrm{mmol})$ in DMF ($15 \mathrm{~cm}^{3}$) was dropwise added a solution of $\mathbf{1 9 r} . \mathrm{HCl}(0.76 \mathrm{~g}, 2.0 \mathrm{mmol})$ in $\mathrm{DMF}\left(15 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The yellow reaction mixture was allowed to warm to room temperature and stir for 1 hour, then cooled back down to $0{ }^{\circ} \mathrm{C}$. Mel ($\left.0.13 \mathrm{~cm}^{3}, 2.0 \mathrm{mmol}\right)$ was added dropwise and the yellow reaction mixture was again allowed to warm to room temperature and stir for 1 hour. The solvent was removed in vacuo and the residues were extracted into DCM (2×15 cm^{3}) and filtered through celite. The combined filtrate was washed with water and brine ($15 \mathrm{~cm}^{3}$), dried over MgSO_{4}, filtered and evaporated to dryness. Recrystallisation of the crude solids from DCM and $\mathrm{Et}_{2} \mathrm{O}$ afforded 22r.HI as pale yellow needles. Yield: $0.14 \mathrm{~g}(0.3 \mathrm{mmol}, 15.0 \%) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 20.4^{\circ} \mathrm{C}$) $\delta: 11.35(\mathrm{bs}, 1 \mathrm{H}), 8.50(\mathrm{~d}$, $\left.J_{H-H}=7.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.13\left(\mathrm{dd}, J_{H-H}=2.3 \mathrm{~Hz}, J_{H-P}=5.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.75\left(\mathrm{~d}, J_{H-P}=13.6 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $7.73\left(\mathrm{dd}, J_{H-H}=1.5 \mathrm{~Hz}, J_{H-P}=13.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.66(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.47\left(\mathrm{t}, J_{H-H}=\right.$ $7.5,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.35\left(\mathrm{~d}, J_{H-H}=8.9 \mathrm{~Hz}, J_{H-P}=11.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.74\left(\mathrm{dt}, J_{H-H}=2.2,8.9 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $3.09(\mathrm{~s}, 6 \mathrm{H}), 2.40\left(\mathrm{~d}, J_{H-P}=13.9 \mathrm{~Hz}, 3 \mathrm{H}\right) .{ }^{31} \mathbf{P}$ NMR ($161.8 \mathrm{MHz}, \mathrm{DCM}, 19.7^{\circ} \mathrm{C}$) $\delta: 17.8(\mathrm{~m})$. ${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(100.5 \mathrm{MHz}, \mathrm{DCM}, 20.5^{\circ} \mathrm{C}\right.$) $\delta: 161.6\left(\mathrm{~d}, J_{C-P}=8.8 \mathrm{~Hz}\right), 154.7\left(\mathrm{~d}, J_{C-P}=1.5\right.$
$\mathrm{Hz}), 142.6\left(\mathrm{~d}, J_{C-P}=4.4 \mathrm{~Hz}\right), 133.9\left(\mathrm{~d}, J_{C-P}=2.9 \mathrm{~Hz}\right), 133.2(\mathrm{~s}), 132.4\left(\mathrm{~d}, J_{C-P}=16.9 \mathrm{~Hz}\right)$, $130.6\left(\mathrm{~d}, J_{C-P}=11.7 \mathrm{~Hz}\right), 130.2\left(\mathrm{~d}, J_{C-P}=8.1 \mathrm{~Hz}\right), 129.6\left(\mathrm{~d}, J_{C-P}=13.2 \mathrm{~Hz}\right), 129.5\left(\mathrm{~d}, J_{C-P}=\right.$ $1.5 \mathrm{~Hz}), 128.9\left(\mathrm{~d}, J_{C-P}=107.8 \mathrm{~Hz}\right), 128.5(\mathrm{~s}), 111.9\left(\mathrm{~d}, J_{C-P}=11.7 \mathrm{~Hz}\right), 102.0\left(\mathrm{~d}, J_{C-P}=5.9\right.$ $\mathrm{Hz}), 84.2\left(\mathrm{~d}, J_{C-P}=94.6 \mathrm{~Hz}\right), 40.5(\mathrm{~s}), 16.6\left(\mathrm{~d}, J_{C-P}=78.5 \mathrm{~Hz}\right)$.

4.9.5.5 - Synthesis of 1-diphenylphosphanyl-1,3-diphenyl-6-dimethylamino-4-

 hydro-1,2,4-benzodiazaphosphonium chloride, 23r.HCl:19r.HCl ($0.21 \mathrm{~g}, 0.56 \mathrm{mmol})$ and $E t_{3} \mathrm{~N}\left(0.16 \mathrm{~cm}^{3}, 1.12 \mathrm{mmol}\right)$ were dissolved in DCM $\left(15 \mathrm{~cm}^{3}\right)$ and cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{Ph}_{2} \mathrm{PCl}\left(0.1 \mathrm{~cm}^{3}, 0.56 \mathrm{mmol}\right)$ was added dropwise and the yellow solution was allowed to warm to room temperature and stir for 12 hours. The solvent was removed in vacuo and the residues extracted into toluene ($2 \times 10 \mathrm{~cm}^{3}$) and filtered. Concentration of the combined filtrate to $c a .5 \mathrm{~cm}^{3}$ gave a pale yellow precipitate that was isolated by filtration and dried in vacuo. Yield: $0.03 \mathrm{~g}(0.05 \mathrm{mmol}$, 8.6 \%). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 23.0^{\circ} \mathrm{C}$) $\delta: 12.68(\mathrm{bs}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.90$ $(\mathrm{d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{t}, J=7.9,8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.33(\mathrm{~m}, 10 \mathrm{H})$, $7.28(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=4.5,4.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.66(\mathrm{dt}, J=$ $2.4,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~s}, 6 \mathrm{H}) .{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(161.8 \mathrm{MHz}, \mathrm{DCM}, 23.0^{\circ} \mathrm{C}\right) \delta: 21.9\left(\mathrm{~d},{ }^{1}{ }^{1}{ }_{P-P}=\right.$ $267.7 \mathrm{~Hz}),-19.1\left(\mathrm{~d},{ }^{1} J_{P-P}=267.7 \mathrm{~Hz}\right)$.

4.10 - References

R. Engel and J. I. Cohen, Synthesis of Carbon-Phosphorus Bonds, CRC Press, Raton, 2004.
H. R. Pickard and J. Kenyon, J. Chem. Soc., 1906, 262-273.
E. S. S. A and W. Chodkiewicz, J. Organomet. Chem., 1984, 273, 55-56.
D. M. Volochnyuk, A. O. Pushechnikov, D. G. Krotko, A. M. Pinchuk and A. A. Tolmachev, Synthesis, 2005, 3124-3134.

Michaelis, Ber., 1879, 12, 1009.
T. Ito, T. Iwai, T. Nakai, M. Mihara, T. Mizuno, T. Ohno, A. Ishikawa and J. ichi Kobayashi, Heteroat. Chem., 2016, 27, 336-342.
Z. W. Wang and L. S. Wang, Green Chem., 2003, 5, 737-739.
J. M. Rawson, A. Alberola and A. Whalley, J. Mater. Chem., 2006, 16, 2560.
R. G. Hicks, Org. Biomol. Chem., 2007, 5, 1321.
C. P. Constantinides, P. A. Koutentis and J. M. Rawson, Chem. Eur. J., 2012, 18, 15433-15438.
C. P. Constantinides, A. A. Berezin, M. Manoli, G. M. Leitus, M. Bendikov, J. M. Rawson and P. A. Koutentis, New J. Chem., 2014, 38, 949-954.
C. P. Constantinides, A. A. Berezin, M. Manoli, G. M. Leitus, G. A. Zissimou, M. Bendikov, J. M. Rawson and P. A. Koutentis, Chem. Eur. J., 2014, 20, 5388-5396.
C. P. Constantinides, P. A. Koutentis, H. Krassos, J. M. Rawson and A. J. Tasiopoulos, J. Org. Chem., 2011, 76, 2798-2806.
P. Kaszyński, C. P. Constantinides and V. G. Young, Angew. Chem. Int. Ed., 2016, 55, 11149-11152.
Y. Miura and N. Yoshioka, Chem. Phys. Lett., 2015, 626, 11-14.
G. S. Borovikova, F. Tsymbal. I, E. C. Levchenko and E. I. Borovik, Zhurnal Org. Khimii, 1984, 20, 1784-1790.

17 E. S. Levchenko, G. S. Borovikova, E. I. Borovik and V. V. Kalinin, Russ. J. Org. Chem., 1984, 20, 176-181.
A. O. Pushechnikov, D. G. Krotko, D. M. Volochnyuk and A. A. Tolmachev, Chem. Heterocycl. Compd., 2001, 37, 710-712.
J. L. Paparin, A. Amador, E. Badaroux, S. Bot, C. Caillet, T. Convard, D. Da Costa, D. Dukhan, L. Griffe, J. F. Griffon, M. LaColla, F. Leroy, M. Liuzzi, A. Giulia Loi, J. McCarville, V. Mascia, J. Milhau, L. Onidi, C. Pierra, R. Rahali, E. Rosinosky, E. Sais, M. Seifer, D. Surleraux, D. Standring and C. B. Dousson, Bioorganic Med. Chem. Lett., 2017, 27, 2634-2640.
C. Pierra Rouvière, A. Amador, E. Badaroux, T. Convard, D. Da Costa, D. Dukhan, L.

Griffe, J. F. Griffon, M. LaColla, F. Leroy, M. Liuzzi, A. G. Loi, J. McCarville, V. Mascia, J. Milhau, L. Onidi, J. L. Paparin, R. Rahali, E. Sais, M. Seifer, D. Surleraux, D. Standring and C. Dousson, Bioorganic Med. Chem. Lett., 2016, 26, 4536-4541. J. P. Harger, Martin and R. Sreedharan-Menon, J. Chem. Soc., Perkin Trans., 1994, 3261-3267.
J. M. Rawson and G. D. McManus, Coord. Chem. Rev., 1999, 189, 135-168.
G. M. Kosolapoff and W. Frederick Huber, J. Am. Chem. Soc., 1947, 69, 2020-2021.
B. L. Booth, K. O. Jibodu and M. F. Proença, J. Chem. Soc., Chem. Commun., 1980, 1151-1153.
Z. C. Shen, P. Yang and Y. Tang, J. Org. Chem., 2016, 81, 309-317.
S. I. R. Alexander, J. Chem. Soc., 1949, 449-456.
E. Despagnet-Ayoub and R. H. Grubbs, J. Am. Chem. Soc., 2004, 126, 1019810199.
A. O. Pushechnikov, D. M. Volochnyuk, D. G. Krotko, A. K. Tyltin and A. A. Tolmachev, Chem. Heterocycl. Compd., 2001, 37, 656-658.
I. K. Khanna, Y. Yu, R. M. Huff, R. M. Weier, X. Xu, F. J. Koszyk, P. W. Collins, J. N. Cogburn, P. C. Isakson, C. M. Koboldt, J. L. Masferrer, W. E. Perkins, K. Seibert, A. W. Veenhuizen, J. Yuan, D. Yang and Y. Y. Zhang, Synthesis, 2000, 3168-3185.
F. D. Bellamy and K. Ou, Tetrahedron Lett., 1984, 25, 839-842.
L. Beer, R. C. Haddon, M. E. Itkis, A. A. Leitch, R. T. Oakley, R. W. Reed, J. F. Richardson, D. G. VanderVeer, L. Beer, J. L. Brusso, A. W. Cordes, R. C. Haddon, M. E. Itkis, K. Kirschbaum, D. S. MacGregor, R. T. Oakley, A. A. Pinkerton and R. W. Reed, Chem. Commun., 2005, 124, 1218-1220.
Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta and P. V. R. Schleyer, Chem. Rev., 2005, 105, 3842-3888.
A. G. Orpen, L. Brammer, F. H. Allen, O. Kennard, D. G. Watson and R. Taylor, J. Chem. Soc., Dalt. Trans., 1987, S1-S83.
M. Blain, H. Yau, L. Jean-Gérard, R. Auvergne, D. Benazet, P. R. Schreiner, S. Caillol and B. Andrioletti, ChemSusChem, 2016, 9, 2269-2272.

Chapter 5

Structural Diversity in Phosphorus-Nitrogen Heterocycles

"I need your clothes, your boots and your heterocycles."
Terminator 2: Judgement Day (1991) [Paraphrased]

5.1 - A Brief Introduction to Phosphorus-Nitrogen Heterocycles

Early research into phosphorus-nitrogen heterocycles primarily focused on synthesising isoelectronic phosphorus analogues of nitrogen-containing heterocycles, replacing N or $\mathrm{C}-\mathrm{H}$ fragments with P , whilst recent work has investigated their use as ligands and functional materials. ${ }^{1,2}$ Heterocycles containing phosphorus and nitrogen have also been shown to have significant biological activity as herbicides, pesticides and drugs. ${ }^{3,4-6}$ The prototypical formation of $\mathrm{P}-\mathrm{N}$ bonds involves the elimination of HCl from the treatment of an amine with a chlorophosphine. The use of silylamines and alkali-metal amides is also popular, and are especially important for sterically bulky amines where substitution in the presence of organic bases is slow. ${ }^{7}$ More recent methods have employed phosphaethynolate (OCP) salts 8 and phosphaalkynes ${ }^{9}$ in the construction of phosphorus-nitrogen heterocycles, and the addition of nitriles into cyclophosphines has also been explored. ${ }^{10}$

5.1.1 - Cyclophosph(III)azines

The chemistry of phosphorus(III)-nitrogen heterocycles is dominated by fourmembered $\mathrm{P}_{2} \mathrm{~N}_{2}$ rings known as cyclodiphospha(III)diazines. These $\mathrm{P}_{2} \mathrm{~N}_{2}$ units can be used as ligands for metal complexes ${ }^{11}$ but more notably provide the scaffold for the construction of inorganic macrocycles ${ }^{12}$ which have found applications in host-guest chemistry ${ }^{13}$ and catalysis. ${ }^{14}$ The simplest dichlorodiphosphadiazines, B (Scheme 5.1.1.1), are readily synthesised by the reaction of primary amines with PCl_{3} in the presence of a base, typically $E t_{3} \mathrm{~N}$. The use of bulky substituents on nitrogen ensures the retention of the $P_{2} \mathrm{~N}_{2}$ unit, since small substituents (such as $\mathrm{R}=\mathrm{Me}, \mathrm{Et}$) can result in the formation of higher oligomers ${ }^{15}$ or cages. ${ }^{16}$ In contrast, the monomeric iminophosphanes, \mathbf{A}, can be prepared if extremely bulky groups (such as Mes* $=2,4,6$ -tri-tert-butylphenyl) are employed. ${ }^{17}$ Reversible dimerisation of monomeric iminophosphanes has been observed,,18 as has the Lewis-acid mediated ${ }^{19}$ and thermally induced rearrangement ${ }^{20}$ of the dimeric chlorophosphazine \mathbf{B} to the trichlorophosphazine, C.

Scheme 5.1.1.1: Interconversion between monomeric, dimeric and trimeric cyclophoph(III)azines.

Whilst the chemistry of cyclophosphazines bearing alkoxy, aryloxy and amide functionalities is extensive, prepared by nucleophilic substitution of the P-X precursor, systems bearing P-R bonds have received considerably less attention. These are mostly restricted to aryl and alkyl derivatives, and are prepared from the corresponding RPCl_{2} species. Substitution reactions of the P-X precursors with RLi and RMgX reagents may also be used, but these are known to often cleave P-N bonds. ${ }^{21}$ This approach however has been successfully employed to prepare alkynyl-functionalised cyclophosphadiazines which on treatment with $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}$ afforded a rhodium(I) pentameric macrocycle. ${ }^{22}$

Cyclophosphadiazines are known to exist as geometrical isomers (Figure 5.1.1.1), with the cis isomer being more thermodynamically favoured while the trans isomer is the kinetic product. ${ }^{7}$ The cis isomers tend to form puckered $\mathrm{P}_{2} \mathrm{~N}_{2}$ rings, whereas the trans isomers are planar. The choice of substituent on both phosphorus and nitrogen is the major factor in determining which isomer is formed, with bulky substituents favouring the trans isomer. ${ }^{21}$ Solution state NMR studies provide a simple way to differentiate between the isomers, as well as a means of probing the cis-trans equilibrium, due to the markedly different ${ }^{31}$ P NMR chemical shifts observed. ${ }^{23}$

cis

trans

Figure 5.1.1.1: Geometrical isomers of cyclophosphadiazines.
Despite being perhaps the simplest class of PIII-N heterocycle, the chemistry of cyclophosphazines illustrates the complex and diverse library of compounds that are accessible for simple primary amines and halophosphines. ${ }^{21}$ The tendency for $\mathrm{P}-\mathrm{N}$ systems to form oligomeric species may however be exploited to form polymers of the type $[-X P N R-]_{n}$ which, due to their remarkable tunability, have found well-established uses as high-performance elastomers and flame-retardant coatings,, ${ }^{24}$ with emerging uses in biomedical applications. ${ }^{25}$ The pioneering work of Wright into the $\mathrm{P}_{2} \mathrm{~N}_{2}$-based macrocycles continues, with current work focusing on developing reliable synthetic methodologies and further exploring their coordination chemistry. ${ }^{26}$

5.1.2 - Cyclophosph(V)azenes

Cyclophosph(V)azanes, cyclic species made up of alternating P^{V} and N single and double bonds, were first synthesised by Liebig in 1832 through the reaction of PCl_{5} and NH_{3}. This yielded a mixture of the trimeric (D) and tetrameric (E) species (Figure 5.1.2.1), which can be separated by fractional sublimation. The trimeric species undergoes ring-opening polymerisation at elevated temperatures ($>250^{\circ} \mathrm{C}$) to afford poly(dichlorophosphazenes) of the formula $\left[\mathrm{NPCl}_{2}\right]_{n} .{ }^{27}$ Replacement of the chlorine groups by organic substituents gives polyphosphazenes which have found use in a plethora of applications and are the subject of several reviews. ${ }^{24,25}$ The utility of cyclophosph(V)azanes themselves has also been explored, primarily as flame-retardant materials ${ }^{28}$ and as ligands to metals. ${ }^{29}$

D

E

Figure 5.1.2.1: Trimeric and tetrameric cyclophosph(V)azanes.

5.1.3 - Urea-Ligated Phosphorus Heterocycles

The first reported phosphorus-urea heterocycle was synthesised in 1964 through the reaction of N, N^{\prime}-disubstituted ureas with PCl_{5} to give either \mathbf{F} (Figure 5.1.3.1) or the chloroformamidine hydrochloride depending on the nature of the substituents. ${ }^{30}$ This four-membered heterocycle was later treated with a second equivalent of 1,3disubstitued urea to give the spirocyclic compound $\mathbf{G} ;{ }^{31}$ there are no reports of the octahedral anion which may be accessible when $R=R^{\prime}=M e$.

F

G

Figure 5.1.3.1: Phosphorus(V)-urea heterocycles.
In contrast, the reaction of N, N^{\prime}-disubstituted silylated-ureas with aryldichlorophoshines afforded the spirobicyclic compound \mathbf{H} (Figure 5.1.3.2) with the first reported $\lambda^{3} \mathrm{P}-\lambda^{5} \mathrm{P}$ bond. ${ }^{31,32}$ It is presumed that compound \mathbf{I} is initially formed, one molecule of which undergoes phosphorus-nitrogen bond cleavage followed by oxidative addition to an intact ring. It was originally hypothesised that the phosphorus-
substituent only influenced the chemical and thermal-stability but not the constitution of the compound formed, however the use of strongly electron withdrawing groups ($\mathrm{R}^{\prime \prime}$ $=\mathrm{C}_{2} \mathrm{~F}_{5}$) produced the four-membered monocycle \mathbf{I} as a distillable liquid. ${ }^{33}$ Later reports claimed that the reaction of protio- N, N^{\prime}-diphenylurea with PhPCl_{2} in the presence of base gave a different $\lambda^{3} \mathrm{P}-\lambda^{5} \mathrm{P}$ heterocycle, J , which must also yield one equivalent of the corresponding carbodiimide through deoxygenation. ${ }^{3}$

H

I

J

Figure 5.1.3.2: Phosphorus(III) and mixed PIII/PV-urea heterocycles derived from RPCl_{2}.
The reaction of N, N^{\prime}-disubstituted silylated-ureas with PCl_{3} was initially believed to form a bicyclic compound with a P-O-P bridge ${ }^{31}$ but was later shown to form compound \mathbf{K} (Figure 5.1.3.3) through variable temperature NMR and X-ray crystallography. ${ }^{33}$ When $R=M e$, the formation of \mathbf{L} was instead observed along with a solid residue which contained the six-membered heterocycle \mathbf{M}. When the order of addition of the reagents was reversed, compounds \mathbf{K} and \mathbf{N} were formed. ${ }^{33}$ The four-membered monocycle, $\mathbf{0}$, has not been observed. The bicyclic $\lambda^{3} \mathrm{P}-\lambda^{5} \mathrm{P}$ heterocycle, \mathbf{K}, may also be formed from the protio- N, N^{\prime}-diphenylurea and PCl_{3} at reflux in the presence of base. ${ }^{3}$

K

L

M

N

0

Figure 5.1.3.3: Phosphorus(III) and mixed $\mathrm{PIII}^{\mathrm{II}} / \mathrm{P}^{\mathrm{V}}$-urea heterocycles derived from PCl_{3}.
Despite later papers describing the herbicidal activity ${ }^{3}$ of phosphorus-urea heterocycles, they have found limited application and hence received little attention in recent years. Whilst the structural diversity of the compounds produced was the primary point of interest, binding towards metal carbonyls and further reactivity has also been explored. ${ }^{34} N, N^{\prime}$-diarylureas have more recently been employed in the
construction of fused-ring phosphorus-nitrogen heterocycles under mild conditions (See Chapter 4). ${ }^{35}$

5.1.4 - Phosphorus-Amidinate Chemistry

The coordination chemistry of N, N^{\prime}-disubstituted amidinates is well established for the transition metals, with the bridging \mathbf{P} and chelating \mathbf{Q} binding modes being the most common (Figure 5.1.4.1). ${ }^{36-38}$ These are typical for symmetric mono-anionic ligands although for the latter considerable steric strain occurs in the four-membered ring. In contrast, much less is known about complexes involving the main-group elements. ${ }^{39}$ Earlier studies investigated the group 13 elements and aimed to determine how the variation in R groups of the amidinate ligand affects the degree of association of the complexes. The group 13 trihalides ($\mathrm{M}=\mathrm{B}, \mathrm{Al}, \mathrm{Ga}, \mathrm{In}$) formed monomeric chelating complexes for amidines bearing sufficiently bulky groups $\left(\mathrm{R}=\mathrm{SiMe}_{3}, \mathrm{Ph} ; \mathrm{R}^{\prime}=\mathrm{SiMe}_{3}\right.$, Ph). ${ }^{40}$ Monomeric species were also observed for the MMe_{3} derived complexes ($\mathrm{M}=\mathrm{Ga}$, Al) but formed bridging dimers \mathbf{R} featuring an eight-membered puckered ring when R $=\mathrm{R}^{\prime}=\mathrm{Me} .^{41}$ The MMe-bis-amidinate and M-tris-amidinate complexes can also be accessed through controlled sequential addition of protio-amidine, although forcing conditions are required.

P

Q

R

Figure 5.1.4.1: Binding modes of amidinate ligands.
The amidinate ligand can act as both a bridging and chelating ligand simultaneously to magnesium depending on the ligand substituents, and these complexes have found use in bond forming catalytic reactions and to promote the Tishchenko reaction. ${ }^{42}$ Amidinates have also been employed in the synthesis of four-membered N-heterocyclic silylenes and germylenes, which have been used to prepare catalytically active metal complexes or can act as catalysts in their own right. ${ }^{43,44}$ Sterically bulky amidinates can impart significant kinetic stability to low-valent group 14 (I) dimers, including the first tin (I) dimer, which are potentially useful for small molecule activation. ${ }^{45}$

Despite their promising chemistry with main-group elements, the binding of amidines to phosphorus has yet to be explored. The closest examples were by Grubbs in 2004 who produced the first four-membered N-heterocyclic carbene \mathbf{S} (Figure 5.1.4.2) from
the corresponding silylated-formamidine and amidodichlorophosphine followed by deprotonation. Related systems have been prepared by Wright in 2015 with dichlorodiphosphadiazines to give hybrid phosphazine/NHC systems T.

S

T

Figure 5.1.4.2: Phosphorus-formamidinate NHCs.

Mono-substituted N-arylamidines, on the other hand, have found limited use as asymmetric di-anionic ligands. The coordination mode adopted by amidinates is largely dependent on the steric bulk on the nitrogen atoms, with bulkier substituents favouring chelation, and smaller substituents favouring a bridging motif. As such, the range of coordination modes accessible to asymmetric di-anionic amidinates is expected to lead to considerable structural diversity; a selection of possible coordination modes are shown in Figure 5.1.4.3.

U

v

W

X

Figure 5.1.4.3: Possible coordination modes of asymmetric di-anionic amidinates.

The reactions of mono-substituted N -arylamidines with AlMe_{3} was first reported in 2010 by Reddy ${ }^{46}$ and later expanded the following year. ${ }^{47}$ For bulky amidines the formation of tetrameric aluminium amidinates \mathbf{Y} were observed (Scheme 5.1.4.1), adopting the \mathbf{X} coordination mode $\left(\mu_{2}-\eta^{1}-\eta^{2}\right)$.

Scheme 5.1.4.1: Reaction of N-arylamidines with AlMe_{3}.

When the bulky aryl group is replaced by a phenyl ring, the formation of tetracyclic triazaalanes, comprised of fused six-membered $\mathrm{Al}_{2} \mathrm{CN}_{3}$ rings is observed as a mixture of isomers. Replacement of AlMe_{3} with $\mathrm{GaMe}_{3} \cdot \mathrm{OEt}_{2}$ gave analogous compounds in most cases, whilst the use of AlMeCl_{2} gave bicyclic triazaalanes. ${ }^{48}$ These studies highlight the complex E-N-C ($\mathrm{E}=\mathrm{Al}, \mathrm{Ga}$) frameworks that can be formed from mono-substituted N arylamidines and illustrate that the steric bulk of the N-aryl group significantly influences the coordination mode adopted.

5.2 - Reactions of N-Arylamidines with PhPCl_{2}

During the attempted syntheses of fused-ring 1,2,4-benzophosphadiazines, discussed in Chapter 4, the reaction of N-phenylbenzamidine 1a with PhPCl_{2} under mild conditions unexpectedly gave the six-membered heterocycle 10a (Scheme 5.2.1). Similar systems have been observed for the reaction of chlorostannylenes and chlorogermylenes with diimidosulfinates. ${ }^{49}$

Scheme 5.2.1: Reaction of N-phenylbenzamidine $1 \mathbf{1 a}$ with PhPCl_{2}.
In light of this interesting result, we decided to further explore this behaviour and examine whether similar reactivity would be observed with other mono-substituted N arylamidines.

5.2.1 - N-Phenylbenzamidine

The reaction of N-phenylbenzamidine with PhPCl_{2} in the presence of base cleanly affords a single species which exhibits two sharp singlets of equal intensity in the ${ }^{31} \mathrm{P}$ NMR spectrum at $\delta+54.2$ and +39.1 ppm . Single crystals suitable for X-ray diffraction, grown by slow diffusion of hexane into a saturated solution of the product in DCM, revealed the formation of a six-membered $\mathrm{P}_{2} \mathrm{CN}_{3}$ heterocycle 10a from two equivalents each of amidine and phosphine.

Compound 10a crystallises as pale yellow plates in the triclinic space group $P \overline{1}$ with a single molecule in the asymmetric unit (Figure 5.2.1.1). The $\mathrm{P}_{2} \mathrm{CN}_{3}$ heterocyclic ring adopts a distorted envelope conformation, folded along the $\mathrm{P} 2 \cdots \mathrm{~N} 1$ axis by 36.4°, with the two P-phenyl rings in a cis-orientation. The P2-N2 and P2-N3 bond lengths are similar at $1.723(2) \AA$ and $1.729(2) \AA$ whilst the P1-N1 and P1-N3 bond lengths differ
significantly at $1.679(2) \AA$ and $1.765(2)$ respectively; these values are still within the typical range of values observed for phosphorus-nitrogen single bonds. ${ }^{50}$

Figure 5.2.1.1: Crystal structure of $\mathbf{1 0 a}$.
One of the amidinate ligands (N1-C1-N2) in 10a coordinates to two phosphorus atoms via a $\mu_{2}-\eta^{1}-\eta^{1}$ coordination mode whilst the second ligand binds in a $\mu_{2}-\eta^{0}-\eta^{2}$ monodentate fashion such that a single nitrogen centre (N3) is bonded to the two different phosphorus atoms. Both phosphorus atoms possess distorted trigonalpyramidal geometries; the sum of bond angles around phosphorus are 310.1° and 302.3° for P1 and P2 respectively, and comparable to other $\mathrm{N}-\mathrm{P}(\mathrm{R})-\mathrm{N}$ fragments in cyclic structures. ${ }^{51}$

The DFT optimised geometry of 10a, performed at the M062X/6-311g(d,p) level of theory, is in good agreement with the experimental crystallographic data. Whilst the calculated and experimental C-N bond lengths show excellent correlation, the P-N bond lengths are typically overestimated (Table 5.2.1.1). The Mayer bond indices are consistent with the assignment of single and double bonds within the structure.

	Bond Lengths / A Experimental		Bond Index Calculated
Mayer			
C1-N1	$1.281(3)$	1.275	1.834
C1-N2	$1.422(2)$	1.412	0.965
N1-P1	$1.679(2)$	1.694	1.009
N2-P2	$1.723(2)$	1.740	0.890
N3-P1	$1.765(2)$	1.779	0.774
N3-P2	$1.729(2)$	1.744	0.846
N3-C2	$1.399(2)$	1.397	0.999
C2-N4	$1.279(2)$	1.279	1.784

Table 5.2.1.1: Selected experimental and calculated bond lengths, and Mayer bond indices for 10a.

5.2.2-N-3-Dimethylaminophenyl-benzamidine

When the electron-rich N-arylamidine $\mathbf{1 r}$ was treated with PhPCl_{2} under identical conditions, no evidence of the six-membered heterocycle $\mathbf{1 0 r}$ was observed. Instead, the ${ }^{31} \mathrm{P}$ NMR spectrum exhibited a major pair of doublets at $\delta+52.2$ and +10.2 ppm ${ }^{1}{ }^{1}{ }_{P-P}=245.1 \mathrm{~Hz}$), a minor pair of doublets at $\delta+56.8$ and $+21.4 \mathrm{ppm}\left({ }^{1} J_{P-P}=232.6 \mathrm{~Hz}\right)$, and other minor species. Initial attempts to grow crystals of these unknown species were unsuccessful and repeatedly gave crystals of the fused-ring 1,2,4benzophosphadiazine 19r. Subsequent NMR scale experiments showed that this species converts through to $\mathbf{1 9 r}$ ($\delta-0.1 \mathrm{ppm}$) over the space of three days in solution at ambient temperature, and within 1 hour at $100{ }^{\circ} \mathrm{C}$ in PhCl (Figure 5.2.2.1). The disappearance of both pairs of doublets to form a single product 19 r initially suggested that these species may be conformational isomers, whilst later experiments instead suggested that the minor species was a protonated analogue (vide infra).

Figure 5.2.2.1: ${ }^{31} \mathrm{P}$ NMR spectra showing conversion through to the neutral 1,2,4-
benzophosphadiazine 19r.

Poor quality crystals of the unknown species, grown from a saturated toluene solution at $-20^{\circ} \mathrm{C}$, revealed the formation of the pseudo-bicyclic species 24 r . An overall scheme for the reaction of $\mathbf{1 r}$ with PhPCl_{2} is shown in Scheme 5.2.2.1.

Scheme 5.2.2.1: Reaction of electron-rich N-arylamidine $1 \mathbf{r}$ with PhPCl_{2}.
Compound 24 r crystallises as colourless plates in the triclinic space group $P \overline{1}$ with a single molecule in the asymmetric unit (Figure 5.2.2.2). The structure features a fivemembered $\mathrm{P}_{2} \mathrm{CN}_{2}$ ring, in which both nitrogen atoms (N 1 and N 2) adopt a $\mu_{2}-\eta^{1}-\eta^{1}$ coordination mode, with a second amidinate fragment tethering from P1 in a η^{1} monodentate fashion at N3. There are additional long contacts between N4‥P2 and $\mathrm{N} 4 \cdots \mathrm{P} 1$ at $2.89(3) \AA$ and $2.69(3) \AA$ respectively, within the sum of the van der Waals
radii. ${ }^{52}$ The P-phenyl rings again adopt a cis-conformation, whilst the P1-P2 bond length is typical of P-P single bonds at $2.22(1) \AA .{ }^{\circ} 50$

Figure 5.2.2.2: Crystal structure of $\mathbf{2 4 r}$.
The DFT optimised geometry is in good agreement with the experimental structure (Table 5.2.2.1) and replicates the connectivity and overall conformation of 24r. The Mayer bond indices indicate that there is double-bond character delocalised across the tethered P1-N3-C2-N4 fragment and suggests that the N2-P2 and P1-P2 bonds are relatively weak (bond order <1) such that P1 has a total bond order of 4.39 compared to P 2 at 2.78 . The $\mathrm{N} 4 \cdots \mathrm{P} 2$ and $\mathrm{N} 4 \cdots \mathrm{P} 1$ contacts are calculated to be longer than observed experimentally but still show small but significant $\mathrm{N}-\mathrm{P} \sigma$-bond character despite both N-P-C Phenyl angles deviating from linearity (experimental: $161.9(1)^{\circ}$ / $162.8(1)^{\circ}$; calculated: $157.6^{\circ} / 162.2^{\circ}$ for $\mathrm{N} 4 \cdots \mathrm{P} 2-\mathrm{C}_{\text {Phenyl }}$ and $\mathrm{N} 4 \cdots \mathrm{P} 1-\mathrm{C}_{\text {Phenyl }}$ respectively).

	Bond Lengths / \AA		Bond Index
	Experimental	Calculated	Mayer
C1-N1	$1.33(4)$	1.300	1.708
C1-N2	$1.43(4)$	1.372	1.103
N1-P1	$1.75(4)$	1.676	1.079
N2-P2	$1.74(4)$	1.765	0.853
P1-P2	$2.22(1)$	2.242	0.807
P1-N3	$1.63(3)$	1.610	1.356
N3-C2	$1.25(5)$	1.362	1.342
C2-N4	$1.30(4)$	1.299	1.598
N4…P1	$2.69(3)$	2.761	0.059
N4‥P2	$2.89(3)$	2.985	0.058

Table 5.2.2.1: Selected experimental and calculated bond lengths, and Mayer bond indices for $\mathbf{2 4 r}$.

The HOMO and HOMO - 1 of $\mathbf{2 4 r}$ are both delocalised over the electron-rich aryl rings, with significant electron density (22.8% and 17.8% respectively) at the positions para to the NMe_{2} groups (Figure 5.2.2.3). This indicates that these positions are likely to be nucleophilic and supports the facile transformation to give the fused ring 1,2,4benzophosphadiazine 19r.

b)

Figure 5.2.2.3: Highest occupied molecular orbitals and energies for 24r: a) HOMO; b) HOMO - 1 (isovalue $=0.05$).
In contrast, the LUMO is delocalised across the $\mathrm{P}_{2} \mathrm{CN}_{2}$ heterocyclic ring whilst the LUMO +1 corresponds to a P2-P1 antibonding interaction (Figure 5.2.2.4)

Figure 5.2.2.4: Lowest unoccupied molecular orbitals and energies for 24r: a) LUMO +1 ; b) LUMO (isovalue $=0.05$) .

5.2.3 - N-3-Methoxyphenyl-benzamidine

The reaction of the less electron-rich N-arylamidine $1 f$ with PhPCl_{2} under mild conditions (Scheme 5.2.3.1) gave $\mathbf{2 4 f}$ as the major product with ca. 10% of $\mathbf{1 0 f}$ after 1 hour. The ratio of $\mathbf{2 4 f}$ to $\mathbf{1 0 f}$ decreases over time, with approximately 45% of the sixmembered heterocycle after 24 hours, increasing up to 57% after 48 hours. This indicates that $\mathbf{2 4 f}$ is in fact the initial product and that conversion through to either the six-membered heterocycle $\mathbf{1 0 f}$ or the corresponding fused-ring 1,2,4benzophosphadiazine 19 f is largely dependent on the C -nucleophilicity of N -aryl ring.

Scheme 5.2.3.1: Reaction of $1 f$ with PhPCl_{2} and the ${ }^{31} \mathrm{P}$ NMR chemical shifts of the products.

The percentage of $\mathbf{1 0 f}$ ceased at approximately 60% after 5 days and heating the reaction mixture at this stage was found to have no effect on the product distribution. However, if the reaction mixture was heated at reflux shortly after addition of PhPCl_{2}, the formation of the fused-ring 1,2,4-benzophosphadiazine was observed, giving two multiplets at $\delta-2.0$ at -13.1 ppm as the major species, assigned as the two possible isomers, 19 f and $\mathbf{1 9 f}^{\prime}$ (Figure 5.2.3.1).

19f
${ }^{31} \mathrm{P}$ NMR
δ (ppm)

Major Isomer
$-2.0\left(\mathrm{~m},{ }^{2} J_{P-H}=32.5 \mathrm{~Hz}\right)$

19f'
Minor Isomer
$-13.1\left(\mathrm{~m},{ }^{2} J_{P-H}=32.5 \mathrm{~Hz}\right)$

Figure 5.2.3.1: Isomeric 1,2,4-benzophosphadiazines derived from $1 \mathbf{f}$.

After 24 hours of heating, four major species were present by ${ }^{31} \mathrm{P}$ NMR spectroscopy: $24 f(\approx 50 \%$ by integration), $\mathbf{1 0 f}(\approx 22 \%), \mathbf{1 9 f}(\approx 10 \%$) and 19f ($\approx 3 \%$). After 5 days, $24 f$ had fully converted to give $\mathbf{1 9 f}(\approx 45 \%$) and $\mathbf{1 9 f}$ ($\approx 13.5 \%$), amongst other unidentified minor species. The amount of $\mathbf{1 0 f}$ decreased to $\approx 16 \%$, but this is believed to be due to decomposition rather than conversion/rearrangement to give $\mathbf{1 9 f}$ and $\mathbf{1 9 f}^{\prime}$.

These results confirm that $\mathbf{2 4}$ is the initial product in the reaction of N-arylamidines with PhPCl_{2} in the presence of $\mathrm{Et}_{3} \mathrm{~N}$. For electron-poor N-arylamidines such as 1a, this species is not observed and 24a is believed to rapidly convert through to give the sixmembered $\mathrm{P}_{2} \mathrm{CN}_{3}$ heterocycle 10a, with no evidence of 19 a . In contrast, $\mathbf{2 4 r}$ can be isolated for the electron-rich N-arylamidine $\mathbf{1 r}$ and converts through to give the fusedring 1,2,4-benzophosphadiazine $\mathbf{1 9 r}$, but no evidence of $\mathbf{1 0 r}$ is observed. For the moderately electron-rich N-arylamidine $\mathbf{1 f}$, the distribution of products can be driven by changing the reaction conditions, but no single species could be isolated.

Proposed pathways for the formation of $\mathbf{1 0}$ and 19 from 24 are shown in Scheme 5.2.3.2; unisolated, tentatively postulated intermediates are shown in square brackets. Compound 24 rapidly forms from the reaction of N-arylamidines with PhPCl_{2} in the presence of $\mathrm{Et}_{3} \mathrm{~N}$, and no other species are observed by ${ }^{31} \mathrm{P}$ NMR prior to this. For the six-membered $\mathrm{P}_{2} \mathrm{CN}_{3}$ heterocycle $\mathbf{1 0}$ to form, the P-P bond in $\mathbf{2 4}$ must break whilst the tethered amidine decoordinates from phosphorus, followed by P-N bond formation (Pathway A). In contrast, for the fused-ring heterocycle 19 to form, 24 is proposed to rearrange to give a symmetrical dimeric intermediate, which then potentially splits to give monomeric four-membered heterocyclic intermediates, that undergo cyclisation followed by proton migration to give the 1,2,4-benzophosphadiazine 19r (Pathway B). No interconversion between 19 and 10 was observed, and extended heating resulted only in slow decomposition of both species.

Scheme 5.2.3.2: Proposed pathway for the conversion of $\mathbf{2 4}$ into $\mathbf{1 0}$ or $\mathbf{1 9}$.
A geometry optimisation of $\mathbf{2 4 a}$ was performed to further probe the differing pathways observed for electron-poor and electron-rich N-arylamidines. Although the structural parameters and conformation are essentially identical to 24r, the HOMO and HOMO -1 are localised heavily on the heteroatoms (Figure 5.2.3.2) and not on the N-aryl rings as calculated for 24r. This suggests that the nitrogen and phosphorus atoms of 24a, particularly N3, N4 and P2, are much stronger nucleophiles compared to the aromatic carbon, and this is likely to be the origin of the formation of $\mathbf{1 0 a}$ in which a new P-N bond is formed. In addition, 10a is calculated to be lower in energy than 24a by 9.60 $\mathrm{kcal}^{\mathrm{mol}}{ }^{-1}$ whilst 19a (not observed) is calculated to be less favourable than 10a by $3.50 \mathrm{kcal} \mathrm{mol}^{-1}$. In contrast, $\mathbf{1 9 r}$ is lower in energy than $\mathbf{2 4 r}$ by $5.87 \mathrm{kcal} \mathrm{mol}^{-1}$ whilst $\mathbf{1 0 r}$ (not observed) is calculated to be less favourable than $\mathbf{1 9 r}$ by $1.57 \mathrm{kcal} \mathrm{mol}^{-1}$.
a)

b)

Figure 5.2.2.3: Highest occupied molecular orbitals and energies for 24r: a) HOMO; b) HOMO -1 (isovalue $=0.05$).

5.2.4-N-4-Chlorophenyl-benzamidine

In light of these results, we decided to test other substituted N-arylamidines to probe which other factors influence whether the six-membered $\mathrm{P}_{2} \mathrm{CN}_{3}$ heterocycle or fusedring 1,2,4-benzophosphadiazine is formed. The electron-poor N - 4 -chlorophenylbenzamidine $\mathbf{1 u}$ gave a mixture of both $\mathbf{1 0 u}$ and $\mathbf{2 4 u}(\approx 60: 40$ ratio by integration of ${ }^{31} \mathrm{P}$ NMR chemical shifts), suggesting that the steric bulk of the N-aryl ring decreases the rate of conversion of $\mathbf{2 4} \mathbf{u}$ to $\mathbf{1 0} \mathbf{u}$; formation of $\mathbf{1 0 a}$ is rapid for the unsubstituted and less electron-poor N-phenylbenzamidine 1a. A single species could not obtained, however single crystals of $\mathbf{1 0 u}$ suitable for X-ray diffraction were isolated during attempted recrystallisations from DCM and hexane.

Compound 10u crystallises as colourless blocks in the triclinic space group $P \overline{1}$ with a single molecule of $\mathbf{1 0 u}$ and DCM in the asymmetric unit (Figure 5.2.4.1). The bond metrics are identical within errors to the isostructural 10a, with the $\mathrm{P}_{2} \mathrm{CN}_{3}$ heterocyclic ring adopting a distorted envelope conformation, folded along the P2 $\cdots \mathrm{N} 1$ axis by 36.2°, with the two P-phenyl rings in a cis-orientation.

Figure 5.2.4.1: Crystal structure of $\mathbf{1 0 u}$. Solvents of crystallisation omitted for clarity.

5.2.5-N-2,6-Diisopropylphenyl-benzamidine

Following this, we investigated the reaction of the bulky N-2,6-diisopropylphenylbenzamidine $\mathbf{1 t}$ with PhPCl_{2} and $\mathrm{Et}_{3} \mathrm{~N}$ (Scheme 5.2.5.1). The presence of iso-propyl groups at both positions ortho to the N-aryl nitrogen however prevents the formation of the fused-ring 1,2,4-benzophosphadiazine. After 1 hour, peaks in the ${ }^{31} \mathrm{P}$ NMR spectrum consistent with $\mathbf{1 0 t}$ were observed at $\delta+52.8$ and +41.8 ppm , together with a second pair of singlets of equal intensity at $\delta+76.9$ and +54.6 ppm , along with several unidentified minor pairs of doublets (i.e. P-P coupled species). No change in the product distribution was observed on further stirring at room temperature, but heating the reaction mixture at $100^{\circ} \mathrm{C}$ resulted in complete loss of the signals at $\delta+$ 76.9 and +54.6 ppm , and conversion through to $\mathbf{1 0 t}$. It is therefore postulated that the former species is an intermediate along pathway A (see Scheme 5.2.3.2) despite not being observed for other systems. Attempts to isolate this species however were unsuccessful and a single product could not be obtained.

Scheme 5.2.5.1: Reaction of $\mathbf{1 t}$ with PhPCl_{2}.

5.2.6 - N-tert-Butyl-benzamidine

The reaction of the alkyl-substituted N-tert-butyl-benzamidine 1s with PhPCl_{2} under standard conditions (Scheme 5.2.6.1) was also performed to further examine the effect of N-substituents on the product distribution. This gave clean and rapid formation of the six-membered $\mathrm{P}_{2} \mathrm{CN}_{3}$ heterocycle 10 s with no evidence of $\mathbf{2 4 s}$ or additional species by ${ }^{31} \mathrm{P}$ NMR. Compound 10 s exhibits a pair of doublets in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum at $\delta+43.1$ and +38.6 ppm with ${ }^{2} J_{P-P}=11.4 \mathrm{~Hz}$; this is marginally upfield shifted compared to 10 a which gives two singlets at $\delta+54.2$ and +39.1 ppm .

Scheme 5.2.6.1: Reaction of $1 \mathbf{s}$ with PhPCl_{2}.
Compound 10s crystallises as pale yellow blocks in the monoclinic space group $P 2_{1} / n$ with a single molecule in the asymmetric unit (Figure 5.2.6.1). The overall conformation of $\mathbf{1 0 s}$ is essentially identical to $\mathbf{1 0 a}$ and 10 u but the bond lengths within the heterocyclic ring are marginally longer, and the fold angle along the $\mathrm{N} 1 \cdots \mathrm{P} 2$ axis is slightly more obtuse at 37.3°.

Figure 5.2.6.1: Crystal structure of 10s.

5.2.7 - The Influence of Base

In Chapter 4, the synthesis of 1,2,4-benzophosphadiazines from electron-rich N arylamidines and N, N^{\prime}-diarylureas under mild conditions was investigated. During these studies, it was evident that the use of a mild base was a key factor in forming the fused-ring heterocycle, since stronger bases favoured the formation of undesired $\mathrm{P}-\mathrm{N}$
heterocycles. This was particularly emphasised for the electron-rich N, N^{\prime}-diarylurea $\mathbf{1 6 r}$ which gives the $1,2,4$-benzophosphadiazine $\mathbf{1 7 r}$ when pyridine is employed as the base and solvent, or the four-membered 1,3,2-diazophosphetine 18r (vide infra) when the reaction is performed in THF with $\mathrm{Et}_{3} \mathrm{~N}$ (Scheme 5.2.7.1).

Scheme 5.2.7.1: Influence of base strength on the reaction of electron-rich N, N^{\prime} diarylurea $16 \mathbf{r}$ with PhPCl_{2}.
When N-phenylbenzamidine 1a was treated with PhPCl_{2} in neat pyridine at $0{ }^{\circ} \mathrm{C}$, two major species were observed by ${ }^{31} \mathrm{P}$ NMR which both gave broad pairs of doublets at δ +53.7 and $+20.9 \mathrm{ppm}\left({ }^{1} J_{P-P}=257.7 \mathrm{~Hz}\right)$, and at $\delta+45.3$ and $+22.5 \mathrm{ppm}\left({ }^{1} J_{P-P}=255.2\right.$ Hz). These peaks are similar to but inconsistent with 24a and are instead proposed to be protonated analogues based on earlier studies which showed that pyridine is insufficiently basic to deprotonate $\mathbf{1 9 . H C l}$; the poor solubility of these unknown species in toluene and THF further supports this. No change in product distribution was observed on prolonged stirring at room temperature, whereas the addition of $\mathrm{Et}_{3} \mathrm{~N}$ cleanly gave 10a.

In contrast, heating the reaction mixture (without $\mathrm{Et}_{3} \mathrm{~N}$) at $100^{\circ} \mathrm{C}$ for two hours gave a new roofed pair of doublets at $\delta+56.9$ and $+55.1\left({ }^{1} J_{P-P}=225.1 \mathrm{~Hz}\right)$ as the major species with concomitant loss of signals corresponding to the earlier species. Attempts to isolate and identify this new species were unsuccessful. Further heating gave an approximately equal mixture of $[\mathrm{PhP}]_{n}$ species and a multiplet at $\delta+2.9 \mathrm{ppm}$ in the ${ }^{31} \mathrm{P}$ NMR spectrum. The latter species is believed to be the protonated fused-ring 1,2,4benzophosphadiazine 19a.HCl, implying that the intermediates undergo some form of sacrificial redox ring-closing step. Similar behaviour was also observed for $\mathrm{N}-3-$ methoxyphenyl-benzamidine $\mathbf{1 f}$. The electron-rich N-3-dimethylaminophenylbenzamidine $1 \mathbf{r}$ on the other hand, cleanly gave the protonated fused-ring 1,2,4benzophosphadiazine $19 r . \mathrm{HCl}$ but could not be separated from the pyridinium hydrochloride. This prompted us to use $\mathrm{K}_{2} \mathrm{CO}_{3}$ as the base and allowed 19 r . HCl to be isolated in high yields (see section 4.4.2.2).

The omission of base, by using the bis-silylated N-arylamidine 1a' supports the hypothesis that 24 a is the initial product prior to forming the six-membered
heterocycle 10a (Scheme 5.2.7.2). The bis-silylated N-arylamidine 1a' exists as a mixture of both tautomers in solution but crystallises as the N, N-disubstituted tautomer, analogous to the protio- N -arylamidines (See Supplementary Chapter 1). On addition of PhPCl_{2}, immediate formation of $\mathrm{Me}_{3} \mathrm{SiCl}$ was observed by ${ }^{1} \mathrm{H}$ and ${ }^{29} \mathrm{Si}$ NMR spectroscopy, and the ${ }^{31} \mathrm{P}$ NMR spectrum displays signals corresponding to $\mathbf{2 4 a}$ (\approx 60% by integration) and 10a ($\approx 30 \%$), as well as several minor peaks (Figure 5.2.7.1). Surprisingly, the product distribution did not change significantly on standing at room temperature despite the earlier assumption that 24a was rapidly converted through to 10 a and hence could not be observed. Heating the reaction mixture at $60^{\circ} \mathrm{C}$ did however result in slow conversion of 24a into 10a as expected.

Scheme 5.2.7.2: Reaction of bis-silylated N-phenylbenzamidine 1 a ' with PhPCl_{2}.

Figure 5.2.7.1: ${ }^{31} \mathrm{P}$ NMR spectrum showing the distribution of products from the reaction of $\mathbf{1 a} \mathbf{a}^{\prime}$ with PhPCl_{2}.

The significantly slower rate of conversion of $24 a$ to 10 a observed under these conditions suggests that proton transfer plays a critical role in the rearrangement. This requires that the basicity of the N-arylamidine or intermediate phosphino-amidine species such as $\mathbf{2 4 a}$ is comparable to the base employed in the reaction. Indeed, substituted amidines such as DBU have a similar $p K_{a H}$ to $\mathrm{Et}_{3} \mathrm{~N}$ (cf. 12.0 vs. 10.8 respectively). This supports the observation that 10 does not form when weaker bases such as pyridine ($p K_{a H}=5.2$) are employed, as well as $\mathrm{K}_{2} \mathrm{CO}_{3}$ where the $p K_{a}$ of $\mathrm{H}_{2} \mathrm{O}$ is significantly higher at 15.7. For reactions with NaH , the evolution of H_{2} means that proton transfer is not possible under those conditions.

A proposed pathway for the conversion of $\mathbf{2 4 a}$ to $\mathbf{1 0 a}$ is shown in Scheme 5.7.2.3. The additional peaks in the ${ }^{31} \mathrm{P}$ NMR spectrum (see Figure 5.2.7.1) were observed on a number of occasions during the reactions of substituted N-arylamidines with PhPCl_{2} in the presence of $E t_{3} \mathrm{~N}$. The minor pair of doublets at $\delta+57.7$ and $+22.2 \mathrm{ppm}\left({ }^{1} J_{P-P}=\right.$ 232.6 Hz) were initially attributed to a conformational isomer of 24a, which results from the orientation of the substituted N-aryl ring (i.e. for $\mathbf{1 f}$ and $\mathbf{1 r}$). However, the appearance of these doublets when amidines with symmetrical or unsubstituted N-aryl rings were employed suggested that it was instead a protonated derivative of 24a, assigned as $\mathbf{2 4 a} \mathbf{H C l}$, resulting from proton transfer from $\left[\mathrm{Et}_{3} \mathrm{NH}\right] \mathrm{Cl}$ to 24a. This species is believed to rearrange to give the protonated six-membered heterocycle 10a. $\mathbf{H C l}$ which is then deprotonated by $\mathrm{Et}_{3} \mathrm{~N}$ to give 10a.

Scheme 5.2.7.3: Proposed scheme for the conversion of $\mathbf{2 4 a}$ to $\mathbf{1 0 a}$, including ${ }^{31} \mathrm{P}$ NMR chemical shifts for the intermediates.

This process is rapid for the reaction of N-phenylbenzamidine 1 a with PhPCl_{2} in the presence of $\mathrm{Et}_{3} \mathrm{~N}$, and intermediate species, including 24a, cannot be observed by ${ }^{31} \mathrm{P}$ NMR spectroscopy. In contrast, the rearrangement of $\mathbf{2 4 a}$ to $\mathbf{1 0 a}$ is significantly slower but still observed for the bis-silylated N-arylamidine 1a' in the absence of base, suggesting that X can be either H or SiMe_{3} - the latter resulting from reversible N silylation. The quantity of the two proposed intermediates is minor at any given time
(ca. < 5%) and there is limited information in the ${ }^{1} \mathrm{H}$ and ${ }^{29} \mathrm{Si}$ NMR spectra to aid in their assignment. The position of the N-silylation or protonation in intermediates \mathbf{C} and D were assigned based on the relative chemical shifts in the ${ }^{31} \mathrm{P}$ NMR spectrum. The protonated/silylated analogues 24a.XCl and 10a.XCl are downfield shifted compared to the neutral species, consistent with deshielding due to the removal of electron density from the phosphorus centres.

5.3 - Reactions of N-Arylamidines with $\mathrm{N}^{i} \mathrm{Pr}_{2} \mathrm{PCl}_{2}$

The reaction of N -arylamidines with the less electrophilic amido-substituted phosphine $\mathrm{N} i \mathrm{Pr}_{2} \mathrm{PCl}_{2}$ was also investigated to further understand the factors affecting product distribution. The treatment of N-phenylbenzamidine $1 \mathbf{1 a}$ with $\mathrm{N}^{i} \mathrm{Pr}_{2} \mathrm{PCl}_{2}$ in the presence of $E t_{3} \mathrm{~N}$ (Scheme 5.3.1) gave a mixture of products including 24a* and 10a* as minor species; these are downfield shifted compared to the P-phenyl analogues. The other unidentified species, primarily consisting of a broad peak at $\delta+144.0 \mathrm{ppm}$ in the ${ }^{31} \mathrm{P}$ NMR spectrum, are believed to arise through the cleavage of the $\mathrm{P}-\mathrm{N}^{i} \operatorname{Pr}_{2}$ bond which results from the HCl generated from the formation of other, more favourable $\mathrm{P}-\mathrm{N}_{\text {amidine }}$ bonds. This leads to reactive $\mathrm{P}-\mathrm{Cl}$ fragments in the presence of nucleophilic $\mathrm{N}-\mathrm{H}$ moieties and may lead to polymeric materials.

Scheme 5.3.1: Reaction of N-phenylbenzamidine 1a with $\mathrm{N}^{i} \mathrm{Pr}_{2} \mathrm{PCl}_{2}$.

In contrast, when the reaction is performed with the electron-rich N-arylamidine $\mathbf{1 r}$, the major product is the fused ring 1,2,4-benzophosphadiazine 19r*, with minor quantities of 24r* (Scheme 5.3.2). Attempts to isolate 19r* and remove residual 24r* were however unsuccessful.

Scheme 5.3.2: Reaction of electron-rich N-arylbenzamidine $\mathbf{1 r}$ with $\mathrm{N}^{i} \mathrm{Pr}_{2} \mathrm{PCl}_{2}$.
The cleavage of $\mathrm{P}-\mathrm{N}^{i} \operatorname{Pr}_{2}$ bonds observed during the reaction of $\mathbf{1 a}$ with $\mathrm{N}^{i} \operatorname{Pr}_{2} \mathrm{PCl}_{2}$ is consistent with the proposed proton-transfer mediated rearrangement of 24 to 10. The clean reactivity of the electron-rich N-arylamidine $1 \mathbf{r}$ with $\mathrm{N}^{i} \mathrm{Pr}_{2} \mathrm{PCl}_{2}$, and lack of degradation products compared to 1a, suggests that the rearrangement of 24 to 19 does not involve proton-transfer. No intermediate species were observed by ${ }^{31} \mathrm{P}$ NMR spectroscopy however, and the true mechanism for this rearrangement is unknown.

5.4 - Reactions of N-Arylamidines with Phosphorus Trihalides

5.4.1 - Phosphorus Trichloride

Initial reactions of N-arylamidines with PCl_{3}, either neat or stoichiometrically in the presence of a range of bases and solvents, repeatedly gave intractable and insoluble materials believed to be polymeric in nature (see section 4.2.2). In light of the findings discussed in section 5.2, we decided to reinvestigate the reactions of N -arylamidines with PCl_{3} under mild conditions.

The treatment of N-phenylbenzamidine $1 \mathbf{1 a}$ with PCl_{3} under standard conditions (THF, $\mathrm{Et}_{3} \mathrm{~N}, 0{ }^{\circ} \mathrm{C}$) gave several P-P coupled species by ${ }^{31} \mathrm{P}$ NMR (Figure 5.4.1.1). The major species (A, red boxes) exhibited a pair of doublets at $\delta+79.2$ and $+33.5 \mathrm{ppm}\left({ }^{1} J_{P-P}=\right.$ 245.1 Hz); accurate coupling constants could not be measured for the broad doublet at $\delta+79.2 \mathrm{ppm}$, but the relative integrals of this doublet and the sharper doublet at $\delta+$ 33.5 ppm was approximately $1: 1$ on a number of occasions (repeated reactions, multiple recrystallisations, etc.) suggesting that these two doublets were correlated. The next major species (B, blue boxes) exhibited a pair of sharp doublets in the ${ }^{31} \mathrm{P}$ NMR spectrum at $\delta+73.6$ and $+24.8 \mathrm{ppm}\left({ }^{1} J_{P-P}=192.6 \mathrm{~Hz}\right)$. A minor pair of doublets of triplets (C, green asterisks) was also observed at $\delta+74.5$ and $+28.5 \mathrm{ppm}\left({ }^{1} J_{P-P}=192.6\right.$ $\mathrm{Hz},{ }^{2} J_{P-P}=15.0,17.5 \mathrm{~Hz}$), together with a singlet (D, orange box) at $\delta+18.7 \mathrm{ppm}$.

Figure 5.4.1.1: ${ }^{31} \mathrm{P}$ NMR spectrum showing the major species from the reaction of N phenylbenzamidine 1a with PCl_{3}.

Heating the reaction mixture resulted in a decrease in intensity for the signals assigned to species \mathbf{A} and \mathbf{D} and a concomitant increase in intensity for species \mathbf{B} and \mathbf{C}. In contrast, performing the reaction at $-95^{\circ} \mathrm{C}$ gave species \mathbf{B} as the major species (ca. 46 \% by integration) with an equal amount of species A and D (ca. 27 \% each). Attempts to isolate and identify any of these species by repeated recrystallisations were unsuccessful.

5.4.2 - Phosphorus Tribromide

Having established that the electrophilicity of the phosphine was also a significant factor in determining which product was formed, we tested the reactions of N arylamidines with PBr_{3} under mild conditions. Unlike the reaction of N phenylbenzamidine 1a with PCl_{3} which gave a mixture of unidentified products, the treatment of 1a with PBr_{3} in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ afforded the pseudo-spirotricyclic cationic species 25a.Br (Scheme 5.4.2.1). Whilst no evidence of $\mathbf{2 5 a} \mathbf{C l}$ was observed when PCl_{3} was used, a minor pair of doublets in the ${ }^{31} \mathrm{P}$ NMR spectrum at $\delta+73.5$ and + $24.7{ }^{1} J_{P-P}=192.6 \mathrm{~Hz}$) consistent with species \mathbf{B} (see Figure 5.4.1.1) was present when PBr_{3} was used, suggesting that a P-P coupled species related to 24 may form prior to or after 25.X.

Scheme 5.4.2.1: Reaction of N-phenylbenzamidine 1a with PBr_{3} under mild conditions.

Compound 25a.Br crystallises as pale yellow blocks in the monoclinic space group $P 2_{1} / n$ with a single ion pair and a single molecule of DCM in the asymmetric unit (Figure 5.4.2.1). The structure is reminiscent of both $\mathbf{1 0 a}$ and $\mathbf{2 4 r}$ and features a fivemembered $\mathrm{P}_{2} \mathrm{CN}_{2}$ ring, in which both nitrogen atoms (N 1 and N 2) adopt a $\mu_{2}-\eta^{1}-\eta^{1}$ coordination mode. The N3 atom of the second amidinate fragment is bonded to two different phosphorus atoms, P1 and P3, in a $\mu_{2}-\eta^{2}$ monodentate fashion whilst N4 exhibits a close contact to P2 of $2.440(2) \AA$ with a N4…P4-Br1 angle of $163.5(6)^{\circ}$. A third amidinate fragment (N5-C3-N6) coordinates to P1 and P3 in a $\mu_{2}-\eta^{1}-\eta^{1}$ fashion to form a six-membered $\mathrm{P}_{2} \mathrm{CN}_{3}$ ring. The $\mathrm{P}_{2} \mathrm{CN}_{2}$ ring is planar whilst the $\mathrm{P}_{2} \mathrm{CN}_{3}$ ring adopts a distorted envelope conformation, folded along the P3 $\cdots \mathrm{N} 5$ axis by 26.1°; the two heterocyclic rings are spirocyclic at P1 and twisted by 87.4° (deviation of mean planes). The bromide counterion (Br3) weakly coordinates to P2 with a distance of 3.083(7) \AA, well within the sum of van der Waals radii ($3.73 \AA$) , and a N2-P2 \cdots Br3 angle of $161.6(7)^{\circ}$.

Figure 5.4.2.1: Crystal structure of 25a.Br. Counterion and solvents of crystallisation omitted for clarity

The DFT optimised geometry of $\mathbf{2 5 a . B r}$ is in excellent agreement with the experimental crystal structure (Table 5.4.2.1). The positive charge is largely localised on P 1 to give a λ^{4}-phosphonium species with additional charge density on P2 and P3. The $\mathrm{N} 4 \cdots \mathrm{P} 2$ contact exhibits significant $\mathrm{N}-\mathrm{P} \sigma$-bond character (bond order $=0.175$) suggesting that the P1-P2 bond may be better represented as a phosphane-stabilised phosphenium given the observed electrophilic nature of P 2 .

	Bond Lengths / A		Bond Index
	Experimental Calculated	Mayer	
C1-N1	$1.319(3)$	1.309	1.651
C1-N2	$1.368(3)$	1.374	1.110
N1-P1	$1.628(2)$	1.635	1.189
N2-P2	$1.777(2)$	1.759	0.873
P1-P2	$2.210(9)$	2.230	0.777
P2-Br1	$2.316(7)$	2.368	0.742
P1-N3	$1.693(2)$	1.707	0.825
C2-N3	$1.406(3)$	1.409	0.954
C2-N4	$1.269(3)$	1.275	1.647
P1-N5	$1.610(2)$	1.611	1.212
P3-N3	$1.723(2)$	1.738	0.844
P3-N6	$1.729(2)$	1.744	0.870
P3-Br2	$2.256(6)$	2.271	0.974
C3-N5	$1.299(3)$	1.302	1.677
C3-N6	$1.377(3)$	1.377	1.058
N4‥P2	$2.440(2)$	2.362	0.175

Table 5.4.2.1: Selected experimental and calculated bond lengths and Mayer bond indices for 25a.Br.

The highest occupied molecular orbital (HOMO) of $\mathbf{2 5 a} \mathbf{~ B r}$ is largely ligand based and delocalised across the C1 and N2 phenyl groups (Figure 5.4.2.2). The HOMO -1 on the other hand corresponds to an $\mathrm{N} 4 \cdots \mathrm{P} 4-\mathrm{Br} 1$ anti-bonding interaction and a π-bonding orbital on the N3-phenyl ring.
a)

b) HOMO -1

Figure 5.4.2.2: Highest occupied molecular orbitals and energies for 25a.Br: a) HOMO;
b) HOMO -1 (isovalue $=0.05$).

The lowest unoccupied molecular orbital (LUMO) is delocalised across the $\mathrm{P}_{2} \mathrm{CN}_{3}$ ring and corresponds to a π-bonding orbital and a $\mathrm{P} 3-\mathrm{Br} 2$ anti-bonding interaction (Figure 5.4.2.3). The LUMO +1 is a π-bonding orbital delocalised across N1-P1-P2-N2 of the $\mathrm{P}_{2} \mathrm{CN}_{2}$ five-membered heterocyclic ring, with nodes at $\mathrm{C} 1-\mathrm{N} 1$ and $\mathrm{C} 1-\mathrm{N} 2$, and another $\mathrm{P} 2-\mathrm{Br} 1$ anti-bonding interaction.

b) LUMO

Figure 5.4.2.3: Lowest unoccupied molecular orbitals and energies for $\mathbf{2 5 a . B r}$: a)
LUMO; b) LUMO +1 (isovalue = 0.05).

When the reaction of $\mathbf{1 a}$ with PBr_{3} in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ was repeated at $75{ }^{\circ} \mathrm{C}$, 25a.Br was fully consumed and two new P-P coupled species were formed and
observed by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (Figure 5.4.2.4). The major species (F, red dots) exhibits a pair of doublets of triplets resulting from direct ${ }^{1} J_{P 1-P 2}$ coupling together with two additional ${ }^{2} J_{P 1-P 2}$ couplings, whilst the minor species (\mathbf{G}, blue asterisks) exhibits a pair of doublets with direct ${ }^{1} J_{P 1-P 2}$ coupling only. Similar species were observed during the reaction of 1a with PCl_{3} (see Figure 5.4.1.1), albeit in different ratios, indicating that 25a.Cl maybe the initial product but is too short-lived to be observed. The similarity of the chemical shifts of species \mathbf{F} and \mathbf{G} suggests that they are related, whilst the additional P-P coupling observed for species \mathbf{F} implies it may be dimeric or oligomeric in nature. Prolonged heating at $75^{\circ} \mathrm{C}$ or repeating the reaction at $110{ }^{\circ} \mathrm{C}$, converted species \mathbf{G} into \mathbf{F}, however, several minor peaks were also observed, likely due to product decomposition

Figure 5.4.2.4: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum from the reaction of N-phenylbenzamidine 1a with PBr_{3} in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ at $75^{\circ} \mathrm{C}$.

Despite extensive attempts and recrystallisations, single crystals suitable for X-ray diffraction studies could not be grown, and the identity of species \mathbf{F} remains unknown. ${ }^{1} \mathrm{H}$ NMR data provided limited information on the structure of \mathbf{F} whilst elemental analysis gave higher percentage values of carbon, nitrogen and hydrogen than expected (and calculated for 25a.Br), suggesting that bromine (in some form) is lost on heating. Further analysis, including mass spectrometry, is required to obtain further information on the identity of species \mathbf{F}.

When an isolated sample of 25a.Br was dissolved and heated at $100{ }^{\circ} \mathrm{C}$ in chlorobenzene, the solution rapidly darkened from pale yellow to deep orange and afforded large orange crystals on cooling. Single-crystal X-ray diffraction analysis revealed the formation of the six-membered heterocycle 26a (Scheme 5.4.2.2), which must result from the breaking and making of $\mathrm{C}-\mathrm{N}$ bonds.

Scheme 5.4.2.2: Thermal rearrangement of 25a.Br.
${ }^{31} \mathrm{P}$ NMR analysis of the supernatant indicated the presence of species \mathbf{F} as the major product remaining in solution, along with several other unidentified minor species. When the orange crystals of 26a were redissolved in DCM and analysed by ${ }^{31}$ P NMR, a major singlet was present at $\delta+54.6 \mathrm{ppm}$; this is significantly upfield shifted compared to a typical amido-dibromophosphine ($\left.\mathrm{N}_{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{PBr}_{2}=\delta+170.8 \mathrm{ppm}\right)^{53}$ and is consistent with the drastic change in geometry at phosphorus. A minor pair of doublets at $\delta+$ 159.6 and $+48.6 \mathrm{ppm}\left({ }^{2} J_{P-P}=57.5 \mathrm{~Hz}\right)$ were also observed. Neither of these two species were observed by ${ }^{31} \mathrm{P}$ NMR spectroscopy when 1a was heated with PBr_{3} in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ suggesting that proton-transfer again has a significant role in this rearrangement. In the presence of $\left[\mathrm{Et}_{3} \mathrm{NH}\right] \mathrm{Br}$, nucleophilic amidine nitrogens are expected to be sufficiently basic to deprotonate $\left[\mathrm{Et}_{3} \mathrm{NH}\right] \mathrm{Br}$; these intermediate species must then thermally rearrange to give species \mathbf{F} and \mathbf{G}. In the absence of acidic-protons, the nucleophilic amidine nitrogen instead attacks an electrophilic amidine carbon which ultimately results in C-N bond breaking and making to give 26a and species \mathbf{F} (species \mathbf{G} is rapidly converted to \mathbf{F} at elevated temperatures). Further insight into the mechanism involved would first require knowledge of the identities of species \mathbf{F} and \mathbf{G}.

Compound 26a crystallises as orange blocks in the monoclinic space group $P 2_{1} / n$ with a single molecule in the asymmetric unit (Figure 5.4.2.5). The $\mathrm{PC}_{2} \mathrm{~N}_{3}$ heterocyclic ring adopts a twisted conformation (13.2° twist angle) such that P1 and N3 lie in the mean plane whilst N1 and C2 lie slightly above the plane, and N2 and C1 sit slightly below the plane. The $\mathrm{Br} 1-\mathrm{P} 1-\mathrm{Br} 2$ angle is close to linear at $178.6(4)^{\circ}$ and is orthogonal to the plane of the heterocyclic ring; however, the $\mathrm{P} 1-\mathrm{Br} 1$ and $\mathrm{P} 1-\mathrm{Br} 2$ distances are
inequivalent at 2.676(1) Å and 2.464(1) \AA respectively, likely due to external packing forces. The phosphorus centre adopts a pseudo-distorted trigonal bypyramidal geometry; the $\mathrm{N} 1-\mathrm{P} 1-\mathrm{N} 2$ angle is $97.7(1)^{\circ}$ and the $\mathrm{N}-\mathrm{P}-\mathrm{Br}$ angles are close to 90° (range: 87.4(9)-94.1(9) ${ }^{\circ}$).
a)

b)

Figure 5.4.2.5: Crystal structure of 26a: a) Top-down view; b) Side view.
The DFT optimised geometry of 26a is in good agreement with the experimental crystal structure, and predicts C_{2} symmetry about the P1 $\cdots \mathrm{N} 3$ axis of the heterocyclic ring (Table 5.4.2.2). The Mayer bond indices show that the double-bond character is spread across the C1-N3-C2 backbone of the triazapentadienyl ligand, with partial double-bond character (bond order > 1) in the N1-C1 and N2-C2 bonds.

	Bond Lengths / A		Bond Index
	Experimental Calculated	Mayer	
$\mathrm{P} 1-\mathrm{Br} 1$	$2.676(1)$	2.605	0.547
$\mathrm{P} 1-\mathrm{Br} 2$	$2.464(1)$	2.607	0.545
$\mathrm{P} 1-\mathrm{N} 1$	$1.744(3)$	1.750	0.825
$\mathrm{P} 1-\mathrm{N} 2$	$1.736(3)$	1.749	0.825
$\mathrm{~N} 1-\mathrm{C} 1$	$1.358(4)$	1.345	1.164
$\mathrm{~N} 2-\mathrm{C} 2$	$1.340(4)$	1.345	1.163
$\mathrm{~N} 3-\mathrm{C} 1$	$1.326(4)$	1.321	1.484
$\mathrm{~N} 3-\mathrm{C} 2$	$1.328(4)$	1.321	1.486

Table 5.4.2.2: Selected experimental and calculated bond lengths and Mayer bond indices for 26a.

The $\mathrm{P}-\mathrm{Br}$ bond orders are close to 0.5 indicative of 3 -centre 4 -electron (3c4e-) bonding across the near-linear Br1-P1-Br2 moiety. The HOMO of 26a illustrates this bonding interaction as well as showing the phosphorus lone pair of electrons that lies in the plane of the heterocyclic ring (Figure 5.4.2.6). The HOMO-1 is again largely localised on the bromine atoms with electron density on N 1 and N 2 and their associated N-phenyl rings.

Figure 5.4.2.6: Highest occupied molecular orbitals and energies for 26a: a) HOMO; b) HOMO - (isovalue $=0.05$) .

The LUMO of $\mathbf{2 6 a}$ is ligand based and corresponds to a π^{*}-antibonding interaction with orthogonal nodes along the $\mathrm{P} 1 \cdots \mathrm{~N} 3$ axis and the $\mathrm{N} 1-\mathrm{C} 1 / \mathrm{N} 1-\mathrm{C} 2$ bonds (Figure 5.4.2.7). The LUMO +1 is largely localised on P1 and corresponds to a $\mathrm{Br} 1-\mathrm{P} 1-\mathrm{Br} 2$ anti-bonding interaction, with additional orbital population at N3.
a) LUMO
(-2.515 eV)

b) LUMO +1 (-1.000 eV)

Figure 5.4.2.7: Lowest unoccupied molecular orbitals and energies for 26a: a) LUMO; b) LUMO +1 (isovalue $=0.05$) .

Several transition-metal ${ }^{54}$ and main-group complexes ${ }^{55}$ of the electron-rich monoanionic N, N^{\prime}-chelating triazapentadienyl ligand ($\boldsymbol{\alpha}$, Figure 5.4.2.8) have previously been reported. The related β-diketiminate ligand ($\boldsymbol{\beta}$) has been used extensively, ${ }^{56}$ most notably in the stabilisation of low-valent metal complexes which have found a host of applications. ${ }^{57}$ Attempts to prepare the analogous phosphorus complexes however have resulted solely in γ-phosphino- β-diketiminates $(\boldsymbol{\gamma}) .{ }^{58} \mathrm{~A}$ single N, N^{\prime}-chelated β-diketiminate $\mathrm{P}^{\text {III }}$ complex is known, ${ }^{59}$ but this was prepared via nontraditional methods through insertion of nitriles into unstrained P-C bonds, essentially constructing the ligand around the main-group metal centre. Compound 26a therefore represents the first true example of a symmetric N, N^{\prime}-chelated β-diketiminate-type PIII
complex. Further work is necessary to establish whether PIII complexes can be prepared directly from the triazapentadienyl ligand via traditional methods such as salt metathesis or σ-bond metathesis.

α

β

γ

Figure 5.4.2.8: β-diketiminate-type complexes.

5.4.3 - Phosphorus Triiodide

When N-phenylbenzamidine 1a was treated with a solution of PI_{3} in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ under standard conditions (THF, $0{ }^{\circ} \mathrm{C}$), a dark amber suspension immediately formed. ${ }^{31} \mathrm{P}$ NMR analysis of the mother liquor gave a major pair of doublets (species \mathbf{H}, Figure 5.4.3.1) at $\delta+129.7$ and $+109.8 \mathrm{ppm}\left(1 ~_{P-P}=225.1 \mathrm{~Hz}\right)$. A minor peak at +19.4 ppm (species I) was also observed, along with a small quantity of 25a.I, however, this converted through to species \mathbf{H} on further stirring.

Figure 5.4.3.1: ${ }^{31} \mathrm{P}$ NMR spectrum showing the major products from the reaction of N phenylbenzamidine 1a with PI_{3}.

Additional ${ }^{31} \mathrm{P}$ NMR analysis over a wider spectral range (+700 to -700 ppm) revealed the formation of $\mathrm{P}_{4}(\delta-527.5 \mathrm{ppm})$ resulting from the reduction of PI_{3}. The orange solid deposited from solution is therefore suspected to be red phosphorus and other polymeric material. No spectroscopic evidence was observed however for the formation of $\mathrm{PI}_{4}{ }^{+}, \mathrm{P}_{2} \mathrm{I}_{4}$ or $\mathrm{P}_{2} \mathrm{I}_{5}{ }^{+} .60$ Attempts to isolate and identify species \mathbf{H} were unsuccessful.

5.5 - Transformations of Phosphorus-Amidine Heterocycles

The synthesis of the novel compound 10a from the reaction of N-phenylbenzamidine 1a with PhPCl_{2} under mild conditions, prompted us to briefly explore further transformations. Reactions with the other novel P-N heterocycles described in this chapter were not attempted as they were not isolated as analytically pure samples.

5.5.1 - Thermal Rearrangement

Several phosphorus(III)-nitrogen heterocycles have been observed to thermally rearrange to give larger oligomeric, or mixed PiII-Piv heterocycles. ${ }^{20}$ Our studies with phosphorus-amidine heterocycles has also shown that heating the reaction mixture or isolated products will often lead to new P-N species (vide supra). No clean reactivity was observed by ${ }^{31} \mathrm{P}$ NMR spectroscopy when a solution of 10 a in DCM was heated at $60{ }^{\circ} \mathrm{C}$ for 4 days, giving only several minor species likely arising through product decomposition; this decomposition was accelerated at higher temperatures.

Following this, we repeated the reaction with a catalytic amount of AlCl_{3} (25 \%); Lewisacid mediated rearrangements of dimeric to trimeric cyclophosph(III)azines are also established. ${ }^{19}$ After two days of heating at $60^{\circ} \mathrm{C}$, a new pair of doublets was observed by ${ }^{31} \mathrm{P}$ NMR spectroscopy at $\delta+73.9$ and $+17.2 \mathrm{ppm}\left({ }^{1}{ }^{P}-P=230.1 \mathrm{~Hz}\right)$. The integration of these peaks were approximately 25 \% (with 75% of 10a) and no further conversion was seen on further heating. Performing the reaction with $100 \% \mathrm{AlCl}_{3}$ in a higher boiling point solvent such as chlorobenzene gave relatively clean conversion through to the new species after 1 hour at $100^{\circ} \mathrm{C}$ (Figure 5.5.1.1).

Figure 5.5.1.1: ${ }^{31} \mathrm{P}$ NMR spectrum showing the reaction of $\mathbf{1 0 a}$ with AlCl_{3} at $100{ }^{\circ} \mathrm{C}$.
Slow diffusion of hexane into the reaction mixture afforded colourless crystals identified as $\mathbf{2 7 a} . \mathbf{A l C l}_{3}$ by single-crystal X-ray diffraction (Scheme 5.5.1.1). Compound 27a. AlCl_{3} is a mixed PIII-Pv five-membered heterocyclic Lewis-adduct resulting from the loss of benzonitrile from 10a. This was confirmed by monitoring the reaction by ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy; no evidence for the formation of the cyclotrimerisation product of benzonitrile, 2,4,6-triphenyl-1,3,5-triazine, was observed.

Scheme 5.5.1.1: Reaction of $\mathbf{1 0 a}$ with AlCl_{3} at $100^{\circ} \mathrm{C}$.
Compound 27a. AlCl_{3} crystallises as colourless plates in the triclinic space group $P \overline{1}$ with two molecules in the asymmetric unit and a single molecule of PhCl (Figure 5.5.1.2). The $\mathrm{P}_{2} \mathrm{CN}_{2}$ heterocyclic rings adopt a non-planar twisted conformation (twist angle $=10.5^{\circ}$ and 9.0°) with the two P-phenyl rings in a cis-orientation. The P1-N3 bond lengths are $1.625(1) \AA$ and $1.628(1) \AA$ for the two molecules, and intermediate of a $\mathrm{P}^{\mathrm{V}}=\mathrm{N}$ double bond (range: 1.571-1.599 \AA) and $\mathrm{P}^{\mathrm{V}}-\mathrm{N}$ single bond (1.652 \AA for planar N $\left.s p^{2}\right) .{ }^{50}$ The N3…Al1 distances $(1.868(1) \AA$ and $1.871(1) \AA$) are shorter than observed
for typical nitrogen-aluminium adducts (e.g. $\mathrm{Py}-\mathrm{AlCl}_{3}=1.930(2) \AA$; 4 - $\mathrm{DMAP}-\mathrm{AlCl}_{3}=$ $1.900(5) \AA)^{61,62}$ suggesting that N3 is electron-rich.

Figure 5.5.1.2: Crystal structure of $\mathbf{2 7 a} . \mathbf{A l C l}_{3}$. Single molecule shown and solvents of crystallisation omitted for clarity.

The DFT optimised geometry of $\mathbf{2 7 a} \cdot \mathbf{A l C l}_{3}$ is in good agreement with the experimental structure (Table 5.5.1.1). Despite the observed short P1-N3 bond lengths, which implies $\mathrm{P}=\mathrm{N}$ double bond character, the bond order is only marginally above 1 , and comparable to the N1-P1 bond order. The total bond valence for P1 is 4.22 and there is significant positive charge localised on P1 with negative charge on N3; this indicates that 27a. $\mathbf{A l C l}_{3}$ is better described as a P-N ylide.

	Bond Lengths / Å		Bond Index
	Experimental	Calculated	Mayer
C1-N1	1.312(2)	1.300	1.723
	1.305(2)		
C1-N2	1.370(2)	1.384	1.073
	1.388(2)		
N1-P1	1.650(1)	1.667	1.086
	1.660(1)		
N2-P2	1.761(1)	1.760	0.873
	1.754(1)		
P1-P2	2.214(5)	2.242	0.809
	2.230(6)		
P1-N3	1.625(1)	1.635	1.143
	1.628(1)		
N3-Al1	1.868(1)	1.886	0.597
	1.871(1)		

Table 5.5.1.1: Selected experimental and calculated bond lengths and Mayer bond indices for 27a. $\mathbf{A l C l}_{3}$.

5.5.2 - Methylation

It was reasoned that N-methylation of $\mathbf{1 0 a}$, ideally at N 1 , followed by one-electron reduction might afford a neutral phosphorus-nitrogen heterocyclic radical. An immediate shift in the peak positions in the ${ }^{31} \mathrm{P}$ NMR spectrum was observed on addition of MeOTf to a solution of 10a in DCM, to give a narrow doublet at $\delta+71.7 \mathrm{ppm}$ and a narrow multiplet at $\delta+30.6 \mathrm{ppm}$ (Figure 5.5.2.1). This mutiplet collapsed to a narrow doublet in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum to reveal weak ${ }^{2} J_{P-P}$ coupling (7.5 Hz). The ${ }^{1} \mathrm{H}$ NMR spectrum showed a small but clear shift for the aromatic protons, and a new doublet at $\delta+2.84 \mathrm{ppm}\left({ }^{2} J_{H-P}=14.3 \mathrm{~Hz}\right)$ corresponding to the methyl-group; this indicates that similarly to $\mathbf{1 9 r}$ (see section 4.6.3.1), methylation had occurred at phosphorus and not on nitrogen.

Figure 5.5.2.1: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum showing the reaction of $\mathbf{1 0 a}$ with MeOTf.
Single crystals suitable for X-ray diffraction, grown by slow diffusion of hexane into the DCM reaction mixture, revealed the formation of [28a]OTf (Scheme 5.5.2.1). This confirmed that methylation had occurred at the least sterically hindered and most nucleophilic phosphorus centre; the HOMO of 10a is largely localised on P1.

Scheme 5.5.2.1: The reaction of 10a with MeOTf.

Compound [28a]OTf crystallises as colourless plates in the monoclinic space group $P 2_{1}$ with a single ion pair in the asymmetric unit (Figure 5.5.2.2). The $\mathrm{P}_{2} \mathrm{CN}_{3}$ heterocyclic ring retains a distorted envelope conformation, folded along the $\mathrm{P} 2 \cdots \mathrm{~N} 1$ axis by 31.2° (cf. 36.4° for $\mathbf{1 0 a}$) with the two P-phenyl rings in a cis-orientation. The λ^{4}-phosphonium P1 adopts a distorted tetrahedral geometry with R-P-R' angles ranging from 106.1(2) ${ }^{\circ}$ to $114.2(2)^{\circ}$ whilst P2 possesses a distorted trigonal-pyramidal geometry; the sum of bond angles around P 2 is 301.6° ($c f .302 .26^{\circ}$ for $10 a$). On P-methylation the N1-P1 and N3-P1 bond lengths contract significantly compared to 10a whilst the N2-P2 and N3P2 increase marginally (Table 5.5.2.1). Minor deviations are also observed for other bond-lengths within the two amidine fragments.

Figure 5.5.2.2: Crystal structure of [28a]0Tf. Counterion omitted for clarity.

	Bond Lengths / \AA	
	10a	[28a]OTf
C1-N1	$1.281(3)$	$1.298(7)$
C1-N2	$1.422(2)$	$1.376(7)$
N1-P1	$1.679(2)$	$1.623(4)$
N2-P2	$1.723(2)$	$1.752(4)$
N3-P1	$1.765(2)$	$1.685(5)$
N3-P2	$1.729(2)$	$1.740(5)$
N3-C2	$1.399(2)$	$1.429(7)$
C2-N4	$1.279(2)$	$1.273(7)$

Table 5.5.2.1: Selected experimental bond lengths for 10a and [28a]0Tf.

5.5.3 - One-Electron Oxidation

Attempts were also made to directly oxidise 10a to give the corresponding radical cation. This approach has successfully been applied to electron-rich cyclodiphosphazines and cyclotetraphosphines, as well as bulky tri-aryl phosphines. ${ }^{63,64}$ No reaction was observed when 10a was treated with $\mathrm{AgBAr}^{\mathrm{F}}$ or $\mathrm{NOBF}_{4} / \mathrm{NaBAr}^{\mathrm{F}}$ whilst a deep blue solution formed when DDQ was used (DCM, - $95^{\circ} \mathrm{C}$) despite being a weaker oxidant. 65 This solution however swiftly discoloured on warming to room temperature before EPR measurements could be recorded. Cyclic voltammetry studies of 10 a revealed an irreversible oxidation at +0.743 V which suggests that a stable radical cation of 10a may not be isolable; the irreversible peak at -1.236 V is attributed to the reduction of trace oxygen (Chart 5.5.3.1).

Chart 5.5.3.1: Cyclic voltammogram of 10a.

5.6 - Reactions of N, N^{\prime}-Diarylureas with Chlorophosphines

In Chapter 4, the syntheses of fused-ring 1,2,4-benzophosphadiazines from electronrich N, N '-diarylureas was investigated. These studies indicated that there are three major factors that influence whether the benzo-fused or non-fused heterocycle is formed; namely the C-nucleophilicity of the aromatic ring, the electrophilicity of the phosphine, and the strength of the base employed in the reaction.

5.6.1 - Electron-Poor N, N^{\prime}-Diarylureas

When electron-poor or electron-neutral N, N^{\prime}-diarylureas are used, the four-membered heterocycles 18 are formed instead of the corresponding fused-ring 1,2,4benzophosphadiazine 17 (Scheme 5.6.1.1). This four-membered heterocycle is believed to be an intermediate species for both the fused-ring heterocycles ${ }^{66}$ and other phosphorus-urea heterocycles, ${ }^{31,32}$ but have only been isolated (as distillable liquids) from bis-silylated ureas when electron-withdrawing groups on phosphorus and nitrogen are employed. ${ }^{33}$

Scheme 5.6.1.1: Reaction of N, N^{\prime}-diarylureas with PhPCl_{2}.
Compound 18a crystallises as colourless plates in the monoclinic space group $P 2_{1} / c$ with a single molecule in the asymmetric unit (Figure 5.6.1.1). The PCN_{2} heterocyclic ring is planar but the N1- and N2-phenyl rings deviate slightly from this plane by 2.6° and 4.3° respectively, whilst the P-phenyl ring is almost perpendicular at 81.1°. The internal bond angles for $\mathrm{P} 1-\mathrm{N} 1-\mathrm{C} 1, \mathrm{~N} 1-\mathrm{C} 1-\mathrm{N} 2$ and $\mathrm{P} 1-\mathrm{N} 2-\mathrm{C} 1$ are similar and range from $94.5(1)^{\circ}$ to $97.3(1)^{\circ}$ whilst the N1-P1-N2 angle is considerably smaller at $73.4(7)^{\circ}$. The bond lengths within the heterocyclic ring are non-symmetrical; notably, the P1-N2 distance is marginally shorter than P1-N1 (1.746(1) \AA vs. $1.756(2) \AA$). This is likely to arise due to the torsion ($\mathrm{N}-\mathrm{P}-\mathrm{C}_{\text {ipso }}-\mathrm{C}_{\text {ortho }}$) of the P-phenyl ring which is almost 0° for N 2 $\left(0.6(2)^{\circ}\right)$ and $75.8(2)^{\circ}$ for N 1 . External packing forces may also influence this asymmetry.

Figure 5.6.1.1: Crystal structure of 18a.

The reaction of N, N^{\prime}-diphenylurea $\mathbf{1 6 a}$ with PhPCl_{2} under reflux in the presence of base has been documented. ${ }^{3}$ This was postulated to form compound 29a however all attempts to replicate this under identical published conditions cleanly afforded 18a (Scheme 5.6.1.2). In addition, the reported ${ }^{31} \mathrm{P}$ NMR spectral data is inconsistent with the published data for the isolated and crystallographically characterised N, N^{\prime} dimethylurea derived heterocycle, prepared via alternative methods, which exists as a mixture of two diastereoisomers in solution. ${ }^{33}$ When an isolated sample of 18a was heated at $100^{\circ} \mathrm{C}$ in PhCl , very slow conversion (2 weeks) to 29a was observed by ${ }^{31} \mathrm{P}$ NMR spectroscopy to give two pairs of doublets attributed to the two diastereoisomers (Figure 5.6.1.2). This draws some doubt over the published synthesis and characterisation of compound 29a. ${ }^{3}$

Scheme 5.6.1.2: Reaction of N, N^{\prime}-diphenylurea with PhPCl_{2}.

Figure 5.6.1.2: ${ }^{31} \mathrm{P}$ NMR spectra showing the thermal rearrangement of $\mathbf{1 8 a}$.

5.6.2 - Poorly Electrophilic Chlorophosphines

When a poorly electrophilic chlorophosphine such as $\mathrm{N} i \mathrm{Pr}_{2} \mathrm{PCl}_{2}$ was employed instead of PhPCl_{2}, the four-membered heterocycle $\mathbf{1 8}^{*}$ is formed regardless of the nucleophilicity of the N, N^{\prime}-diarylurea 16 (Scheme 5.6.2.1).

Scheme 5.6.2.1: Reaction of N, N^{\prime}-diarylureas with $\mathrm{N}^{i} \mathrm{Pr}_{2} \mathrm{PCl}_{2}$.

Compound 18r* crystallises as colourless blocks in the monoclinic space group $P 2_{1} / c$ with a single molecule in the asymmetric unit (Figure 5.6.2.1). Unlike 18a, the PCN_{2} heterocyclic ring is non-planar and is folded along the $\mathrm{P} 1 \cdots \mathrm{C} 1$ axis by 11.3°. The N-aryl
rings lie above the mean plane of the heterocyclic ring and are twisted in opposite directions by 5.8° and 13.4° respectively for N 1 and N 2 . The internal bond angles for the heterocyclic ring are similar to $\mathbf{1 8 a}$ and range from $94.1(7)^{\circ}$ to $97.0(9)^{\circ}$ for the $\mathrm{P} 1-$ N1-C1, N1-C1-N2 and P1-N2-C1 angles and are again significantly more acute for N1-P1-N2 at $72.7(5)^{\circ}$. The heterocyclic bond lengths are moderately shorter for N1-C1 (1.390(2) Å) and N1-P1 (1.758(1) Å) than for N2-C1 (1.402(1) Å) and N2-P1 (1.770(1) \AA A) due to the increased electron-donating capability of the dimethylamino-substituted aryl ring.

Figure 5.6.2.1: Crystal structure of 18r*.

5.6.3 - Base Strength

The strength of the base employed in the reactions of N-arylamidines with halophosphines was shown to be a major influence in determining which product is formed, with stronger bases favouring the formation of non-fused phosphorusnitrogen heterocycles. Whilst the fused-ring 1,2,4-benzophosphadiazine $\mathbf{1 7 r}$ is formed when electron rich N, N^{\prime}-diarylurea $16 \mathbf{r}$ is treated with PhPCl_{2} in pyridine, the fourmembered heterocycle $\mathbf{1 8 r}$ is obtained when the reaction is performed in THF in the presence of $E t_{3} \mathrm{~N}$ (Scheme 5.6.3.1).

Scheme 5.6.3.1: The influence of base on the reaction of electron-rich N, N^{\prime}-diarylurea $16 \mathbf{r}$ with PhPCl_{2}.

Compound 18r however, was observed to slowly rearrange to the fused-ring heterocycle $\mathbf{1 7 r}$ in solution by ${ }^{31} \mathrm{P}$ NMR spectroscopy; this was accelerated on heating but lead to minor pairs of doublets attributed to the two diastereoisomers of $\mathbf{2 9 r}$ (Figure 5.6.3.1). The additional minor peaks at $\delta+104.0$ and +31.6 ppm are believed to be phosphine-oxides of $\mathbf{1 8 r}$ and $\mathbf{1 7 r}$ respectively.

Figure 5.6.3.1: ${ }^{31} \mathrm{P}$ NMR spectra showing the thermal rearrangement of $\mathbf{1 8 r}$ to 17 r .
DFT optimised geometries for compounds $\mathbf{1 8 r}$ and $\mathbf{1 7 r}$ at the M06-2X/6-311g(d,p) level of theory show that the fused-ring $1,2,4$-benzophosphadiazine $\mathbf{1 7 r}$ is calculated to be significantly lower in energy ($14.22 \mathrm{kcal} \mathrm{mol}^{-1}$) than the four-membered heterocycle

18r. This rearrangement can also be justified by examination of the frontier molecular orbitals of $\mathbf{1 8 r}$: the highest occupied molecular orbital (HOMO) corresponds to the nucleophilic $\mathrm{C}_{\text {aryl }}$ centre para to the electron-donating dimethylamino-group, whilst the lowest unoccupied molecular orbital (LUMO) is largely localised (36.1 \%) on the electrophilic phosphorus centre (Figure 5.6.3.2). This rearrangement is not observed however for 18a, 18f or 18r*, likely due to the increased HOMO-LUMO gap (cf. 6.35 eV for $\mathbf{1 8 a}$ vs. 5.81 eV for $\mathbf{1 8 r}$) and less localised HOMOs, rendering the $\mathrm{C}_{\text {aryl }}$ sites less nucleophilic.

Figure 5.6.3.2: Frontier molecular orbitals and energies of 18r: a) HOMO; b) LUMO (isovalue $=0.05$).

5.6.4 - Phosphorus Trichloride

The reactions of bis-silylated N, N^{\prime}-diarylureas with PCl_{3} have been studied in great detail, and are highly sensitive to both the substituents and reaction conditions, including the order in which reagents are added. For electron-rich protio- N, N^{\prime} diarylureas in the presence of weak base, where fused-ring heterocycles are targeted, polymeric materials are formed due to the additional free nucleophilic $\mathrm{N}-\mathrm{H}$ and electrophilic P-Cl fragments. The reaction of N, N^{\prime}-diphenylurea with PCl_{3} is reported to give the bicyclic heterocycle 31a when performed under reflux (Scheme 5.6.4.1). ${ }^{3}$

Scheme 5.6.4.1: Reaction of N, N^{\prime}-diphenylurea 16a with PCl_{3} in the presence of base at $80^{\circ} \mathrm{C}$.

Given that this species must result from the deoxygenation of an urea fragment to give the corresponding carbodiimide, and is analogous to 29a (see Scheme 5.6.1.2), it was reasoned that the four-membered $\mathrm{P}-\mathrm{Cl}$ heterocycle must again be the initial product. Repeating the reaction at $0{ }^{\circ} \mathrm{C}$ gave a major species by ${ }^{31} \mathrm{P}$ NMR spectroscopy at $\delta+$ 140.1 ppm , assigned as 30a, amongst other unidentified minor species (Scheme 5.6.4.2). Attempts to isolate an analytically pure sample of $\mathbf{3 0 a}$ or grow single crystals suitable for X-ray diffraction studies were unsuccessful.

Scheme 5.6.4.2: Reaction of N, N^{\prime}-diphenylurea 16 a with PCl_{3} in the presence of base at $0^{\circ} \mathrm{C}$.

Heating a PhCl solution of $\mathbf{3 0 a}$ at $100^{\circ} \mathrm{C}$ overnight resulted in complete conversion through to 31a, which crystallised out of solution on cooling. Several other species were observed by ${ }^{31} \mathrm{P}$ NMR spectroscopy (Figure 5.6.4.1) including PCl_{3} confirming that 3 equivalents of $\mathbf{3 0 a}$ are converted to a single equivalent each of 31a, PCl_{3} and $\mathrm{N}, \mathrm{N}^{\prime}-$ diphenylcarbodiimide ${ }^{33}$ according to Scheme 5.6.4.3.

Figure 5.6.4.1: ${ }^{31} \mathrm{P}$ NMR spectra showing the thermal rearrangement of 30a to 31a.

Scheme 5.6.4.3: Thermal rearrangement of 30a to give 31a with loss of PCl_{3} and N, N^{\prime} diphenylcarbodiimide.

Compound 31a crystallises as colourless parallelepipeds in the triclinic space group $P \overline{1}$ with a single molecule in the asymmetric unit (Figure 5.6.4.2). The heterocyclic rings adopt an "open-book" arrangement consisting of two fused planar $\mathrm{P}_{2} \mathrm{CN}_{2}$ rings; the angle between the fused $\mathrm{P}_{2} \mathrm{CN}_{2}$ rings is 71.4°. The bond lengths and angles for the two heterocyclic rings are identical within errors, however the differing oxidation states and coordination numbers of P 1 and P 2 results in shorter P-N distances ($c f .1 .682(1) \AA$ for P1-N1 vs. 1.740(1) Å for P2-N2). The P1-P2 bond length (2.191(6) Å) is typical of other P-P bond lengths ${ }^{50}$ despite the small ${ }^{1} J_{P-P}$ coupling observed by ${ }^{31} \mathrm{P}$ NMR; this is likely due to the strongly electron-withdrawing nature of the urea and $\mathrm{P}=0$ moieties.
a)

b)

Figure 5.6.4.2: Crystal structure of 31a; a) Top-down view; b) Side view.

5.7 - Conclusions

The reactions of N-arylamidines with halophosphines were shown to be highly sensitive to a number of factors including the nucleophilicity of the N-aryl ring, the electrophilicity of the phosphine, the strength of the base employed, and the temperature at which the reaction was performed. The formation of fused-ring 1,2,4benzophosphadiazines 19 and six-membered $\mathrm{P}_{2} \mathrm{CN}_{3}$ heterocycles 10 were found to proceed via a common short-lived intermediate 24. DFT studies were performed to provide insight into the differing pathways observed for the electron-rich and electronpoor N -arylamidines. The formation of the six-membered $\mathrm{P}_{2} \mathrm{CN}_{3}$ heterocycle $\mathbf{1 0}$ is
postulated to involve a proton-transfer mechanism, whilst the mechanism for the cyclisation of $\mathbf{2 4}$ to give 19 is unknown.

Complex behaviour was also observed for the phosphorus trihalides. Several species were formed on treatment of N-phenylbenzamidine 1a with PCl_{3} whilst PBr_{3} cleanly afforded a pseudo-spirotricyclic cation 25a.Br when the reaction was performed at $0^{\circ} \mathrm{C}$. When the reaction was performed at $75^{\circ} \mathrm{C}$, two new P-P coupled species are observed by ${ }^{31} \mathrm{P}$ NMR spectroscopy, however all attempts to isolate these products were unsuccessful. In contrast, heating an isolated sample of 25a.Br gave crystals of 26a on cooling; this product must result from the breaking and making of carbon-nitrogen bonds.
N, N^{\prime}-diarylureas were also shown to be highly sensitive to many of these factors. The fused-ring P-phenyl 1,2,4-benzophosphadiazine $\mathbf{1 7}$ is formed for electron-rich N, N^{\prime} diarylureas in the presence of weak base, whilst less nucleophilic systems gave the corresponding four-membered PCN_{2} heterocycle 18. Substitution of PhPCl_{2} with the less electrophilic $\mathrm{N}^{2} \mathrm{Pr}_{2} \mathrm{PCl}_{2}$ also gave the PCN_{2} heterocycle as did the use of stronger bases such as $\mathrm{Et}_{3} \mathrm{~N} .18 \mathbf{r}$ was found to thermally rearrange to give the fused-ring heterocycle $\mathbf{1 7 r}$ but analogous behaviour was not observed for other systems. These findings were further supported by DFT studies.

5.8 - Future Work

Detailed computational studies in tandem with additional experiments are required to gain further insight into the mechanisms involved in the formation of fused-ring and six-membered $\mathrm{P}_{2} \mathrm{CN}_{3}$ heterocycles. This includes deuterium-labelling and kinetic isotope experiments to support the postulated proton-transfer mechanism for $\mathbf{1 0}$. Isolation and identification of unknown species \mathbf{F} and \mathbf{G} (section 5.4.2) are highly desirable and may help justify the formation of 26a which was observed when an isolated sample of $\mathbf{2 5 a} . \mathbf{B r}$ was heated in solution.

5.9 - Experimental

5.9.1 - Synthesis of \boldsymbol{N}-Arylamidines

N-arylamidines were prepared via standard methods, through condensation of lithiated anilines with benzonitrile, followed by aqueous work-up. Further details are given in Chapter 2.

5.9.1.1 - Synthesis of \boldsymbol{N}-tert-butyl-benzamidine, 1 s :

Amber oil, 89.6 \% yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 25.0^{\circ} \mathrm{C}$) $\delta: 7.50-7.44$ (m, 2H), 7.39$\left.7.33(\mathrm{~m}, 3 \mathrm{H}), 6.40(\mathrm{bs}, 1 \mathrm{H}), 4.47(\mathrm{bs}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~} \mathbf{1}^{\mathbf{1}} \mathbf{H}\right\}$ NMR (100.5 MHz, DCM, $25.0^{\circ} \mathrm{C}$) $\delta: 164.0,140.5,129.6,128.7,125.9,51.3,28.7$.

Analytical data in accordance with the literature. ${ }^{67}$

5.9.1.2 - Synthesis of \boldsymbol{N}-(2,6-diisopropylphenyl)-benzamidine, 1 t:

Colourless microcrystalline solid, 76.0 \% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 25.0{ }^{\circ} \mathrm{C}$) δ : $7.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{t}, J=7.4,7.8 \mathrm{~Hz}$, 1H), 7.41 (bs, 2H), 3.04 (sep, $J=6.8,6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 1.22 (d, $J=6.9 \mathrm{~Hz}, 6 \mathrm{H}$), 1.19 (d, $J=6.8$ $\mathrm{Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100.5 MHz, DCM, $25.0^{\circ} \mathrm{C}$) $\delta: 153.2,144.6,139.2,135.9,130.5$, 128.6, 126.9, 123.5, 28.4, 23.6, 23.4.

Analytical data in accordance with the literature. ${ }^{68}$

5.9.1.3 - Synthesis of \boldsymbol{N}-(4-chlorophenyl)-benzamidine, $1 u$:

Colourless microcrystalline solid, 86.0 \% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 25.0^{\circ} \mathrm{C}$) δ : 7.84 (bs, 2H), 7.52-7.40 (m, 3H), 7.30 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$), 6.88 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$).). ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(100.5 \mathrm{MHz}, \mathrm{DCM}, 25.0^{\circ} \mathrm{C}\right.$) $\delta: 154.7,148.9,135.7,130.7,129.6,128.6$, 127.8, 126.9, 123.1.

Analytical data in accordance with the literature. ${ }^{69}$

5.9.1.4 - Synthesis of N-phenyl- N^{\prime}, N^{\prime}-bis-trimethylsilyl-benzamidine, 1a':

Aniline ($2.9 \mathrm{~cm}^{3}, 25 \mathrm{mmol}$) was dissolved in THF and cooled to $-95^{\circ} \mathrm{C}$. ${ }^{n} \mathrm{BuLi}(2.5 \mathrm{M}, 10$ $\mathrm{cm}^{3}, 25 \mathrm{mmol}$) was added dropwise and the pale pink suspension was allowed to warm to room temperature and stir for 1 hour. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{Me}_{3} \mathrm{SiCl}\left(3.2 \mathrm{~cm}^{3}, 25 \mathrm{mmol}\right)$ was slowly added. The resulting yellow suspension was stirred at room temperature for 1 hour and then cooled to $-95^{\circ} \mathrm{C}$. A second portion of ${ }^{n} \mathrm{BuLi}\left(2.5 \mathrm{M}, 10 \mathrm{~cm}^{3}, 25 \mathrm{mmol}\right)$ was added dropwise to give a bronze solution that was slowly warmed to room temperature. After 2 hours, benzonitrile ($2.7 \mathrm{~cm}^{3}, 25 \mathrm{mmol}$) was added and the reaction mixture was allowed to stir for 12 hours. The peach
suspension was recooled to $0^{\circ} \mathrm{C}$ and a second portion of $\mathrm{Me}_{3} \mathrm{SiCl}\left(3.2 \mathrm{~cm}^{3}, 25 \mathrm{mmol}\right)$ was slowly added. The reaction mixture was stirred at room temperature for 4 hours and then evaporated to dryness. The residues were extracted intro $\mathrm{Et}_{2} \mathrm{O}$ (2 x $25 \mathrm{~cm}^{3}$) and filtered through celite. The filtrate was removed in vacuo and residues recrystallised twice from hexane to give 1a' as an off-white solid. Yield 4.7 g (13.8 mmol, 55.2 \%). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 25.0^{\circ} \mathrm{C}$) δ : Tautomer 1 ($N^{\prime}, N^{\prime}-(S i M e 3)_{2}-\approx$ $36 \%): 7.80(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.6,7.82 \mathrm{H}), 7.11-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 6.88(\mathrm{t}, J=7.1,7.3 \mathrm{~Hz}),-0.01(\mathrm{~s}, 18 \mathrm{H})$. Tautomer $2\left(\mathrm{~N}-\right.$ SiMe $_{3}-\mathrm{N}^{\prime}-$ SiMe $\left._{3}-\approx 64 \%\right)$: 7.46-7.38 (m, 1H), 7.16-7.02 (m, 7H), 6.70 (bs, 2H), 0.11 (bs, 18H). ${ }^{29} \mathbf{S i}\left\{{ }^{1} \mathrm{H}\right\}$ INEPT NMR (79.5 MHz, DCM, $25.0^{\circ} \mathrm{C}$) $\delta: 4.5$ (s).

5.9.2 - Synthesis of Phosphorus-Amidine Heterocycles

The phosphorus-amidine heterocycles were typically prepared by treating an N arylamidine with a halophosphine in the presence of $\mathrm{Et}_{3} \mathrm{~N}$. Representative examples for each class of compound are given. Many of the compounds discussed in this chapter were found to rapidly convert through to new species and could not be isolated as analytically pure samples; ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectral data of the crude compounds is therefore provided where necessary. Crystals suitable for X-ray diffraction were grown by slow diffusion of hexane into a saturated solution of the product in DCM or toluene at $20^{\circ} \mathrm{C}$.

5.9.2.1 - Synthesis of 10a:

1a ($0.72 \mathrm{~g}, 3.7 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}\left(1.0 \mathrm{~cm}^{3}, 7.4 \mathrm{mmol}\right)$ were dissolved in THF ($30 \mathrm{~cm}^{3}$) and cooled to $0{ }^{\circ} \mathrm{C}$. $\mathrm{PhPCl}_{2}\left(0.5 \mathrm{~cm}^{3}, 3.7 \mathrm{mmol}\right)$ was added dropwise and the resulting yellow suspension was warmed to room temperature and allowed to stir for 16 hours. The reaction mixture was filtered through celite and the filtrate concentrated in vacuo. The residues were recrystallised from $\operatorname{DCM}\left(5 \mathrm{~cm}^{3}\right)$ and hexane ($20 \mathrm{~cm}^{3}$) at $-20^{\circ} \mathrm{C}$ to give a pale yellow crystalline solid that was isolated by filtration, washed with hexane (2×5 cm^{3}) and dried in vacuo. Yield: 0.82 g ($1.4 \mathrm{mmol}, 73.6$ \%). Anal. Calc. for $\mathrm{C}_{38} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{P}_{2}: \mathrm{C}$, 75.5; H, 5.0; N, 9.3. Found: C, 74.0; H, 5.1; N, 9.2. ${ }^{\mathbf{1} H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 25.0^{\circ} \mathrm{C}$) δ : $7.85(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=6.0,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.24(\mathrm{~m}, 7 \mathrm{H}), 7.18-7.02(\mathrm{~m}$, 10 H), $7.00(\mathrm{t}, J=7.6,7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.94-6.84(\mathrm{~m}, 5 \mathrm{H}), 6.75(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{31} \mathbf{P}$ NMR (162 MHz, DCM, $25.0^{\circ} \mathrm{C}$) $\delta: 54.2$ (s), 39.1 (s). ${ }^{13} \mathbf{C}\left\{\mathbf{1}^{\mathbf{H}} \mathbf{H}\right\}$ NMR ($100.5 \mathrm{MHz}, \mathrm{DCM}, 25.0^{\circ} \mathrm{C}$) $\delta: 161.9\left(\mathrm{~d}, J_{c-P}=13.9 \mathrm{~Hz}\right), 161.5\left(\mathrm{~d}, J_{c-P}=14.7 \mathrm{~Hz}\right), 157.1\left(\mathrm{~d}, J_{c-P}=3.7 \mathrm{~Hz}\right), 149.4(\mathrm{~s})$, $146.6\left(\mathrm{~d}, J_{c-P}=3.7 \mathrm{~Hz}\right), 146.4\left(\mathrm{~d}, J_{C-P}=3.7 \mathrm{~Hz}\right), 141.2\left(\mathrm{~d}, J_{C-P}=28.6 \mathrm{~Hz}\right), 137.7\left(\mathrm{~d}, J_{C-P}=\right.$ 11.0 Hz), 137.6 ($\mathrm{d}, J_{C-P}=8.1 \mathrm{~Hz}$), 133.9 (d, $J_{c-P}=3.7 \mathrm{~Hz}$), 133.1 (d, $J_{C-P}=18.3 \mathrm{~Hz}$), 129.9 (d, $\left.J_{C-P}=48.4 \mathrm{~Hz}\right), 129.7\left(\mathrm{~d}, J_{C-P}=3.7 \mathrm{~Hz}\right), 129.4\left(\mathrm{~d}, J_{C-P}=31.5 \mathrm{~Hz}\right), 129.2\left(\mathrm{~d}, J_{C-P}=44.0 \mathrm{~Hz}\right)$,
$128.7\left(\mathrm{~d}, J_{C-P}=1.5 \mathrm{~Hz}\right), 128.2\left(\mathrm{~d}, J_{C-P}=5.1 \mathrm{~Hz}\right), 128.1\left(\mathrm{~d}, J_{C-P}=26.4 \mathrm{~Hz}\right), 128.0(\mathrm{~s}), 127.4$ (d, $J_{C-P}=5.1 \mathrm{~Hz}$), 124.6 (s$), 124.5\left(\mathrm{~d}, J_{C-P}=5.9 \mathrm{~Hz}\right), 122.7$ (s$), 122.3(\mathrm{~s})$.

5.9.2.2 - Synthesis of 10s:

Pale yellow crystalline solid, 37.1 \% yield. Anal. Calc. for $\mathrm{C}_{34} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{P}_{2}$: C, 72.3; H, 6.8; N , 9.9. Found: C, 72.1; H, 6.9; N, 9.8. ${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 18.5^{\circ} \mathrm{C}$) 8: 7.82-7.77 (m, 2H), $7.54(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.21(\mathrm{~m}, 9 \mathrm{H}), 7.11-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{td}$, $J=1.9,7.8 \mathrm{~Hz}, 2 \mathrm{H}$), $1.33(\mathrm{~s}, 9 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H})$.). ${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{DCM}, 18.7^{\circ} \mathrm{C}$) δ : $43.1\left(\mathrm{~d},{ }^{2} J_{P-P}=11.4 \mathrm{~Hz}\right), 38.7\left(\mathrm{~d},{ }^{2} J_{P-P}=11.4 \mathrm{~Hz}\right) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\} \mathbf{N M R}\left(100.5 \mathrm{MHz}, \mathrm{DCM}, 19.4^{\circ} \mathrm{C}\right)$ $\delta: 160.9\left(\mathrm{~d}, J_{C-P}=5.9 \mathrm{~Hz}\right), 160.8\left(\mathrm{~d}, J_{C-P}=4.4 \mathrm{~Hz}\right), 157.8\left(\mathrm{~d}, J_{C-P}=11.7 \mathrm{~Hz}\right), 157.4\left(\mathrm{~d}, J_{C-P}=\right.$ $11.7 \mathrm{~Hz}), 143.0\left(\mathrm{~d}, J_{C \cdot P}=2.2 \mathrm{~Hz}\right), 142.7\left(\mathrm{~d}, J_{C \cdot P}=2.2 \mathrm{~Hz}\right), 142.3\left(\mathrm{~d}, J_{C-P}=6.6 \mathrm{~Hz}\right), 139.5(\mathrm{~d}$, $\left.J_{C-P}=9.5 \mathrm{~Hz}\right), 138.7\left(\mathrm{~d}, J_{C-P}=4.4 \mathrm{~Hz}\right), 138.6\left(\mathrm{~d}, J_{C-P}=3.7 \mathrm{~Hz}\right), 132.6\left(\mathrm{~d}, J_{C-P}=18.3 \mathrm{~Hz}\right)$, $130.6\left(\mathrm{~d}, J_{C-P}=21.3 \mathrm{~Hz}\right), 129.2\left(\mathrm{~d}, J_{c-P}=71.9 \mathrm{~Hz}\right), 128.7\left(\mathrm{~d}, J_{C-P}=4.4 \mathrm{~Hz}\right), 128.5\left(\mathrm{~d}, J_{C-P}=\right.$ $1.5 \mathrm{~Hz}), 128.4\left(\mathrm{~d}, J_{C-P}=26.4 \mathrm{~Hz}\right), 128.3\left(\mathrm{~d}, J_{C-P}=5.1 \mathrm{~Hz}\right), 127.8(\mathrm{~s}), 127.7\left(\mathrm{~d}, J_{C-P}=5.1 \mathrm{~Hz}\right)$, $127.4\left(\mathrm{~d}, J_{c-P}=5.1 \mathrm{~Hz}\right), 127.3\left(\mathrm{~d}, J_{c-P}=5.1 \mathrm{~Hz}\right), 59.3\left(\mathrm{~d}, J_{c-P}=3.7 \mathrm{~Hz}\right), 59.1\left(\left(\mathrm{~d}, J_{C-P}=3.7\right.\right.$ Hz), $54.8(\mathrm{~s}), 32.3\left(\mathrm{~d}, J_{C-P}=2.2 \mathrm{~Hz}\right), 32.2\left(\mathrm{~d}, J_{C-P}=2.2 \mathrm{~Hz}\right), 32.1(\mathrm{~s})$.

5.9.2.3 - Synthesis of 24r:

$\mathbf{1 r}(0.53 \mathrm{~g}, 2.2 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}\left(0.62 \mathrm{~cm}^{3}, 4.5 \mathrm{mmol}\right)$ were dissolved in toluene ($25 \mathrm{~cm}^{3}$) and cooled to $0{ }^{\circ} \mathrm{C}$. $\mathrm{PhPCl}_{2}\left(0.3 \mathrm{~cm}^{3}, 2.2 \mathrm{mmol}\right)$ was added dropwise and the bright yellow suspension was allowed to warm to room temperature and stir for 3 hours. The solids were removed via filtration through celite and washed with toluene ($2 \times 5 \mathrm{~cm}^{3}$). The filtrate was concentrated in vacuo and the residues recrystallised from DCM and hexane at $-20^{\circ} \mathrm{C}$. The pale yellow solids were isolated by filtration, washed with hexane and $\mathrm{Et}_{2} \mathrm{O}$ ($5 \mathrm{~cm}^{3}$ each) and dried in vacuo. Yield: 0.45 g ($\left.0.66 \mathrm{mmol}, 59.7 \%\right) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 25.0^{\circ} \mathrm{C}$) $\delta: 7.61(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}$), $7.57(\mathrm{dd}, J=8.0,11.4 \mathrm{~Hz}$), $7.32-7.21$ (m, 10H), 7.13-7.07 (m, 5H), $6.82(\mathrm{t}, J=7.9,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.25(\mathrm{dd}, J=1.6,8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $6.14(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.02(\mathrm{~s}, 2 \mathrm{H}), 2.52(\mathrm{~s}, 12 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{DCM}, 25.0^{\circ} \mathrm{C}$) δ : $52.2\left(\mathrm{~d},{ }^{1}{ }_{P P-P}=245.1 \mathrm{~Hz}\right), 10.22\left(\mathrm{~d}, 1_{P-P}=245.1 \mathrm{~Hz}\right)$.

5.9.2.4-Synthesis of 25a.Br:

1a ($1.04 \mathrm{~g}, 5.3 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}\left(1.5 \mathrm{~cm}^{3}, 10.8 \mathrm{mmol}\right)$ were partially dissolved in toluene ($40 \mathrm{~cm}^{3}$) and cooled to $0^{\circ} \mathrm{C}$. $\mathrm{PBr}_{3}\left(0.5 \mathrm{~cm}^{3}, 5.3 \mathrm{mmol}\right)$ was added dropwise and the pale orange suspension was allowed to stir at room temperature for 1 hour then filtered through celite. The solids were washed with toluene ($2 \times 10 \mathrm{~cm}^{3}$) and the combined filtrate was evaporated to dryness. The residues were redissolved in DCM ($5 \mathrm{~cm}^{3}$) and hexane ($30 \mathrm{~cm}^{3}$) was added with strong stirring to give a pale cream precipitate. After

1 hour, the supernatant was removed via filter cannula, the solids were washed with hexane and $\mathrm{Et}_{2} \mathrm{O}$ ($5 \mathrm{~cm}^{3}$ each), and dried in vacuo. Yield: 1.14 g ($1.25 \mathrm{mmol}, 70.2 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, DCM, $25.0^{\circ} \mathrm{C}$) $\delta: 7.69(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.45-7.09(\mathrm{~m}, 23 \mathrm{H}), 7.06(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 3 \mathrm{H}), 6.51(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR (162 MHz, DCM, $\left.25.0^{\circ} \mathrm{C}\right) \delta: 104.1\left(\mathrm{~d},{ }^{2} J_{P-P}=\right.$ $5.0 \mathrm{~Hz}), 31.5\left(\mathrm{~d},{ }^{1} J_{P-P}=330.2 \mathrm{~Hz}\right), 29.2\left(\mathrm{dd},{ }^{1} J_{P-P}=330.2 \mathrm{~Hz},{ }^{2} J_{P-P}=5.0 \mathrm{~Hz}\right)$.

5.9.2.5 - NMR Scale Synthesis of $27 \mathrm{a} . \mathrm{AlCl}_{3}:$

To a J. Young's NMR tube fitted with a d_{6}-DMSO capillary was added 10a ($30.2 \mathrm{mg}, 0.05$ $\mathrm{mmol}), \mathrm{AlCl}_{3}(6.7 \mathrm{mg}, 0.05 \mathrm{mmol})$ and $\mathrm{PhCl}\left(0.6 \mathrm{~cm}^{3}\right)$. The NMR tube was heated at $100^{\circ} \mathrm{C}$ for 1 hour to give a yellow solution of $\mathbf{2 7 a} \cdot \mathbf{A l C l}_{3}$. Attempts to isolate $\mathbf{2 7 a} \cdot \mathbf{A l C l}_{3}$ were unsuccessful. ${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{PhCl}, 19.8^{\circ} \mathrm{C}$) $\delta: 73.8\left(\mathrm{~d},{ }^{1} J_{P-P}=232.6 \mathrm{~Hz}\right.$), 17.2 $\left(\mathrm{d},{ }^{1} J_{P-P}=232.6 \mathrm{~Hz}\right.$).

5.9.2.6 - NMR Scale Synthesis of [28a]OTf:

To a J. Young's NMR tube fitted with a d_{6}-DMSO capillary was added 10a (32.1 mg , $0.053 \mathrm{mmol})$ and $\operatorname{DCM}\left(0.6 \mathrm{~cm}^{3}\right)$. MeOTf ($\left.0.006 \mathrm{~cm}^{3}, 0.053 \mathrm{mmol}\right)$ was added to give a colourless solution of [28a]0Tf. Attempts to isolated [28a]0Tf were unsuccessful. ${ }^{\mathbf{1}} \mathrm{H}$ NMR (400 MHz, DCM, $25.0^{\circ} \mathrm{C}$) $\delta: 7.80(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.22(\mathrm{~m}, 17 \mathrm{H}), 7.17(\mathrm{td}, J=2.4,7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.11(\mathrm{t}, J=7.6,7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.84\left(\mathrm{~d},{ }^{2} J_{H-P}=\right.$ $14.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{3 1}} \mathbf{P}\{\mathbf{1} \mathbf{H}\} \mathbf{N M R}\left(162 \mathrm{MHz}, \mathrm{DCM}, 25.0^{\circ} \mathrm{C}\right) \delta: 71.7\left(\mathrm{~d},{ }^{2} J_{P-P}=7.5 \mathrm{~Hz}\right), 30.6(\mathrm{~d}$, ${ }^{2} J_{P-P}=7.5 \mathrm{~Hz}$). ${ }^{19}$ F NMR (376.5 MHz, DCM, $25.0^{\circ} \mathrm{C}$) $\delta:-79.3(\mathrm{~s})$.

5.9.3 - Synthesis of N, N^{\prime}-Diarylureas

N, N^{\prime}-diarylureas were prepared via standard literature procedures through condensation of a substituted aniline with phenylisocyanate. Further details are given in Chapter 4.

5.9.4 - Synthesis of Phosphorus-Urea Heterocycles

The phosphorus-urea heterocycles were typically prepared by treating an N arylamidine with a halophosphine in the presence of base. The synthesis of $\mathbf{1 8 a}$ is given as exemplar. Crystals suitable for X-ray diffraction were grown by slow diffusion of hexane into a saturated solution of the product in DCM or toluene at $20^{\circ} \mathrm{C}$.

5.9.4.1 - Synthesis of 18a:

$16 \mathbf{a}(0.47 \mathrm{~g}, 2.2 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}\left(0.6 \mathrm{~cm}^{3}, 4.4 \mathrm{mmol}\right)$ were dissolved in THF ($20 \mathrm{~cm}^{3}$) and cooled to $0^{\circ} \mathrm{C} . \mathrm{PhPCl}_{2}\left(0.3 \mathrm{~cm}^{3}, 2.2 \mathrm{mmol}\right)$ was added dropwise to give a colourless suspension that was slowly warmed to room temperature and allowed to stir for 24
hours. The supernatant was removed via filter cannula and the solids washed with THF ($5 \mathrm{~cm}^{3}$). The combined filtrate was concentrated in vacuo and the residues recrystallised from DCM and hexane to give $\mathbf{1 6 a}$ as a colourless solid. Yield: 0.31 g ($0.97 \mathrm{mmol}, 43.9 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 25.0^{\circ} \mathrm{C}$) $\delta: 7.88(\mathrm{t}, J=8.1,8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.58(\mathrm{t}, J=7.3,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=7.4,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.22(\mathrm{~m}, 8 \mathrm{H}), 7.01(\mathrm{t}, J=6.8$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{DCM}, 25.0^{\circ} \mathrm{C}$) $\delta: 91.8\left(\mathrm{t}, J_{P \cdot H}=7.5,10.0 \mathrm{~Hz}\right) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\} \mathbf{N M R}$ ($100.5 \mathrm{MHz}, \mathrm{DCM}, 25.0^{\circ} \mathrm{C}$) $\delta: 150.0\left(\mathrm{~d}, J_{c-p}=9.1 \mathrm{~Hz}\right.$), 139.8 (s$), 138.0\left(\mathrm{~d}, J_{c-p}=5.3 \mathrm{~Hz}\right.$), 135.3 (d, $\left.J_{C-P}=39.3 \mathrm{~Hz}\right), 133.9(\mathrm{~s}), 132.2\left(\mathrm{~d}, J_{c-P}=26.8 \mathrm{~Hz}\right), 129.4$ (s$), 128.9$ (s$), 123.5$ (s), 122.4 (s), 119.1 (s), 117.4 (d, $J_{C-P}=4.8 \mathrm{~Hz}$).

5.9.4.2 - Synthesis of 18r:

Pale yellow solid, 68.2 \% yield. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 25.0^{\circ} \mathrm{C}$) $\delta: 7.89(\mathrm{td}, J=1.3,8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.58(\mathrm{td}, J=1.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.5(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.06(\mathrm{t}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.01(\mathrm{tt}, J=1.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{dd}, J=1.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.40$ (dd, $J=2.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~s}, 6 \mathrm{H}) .{ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{DCM}, 25.0^{\circ} \mathrm{C}$) $\delta: 90.9\left(\mathrm{t}, J_{P-H}=\right.$
 $\left.{ }_{P}=9.5 \mathrm{~Hz}\right), 139.5(\mathrm{~s}), 138.7\left(\mathrm{~d}, J_{C-P}=5.9 \mathrm{~Hz}\right), 138.2\left(\mathrm{~d}, J_{C-P}=5.9 \mathrm{~Hz}\right), 135.7\left(\mathrm{~d}, J_{C-P}=38.9\right.$ Hz), 133.8 (s), 132.0 ($\mathrm{d}, J_{C-P}=26.4 \mathrm{~Hz}$), 129.8 (s$), 129.5\left(\mathrm{~d}, J_{C \cdot P}=8.1 \mathrm{~Hz}\right.$), 129.4 (s$), 128.9$ (s), 123.4 (s$), 122.7$ (s), 119.5 (s$), 117.5\left(\mathrm{~d}, J_{C-P}=5.9 \mathrm{~Hz}\right), 108.1(\mathrm{~s}), 105.5\left(\mathrm{~d}, J_{c-P}=5.9\right.$ Hz), 101.7 (d, $J_{C-P}=5.1 \mathrm{~Hz}$), $40.4(\mathrm{~s})$.

5.9.4.3 - Synthesis of $18 \mathrm{r}^{*}$:

16r ($0.26 \mathrm{~g}, 1 \mathrm{mmol}$) was dissolved in pyridine ($2.5 \mathrm{~cm}^{3}$) and cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{N}^{\mathrm{N}} \mathrm{Pr}_{2} \mathrm{PCl}_{2}$ ($0.18 \mathrm{~cm}^{3}, 1 \mathrm{mmol}$) was added dropwise and the pale orange solution was slowly warmed to room temperature and allowed to stir. After 15 hours $\mathrm{Et}_{3} \mathrm{~N}\left(0.42 \mathrm{~cm}^{3}, 3\right.$ mmol) was added to give a colourless precipitate. The solvent was removed in vacuo and the residues extracted into toluene ($2 \times 10 \mathrm{~cm}^{3}$) and filtered. The filtrate was evaporated to dryness and the residues were recrystallised from MeCN at $-20^{\circ} \mathrm{C}$ to give 18r* as a colourless solid. Yield: $0.21 \mathrm{~g}(0.55 \mathrm{mmol}, 55.0 \%) .{ }^{\mathbf{1}} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}$, $26.0^{\circ} \mathrm{C}$) $\delta: 7.45(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.5,7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=8.0,8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.01(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-$ $3.77(\mathrm{~m}, 1 \mathrm{H}), 3.61-3.48(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{~s}, 6 \mathrm{H}), 1.56(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.94(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{DCM}, 26.0^{\circ} \mathrm{C}$) $\delta: 78.8\left(\mathrm{~d}, J_{P-H}=18.1 \mathrm{~Hz}\right)$. ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($100.5 \mathrm{MHz}, \mathrm{DCM}, 26.0^{\circ} \mathrm{C}$) $\delta: 151.6$ (s$), 151.1\left(\mathrm{~d}, J_{C-P}=11.6 \mathrm{~Hz}\right.$), 139.8 (d, $\left.J_{C-P}=6.5 \mathrm{~Hz}\right), 139.1\left(\mathrm{~d}, J_{C-P}=6.5 \mathrm{~Hz}\right), 129.7(\mathrm{~s}), 129.3(\mathrm{~s}), 122.8(\mathrm{~s}), 117.4\left(\mathrm{~d}, J_{C-P}=5.1\right.$ $\mathrm{Hz}), 107.5(\mathrm{~s}), 105.9\left(\mathrm{~d}, J_{C-P}=5.1 \mathrm{~Hz}\right), 101.4\left(\mathrm{~d}, J_{C-P}=5.8 \mathrm{~Hz}\right), 45.0\left(\mathrm{~d}, J_{C-P}=30.5 \mathrm{~Hz}\right), 44.3$
$\left(\mathrm{d}, J_{C-P}=7.3 \mathrm{~Hz}\right), 40.5(\mathrm{~s}), 26.8\left(\mathrm{~d}, J_{C-P}=13.8 \mathrm{~Hz}\right), 26.7\left(\mathrm{~d}, J_{C-P}=13.8 \mathrm{~Hz}\right), 21.0\left(\mathrm{~d}, J_{C-P}=\right.$ 10.2 Hz).

5.9.4.4 - Synthesis of 30a:

Colourless solid, 38.9 \% yield. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 26.0^{\circ} \mathrm{C}$) $\delta: 7.44-7.37(\mathrm{~m}, 8 \mathrm{H})$, 7.21-7.16 (m, 2H). ${ }^{31} \mathbf{P}$ NMR (162 MHz, DCM, $26.0^{\circ} \mathrm{C}$) $\delta: 140.1$ (s).

5.9.4.5 - NMR Scale Synthesis of 31a:

To a J. Young's NMR tube fitted with a d_{6}-DMSO capillary was added $\mathbf{3 0 a}$ ($27.7 \mathrm{mg}, 0.1$ $\mathrm{mmol})$ and $\mathrm{PhCl}\left(0.6 \mathrm{~cm}^{3}\right)$. The NMR tube was heated at $100^{\circ} \mathrm{C}$ for 16 hours and then slowly cooled to room temperature to give colourless crystals of 31a. The supernatant was decanted and the crystals were dried in vacuo. $\mathbf{1}^{\mathbf{H}} \mathbf{~ N M R ~ (~} 400 \mathrm{MHz}, \mathrm{DCM}, 20.3^{\circ} \mathrm{C}$) δ : 7.42-7.10 (m, 20H). ${ }^{31}$ P NMR (162 MHz, DCM, $20.1^{\circ} \mathrm{C}$) $\delta: 15.7\left(\mathrm{~d},{ }^{1} J_{P-P}=117.6 \mathrm{~Hz}\right), 9.5$ $\left(\mathrm{d},{ }^{1} J_{P-P}=117.6 \mathrm{~Hz}\right)$.

5.10 - References

C. Pierra Rouvière, A. Amador, E. Badaroux, T. Convard, D. Da Costa, D. Dukhan, L. Griffe, J. F. Griffon, M. LaColla, F. Leroy, M. Liuzzi, A. G. Loi, J. McCarville, V. Mascia, J. Milhau, L. Onidi, J. L. Paparin, R. Rahali, E. Sais, M. Seifer, D. Surleraux, D. Standring and C. Dousson, Bioorganic Med. Chem. Lett., 2016, 26, 4536-4541. L. Stahl, Coord. Chem. Rev., 2000, 210, 203-250.

8 R. Suter, Z. Benkő, M. Bispinghoff and H. Grützmacher, Angew. Chem. Int. Ed., 2017, 56, 11226-11231.
M. Papke, L. Dettling, J. A. W. Sklorz, D. Szieberth, L. Nyulászi and C. Müller, Angew. Chem. Int. Ed., 2017, 56, 16484-16489.

10 S. S. Chitnis, H. A. Sparkes, V. T. Annibale, N. E. Pridmore, A. M. Oliver and I. Manners, Angew. Chem. Int. Ed., 2017, 56, 9536-9540.

11 M. S. Balakrishna, V. S. Reddy, S. S. Krishnamurthy, J. F. Nixon and J. C. T. R. B. S. Laurent, Coord. Chem. Rev., 1994, 129, 1-90.

12 A. Bashall, E. L. Doyle, C. Tubb, S. J. Kidd, M. McPartlin, A. D. Woods and D. S. Wright, Chem. Commun., 2001, 0, 2542-2543.
D. S. Wright, Host-Guest Chemistry - p-Block Systems, Elsevier Ltd., 2013, vol. 1. M. S. Balakrishna, Dalton Trans., 2016, 45, 12252-12282.
W. Zeiss, W. Schwarz and H. Hess, Angew. Chem. Int. Ed., 1977, 16, 407-408. R. T. Oakley, S. J. Rettig, N. L. Paddock and J. Trotter, J. Am. Chem. Soc., 1985, 107, 6923-6936.
E. Niecke, M. Nieger and F. Reichert, Angew. Chem. Int. Ed., 1988, 27, 1715-1716. M. Lehmann, A. Schulz and A. Villinger, Struct. Chem., 2011, 22, 35-43. N. Burford, S. T. Cameron, K. D. Conroy, B. Ellis, M. Lumsden, C. L. B. Macdonald, R. McDonald, A. D. Phillips, P. J. Ragogna, R. W. Schurko, D. Walsh and R. E.

Wasylishen, J. Am. Chem. Soc., 2002, 124, 14012-14013.
F. Garcia, R. A. Kowenicki, D. S. Wright and L. Riera, Dalton Trans., 2005, 2, 24952496.
M. S. Balakrishna, D. J. Eisler and T. Chivers, Chem. Soc. Rev., 2007, 36, 650-664.
M. M. Siddiqui, J. T. Mague and M. S. Balakrishna, Inorg. Chem., 2015, 54, 12001202.
S. S. Kurnaravel, S. S. Krishnamurthy, T. S. Cameron and A. Lindenib, Inorg. Chem., 1988, 27, 4546.
P. Potin and R. De Jaeger, Eur. Polym. J., 1991, 27, 341-348.
I. Teasdale and O. Brüggemann, Polymers, 2013, 5, 161-187.
H. C. Niu, A. J. Plajer, R. Garcia-Rodriguez, S. Singh and D. S. Wright, Chem. Eur. J., 2018, 24, 3073-3082.
H. N. Stokes, Am. Chem. J., 1895, 17, 275.
Y. J. Shin, Y. R. Ham, S. H. Kim, D. H. Lee, S. B. Kim, C. S. Park, Y. M. Yoo, J. G. Kim, S. H. Kwon and J. S. Shin, J. Ind. Eng. Chem., 2010, 16, 364-367.
V. Chandrasekhar and K. R. J. Thomas, Appl. Organomet. Chem., 1993, 7, 1-31.
H. Ulrich and A. A. R. Sayigh, Angew. Chem. Int. Ed., 1964, 647-648.
H. W. Roesky, K. Ambrosius, M. Banek and W. S. Sheldrick, Chem. Ber, 1980, 113, 1847.
H. W. Roesky, K. Ambrosius and W. S. Sheldrick, Chem. Ber, 1979, 112, 1365.
H. W. Roesky, H. Zamankhan, W. S. Sheldrick, A. H. Cowley and S. K. Mehrotra, Inorg. Chem., 1981, 20, 2910-2915.
J. Lucas, D. Amirzadeh-asl, H. Djarrah and H. W. Roesky, Phosphorus Sulfur Relat. Elem., 1983, 18, 69-72.
A. O. Pushechnikov, D. M. Volochnyuk, D. G. Krotko, A. K. Tyltin and A. A. Tolmachev, Chem. Heterocycl. Compd., 2001, 37, 656-658.
J. Barker and M. Kilner, Coord. Chem. Rev., 1994, 133, 219-300.
M. P. Coles, J. Chem. Soc., Dalt. Trans., 2006, 60, 985985-10011001.
F. T. Edelmann, Chem. Soc. Rev., 2009, 38, 2253-2268.
F. T. Edelmann, Coord. Chem. Rev., 1994, 137, 403-481.
C. Ergezinger, F. Weller and K. Dehnicke, Z. Naturforsch., 1988, 43b, 1621-1627.
J. Barker, N. C. Blacker, P. R. Phillips, N. W. Alcock, W. Errington and M. G. H. Wallbridge, Dalton Trans., 1996, 431-437.
B. M. Day, W. Knowelden and M. P. Coles, Dalton Trans., 2012, 41, 10930-10933.
S. Pahar, S. Karak, M. Pait, K. V. Raj, K. Vanka and S. S. Sen, Organometallics, 2018, 37, 1206-1213.
B. Blom, D. Gallego and M. Driess, Inorg. Chem. Front., 2014, 1, 134-148.
C. Jones, S. J. Bonyhady, N. Holzmann, G. Frenking and A. Stasch, Inorg. Chem., 2011, 50, 12315-12325.
K. Maheswari, N. M. Rajendran, J. Meyer and N. D. Reddy, Organometallics, 2010, 29, 3799-3807.
K. Maheswari and N. D. Reddy, Organometallics, 2012, 31, 197-206.
K. Maheswari, A. R. Rao and N. D. Reddy, Inorg. Chem., 2015, 54, 2000-2008.
N. Nakata, N. Hosoda, S. Takahashi and A. Ishii, Dalton Trans., 2018, 47, 481-490.
A. G. Orpen, L. Brammer, F. H. Allen, O. Kennard, D. G. Watson and R. Taylor, J. Chem. Soc., Dalt. Trans., 1987, S1-S83.
T. Chivers and R. S. Laitinen, Dalton Trans., 2017, 46, 1357-1367.
A. Bondi, J. Phys. Chem., 1964, 68, 441-451.
S. Stadlbauer, R. Frank, L. Maulana, P. Lönnecke, B. Kirchner and E. Hey-Hawkins, Inorg. Chem., 2009, 48, 6072-6082.
I. Häger, R. Fröhlich and E.-U. Würthwein, Eur. J. Inorg. Chem., 2009, 2415-2428.
I. Pernik, B. J. Maitland, A. Stasch and C. Jones, Can J. Chem, 2017, 1-34.
T. B. Rauchfuss, in Inorganic Syntheses, John Wiley \& Sons, 2010.
M. Asay, C. Jones and M. Driess, Chem. Rev., 2011, 111, 354-396.
P. B. Hitchcock, M. F. Lappert and J. E. Nycz, Chem. Commun., 2003, 129, 11421143.
M. Schiffer and M. Scheer, Angew. Chem. Int. Ed., 2001, 40, 3413-3416.
M. Kaupp, C. Aubauer, G. Engelhardt, T. M. Klapotke and O. L. Malkina, J. Chem. Phys., 1999, 110, 3897-3902.
F. Thomas, T. Bauer, S. Schulz and M. Nieger, Z. Anorg. Allg. Chem., 2003, 629, 2018-2027.
A. Dimitrov, D. Heidemann and E. Kemnitz, Inorg. Chem., 2006, 45, 10807-10814. X. Pan, X. Wang, Z. Zhang and X. Wang, Dalton Trans., 2015, 44, 15099-15102.
X. Pan, X. Chen, T. Li, Y. Li and X. Wang, J. Am. Chem. Soc., 2013, 135, 3414-3417. N. G. Connelly and W. E. Geiger, Chem. Rev., 1996, 96, 877-910.
D. M. Volochnyuk, A. O. Pushechnikov, D. G. Krotko, A. M. Pinchuk and A. A. Tolmachev, Synthesis, 2005, 3124-3134.
R. Navrátil, J. Tarábek, I. Linhart and T. Martinů, Org. Lett., 2016, 18, 3734-3737. M. Cortes-Salva, C. Garvin and J. C. Antilla, J. Org. Chem., 2011, 76, 1456-1459. Y. Wang, H. Wang, J. Peng and Q. Zhu, Org. Lett., 2011, 13, 4604-4607.

Chapter 6

Donor-Functionalised Diiodophosphoranes

"'ll be back!"
The Terminator (1984)

6.1 - Introduction

6.1.1 - A Brief Introduction to Main Group Lewis Acids

The Lewis acidity of main-group species may be modulated by the choice of substituents and overall charge, which leads to exploitable reactivities. Work by Stephan, ${ }^{1}$ Ingleson, ${ }^{2}$ and Crudden ${ }^{3}$ has shown that appropriately substituted and stabilised borenium cations are able to activate dihydrogen, in some cases catalytically, and Stephan has successfully extended this to catalysis by phosphonium cations. ${ }^{4}$ Hudnall ${ }^{5}$ and Gabbaï ${ }^{6}$ have exploited stibonium cations as Lewis acids to activate aldehydes, and Alcarazo has used carbene-stabilised sulfenyl cations to mimic the reactivity of λ^{3} iodanes, which lead to new $\mathrm{C}-\mathrm{C}$ bond forming reactions. ${ }^{7}$ In all cases, the careful choice of substituents was key to controlling reactivity and the nature of the interaction of main-group Lewis acids with donor species is therefore of fundamental importance.

Previous work in the Clark group has found that, contrary to expectations, tri-aryl phosphanes bearing an ortho-donor functionality to permit chelation form less stable phosphane-phosphenium adducts with the diphenylphosphenium $\left[\mathrm{Ph}_{2} \mathrm{P}^{+}\right]$cation in comparison to the unsubstituted Lewis base triphenylphosphane. ${ }^{8}$ Computational studies, coupled with crystallographic characterisation, showed that the donor phosphanes adopted an internally coordinated configuration, raising the energy of the phosphorus lone pairs, but nevertheless produced less stable adducts, which implies significant steric influence on complex stability. This is in marked contrast to the behaviour of these phosphanes in transition-metal complexes, wherein they behave as chelate ligands, ${ }^{9,10}$ or with hard main-group Lewis acids, where competitive binding with the donor functionality is observed. ${ }^{11}$ Diiodophosphoranes, which may be regarded as phosphane-diiodine Lewis adducts, are highly crystalline species and so were selected as suitable targets to provide structural information on the behaviour of these phosphanes with soft, low steric demand Lewis acids.

6.1.2 - Introduction to Diiodophosphoranes

Molecules of the formula $\mathrm{R}_{3} \mathrm{PX}_{2}(\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ have been known for many years and their solid-states structures are now well established, and adopt three major structural motifs (Figure 6.1.2.1). When $\mathrm{X}=\mathrm{F}, 12$ the molecular five-coordinate trigonal bypyramidal species (A) is preferred and this structure is also observed when $\mathrm{X}=\mathrm{Cl}$, where R is an electron-withdrawing group $\left(\mathrm{R}=\mathrm{Ph}, \mathrm{C}_{6} \mathrm{~F}_{5}\right) \cdot{ }^{13,14}$ The ionic halophosphonium halide salts (\mathbf{B}), represented as $\left[\mathrm{R}_{3} \mathrm{PX}^{+}\right]$- , are largely dominated by $\mathrm{X}=$
Cl^{15} or $\mathrm{X}=\mathrm{Br}^{16-19}$ species, whilst the molecular charge-transfer "spoke" motif (C), $\mathrm{R}_{3} \mathrm{P}-$ $\mathrm{X}-\mathrm{X}$, is frequently encountered when $\mathrm{X}=\mathrm{Br},{ }^{16,18}$ but is most commonly observed for $\mathrm{X}=$ I adducts. ${ }^{20-23}$ The particular structure adopted is largely dependent on the identity of the halogen and the R groups, but also depends on the solvent and the crystallisation conditions employed. ${ }^{24}$

A

B

C

Figure 6.1.2.1: Structural motifs adopted by $\mathrm{R}_{3} \mathrm{PX}_{2}$ adducts: (A) Molecular fivecoordinate trigonal bypyramidal species; (B) Ionic halo-phosphonium halide salts; (C) Charge-transfer molecular "spoke" structure.

The charge-transfer "spoke" structure adopted when $\mathrm{X}=\mathrm{I}$ may be regarded as a PIII Lewis base adduct of the very soft, linear Lewis acid, I_{2}. Diiodine adducts may also be regarded as iodophosphonium iodide salts which exhibit strong cation-anion interactions between the phosphorus-bound iodine atom and I- anion, and therefore the true interpretation of bonding in $\mathrm{R}_{3} \mathrm{PI}_{2}$ systems is somewhat ambiguous. Regardless, it is evident that the P-I and I-I bond lengths are highly sensitive to the electron donating capacity and steric demand about the phosphorus centre. ${ }^{22,25}$ The length of the I-I interaction in particular varies considerably, ranging from 3.021 (1) \AA^{26} for (Mecarb) ${ }^{2} \mathrm{Pr}_{2} \mathrm{PI}_{2}\left[\mathrm{Me}-\mathrm{carb}=1-\left(2-\mathrm{Me}-1,2-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{10}\right)\right]$ to $3.6389(14) \AA^{27}$ for $\left[\left({ }^{n} \mathrm{Pr}_{2} \mathrm{~N}\right)_{3} \mathrm{PI}\right] \mathrm{I}$, and is significantly longer than the I-I bond lengths observed in the arsenic analogues $\left[\mathrm{Ph}_{3} \mathrm{AsI}_{2}(3.005(1) \AA)^{28}\right.$ vs. $\left.\mathrm{Ph}_{3} \mathrm{PI}_{2}(3.161(2) \AA)^{21}\right]$ and $\mathrm{I}_{2}(2.660 \AA),{ }^{29}$ but still within the sum of the Van der Waals radii $(3.96 \AA) .{ }^{29}$ This elongation of the I-I bond in the adducts relative to diiodine is a result of electron density being transferred into the σ^{*} orbital of I_{2} by the Lewis base, $\mathrm{R}_{3} \mathrm{P}$. Therefore, the I-I bond length can be regarded as highly indicative of the degree of charge transfer and thus phosphine donor strength.

The magnitude of the P-I and I-I bond lengths in diiodophosphoranes are also significantly impacted by steric effects, in particular, the P-I distances show greater susceptibility to steric influence than the I-I bond. As expected, the P-I bond length elongates as the size of the R group increases with ${ }^{t} \mathrm{Bu}_{3} \mathrm{PI}_{2}(2.461(2) \AA)^{20}$ exhibiting a greater P-I separation than ${ }^{i} \mathrm{Pr}_{3} \mathrm{PI}_{2}\left(2.409(2) \AA / 2.420(2) \AA\right.$). ${ }^{23}$ For aryl-substituted $\mathrm{Ar}_{3} \mathrm{PI}_{2}$ adducts, the effects of sterics becomes more apparent since the orientation and
position of substituents and conformation adopted by the aryl groups have a considerable impact on the P-I distance.

The P-I and I-I bond metrics for $\left(m-\mathrm{CH}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{PI}_{2}$ and $\left(p-\mathrm{CH}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{PI}_{2}$ (2.479(3)$2.472(5) \AA / 3.1809(17)-3.1815(15) \AA)^{30}$ are essentially identical, with the P-I bond length equivalent within errors to that in $\mathrm{Ph}_{3} \mathrm{PI}_{2}$, whilst the I-I separation is significantly elongated (compared to $3.1513(3) \AA$) due to the increased electron donating capacity supplied by the tolyl-groups. In contrast, $\left(o-\mathrm{CH}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{PI}_{2}$ shows a considerably longer P-I bond length at 2.5523(12) \AA^{31} and concomitant contraction of the I-I distance ($3.0727(4) \AA$), which illustrates the dominating steric effects of ortho-aryl-substituents on the adducts' P-I and I-I bond metrics. This observation was confirmed by further studies into a series of tri-aryl substituted $\mathrm{Ar}_{3} \mathrm{PI}_{2}$ adducts ${ }^{25}$ which also showed that for meta- and para-substituted aryl adducts, the electronic effects are primarily responsible for the changes in P-I and I-I bond lengths.

6.2 - Target Molecules

A series of donor-functionalised $\mathrm{Ar}_{3} \mathrm{PI}_{2}$ adducts $\mathbf{3 4 a}$-g were prepared via the reaction of tri-aryl phosphanes and stoichiometric diiodine in anhydrous diethyl ether. The phosphanes 33a-f were synthesised via unoptimised methods using the appropriate aryl-lithium and halophosphine in THF at $-95^{\circ} \mathrm{C}$. Ortho-lithiations of anisole, $\mathrm{N}, \mathrm{N}-$ dimethylaniline and N, N-dimethylbenzylamine were performed according to literature methods. ${ }^{32-34}$ A general route for the synthesis of mono-aryl-substituted adducts is shown in Scheme 6.2.1, with minor changes to the experimental conditions for certain derivatives.

Scheme 6.2.1: Overall synthetic route for the preparation of mono-aryl-substituted

$$
\mathrm{Ar}_{3} \mathrm{PI}_{2} \text { adducts. }
$$

The target molecules (Figure 6.2.1) were selected to study the effects of ortho-donor aryl-substituents on the P-I and I-I bond metrics and overall structural geometry in the donor-functionalised adducts. Three simple donor-moieties were chosen and the mono- and bis-aryl substituted $\mathrm{Ar}_{3} \mathrm{PI}_{2}$ systems were prepared.

34a

34d

34b

$34 e$

34c

34f

Figure 6.2.1: Selected donor-functionalised $\mathrm{Ar}_{3} \mathrm{PI}_{2}$ targets.
Compounds $\mathbf{3 4 a} \mathbf{- e}$ and $\mathbf{3 4} \mathbf{g}\left(\mathrm{Ph}_{3} \mathrm{PI}_{2}\right)$ were all isolated as free flowing yellow powders. Where necessary, products were purified by recrystallisation from DCM and $\mathrm{Et}_{2} \mathrm{O}$. Compound 34c was found to contain $c a .25 \%$ phosphine oxide impurity by ${ }^{31}$ P NMR which suggests extreme moisture/air sensitivity. Attempts to prepare and purify 33f were unsuccessful, and yielded a viscous amber oil that was found to contain an unknown phosphorus-containing impurity (ca. 5\% by ${ }^{31} \mathrm{P}$ NMR) that interfered with all attempts to synthesise 34f. Crystals suitable for single-crystal X-ray diffraction studies were successfully grown by slow diffusion of diethyl ether into a saturated solution of the product in dichloromethane.

6.3 - Structural Studies of Donor-Functionalised Diiodophosphoranes

As expected, the charge-transfer molecular "spoke" structure is adopted in the solidstate for the five novel donor-functionalised $\mathrm{Ar}_{3} \mathrm{PI}_{2}$ adducts. The P1-I1-I2 angles are close to linear, ranging from $171.0(3)^{\circ}$ for $\mathbf{3 4 e}$ to $178.3(2)^{\circ}$ for $\mathbf{3 4 a}$. The P1-I1 and I1I2 bond lengths fall within the large range observed for $\mathrm{Ar}_{3} \mathrm{PI}_{2}$ and $\mathrm{R}_{3} \mathrm{PI}_{2}$ adducts, but the greater electron donating capacity results in an elongated I1-I2 bond. Single-crystal X -ray diffraction data was also collected for the known unsubstituted $\mathrm{Ph}_{3} \mathrm{PI}_{2}$ adduct, $\mathbf{3 4}$, at 100 K to permit direct and precise bond metric comparisons with the donorfunctionalised diiodophosphoranes at the same temperature. Selected bond lengths and angles are displayed in Table 6.3.1.

	Bond Lengths / A				Bond Angles $/^{\circ}$		
	P1-I1	11-12	D1...P1	D2... P1	D1-P1-C1	D2-P1-C2	D2-P1-I1
34a	2.4753(6)	3.2022(3)	2.910(2)		159.2(1)		
34b	2.4913 (5)	3.1238(3)	2.898(1)		161.9(7)		
34c	$2.4791(7)$	3.1884(3)	2.951(3)	2.898(1)	177.8(1)		
34d	2.4610 (6)	3.2648(3)	2.896(2)	$2.945(3)$	160.3(7)		
34e	$2.4377(9)$	3.3502(4)	2.883(3)	2.933(2)	165.3(1)	162.9(7)	167.9(6)
	2.4622(7)	3.2464(4)	2.904(3)		166.7(1)		169.2(6)
349	2.4690(8)	3.1513(3)					

Table 6.3.1: Selected bond lengths and angles for the donor-functionalised diiodophosphoranes.

6.3.1 - Crystal Structure of 34a

Compound 34a crystallises as yellow blocks in the triclinic space group $P \overline{1} \overline{1}$, with a single molecule in the asymmetric unit. The geometry is intermediate between tetrahedral and trigonal bypyramidal, with apical methoxy and phenyl substituents (Figure 6.3.1.1). The 01-P1-C1 angle deviates considerably from linearity at $159.2(1)^{\circ}$ and the sum of the equatorial angles $\left(332.5^{\circ}\right)$ is smaller than that seen for the more sterically hindered adducts, and more closely approaches that expected for a tetrahedral system. The methoxy group is coplanar with the associated aryl ring, and shows a close oxygen-phosphorus contact at $2.910(2) \AA$ within the sum of the van der Waals radii ($3.32 \AA$). However, the $\mathrm{C}_{\text {ortho }}-01$ bond is short ($1.357(3) \AA$) in comparison to free anisole ($1.372(1) \AA$), ${ }^{35}$ which indicates a significant degree of delocalisation of the oxygen lone pairs onto the ring.

Figure 6.3.1.1: Crystal structure of 34a.

The phosphorus-iodine bond length is similar to that of $\mathrm{Ph}_{3} \mathrm{PI}_{2}(\mathbf{3 4 g})$ (cf. 2.4753(6) vs. $2.4690(8) \AA$), but the I1-I2 distance is elongated at $3.2022(3) \AA$. This is therefore well described as an adduct with increased phosphane donor strength, as demonstrated by the increased I1-I2 bond length, which arises from π-conjugation of the oxygen lone pairs rather than hypervalent bond formation (vide infra). The close oxygenphosphorus contact must therefore arise of steric necessity, supported by the lack of contraction of the P1-I1 bond compared to the donor free structure due to steric constraint.

Molecules of 34a form side-to-side anti-parallel pairs in which the near-linear P-I-I spoke is directed diagonally through the crystallographic a and b axes (Figure 6.3.1.2). The aryl rings adopt a staggered propeller conformation with I1-P1-C $\mathrm{C}_{P}-\mathrm{C}_{\text {ortho }}$ torsion angles ranging from $49.8(2)^{\circ}$ to $61.3(2)^{\circ}$. The back-to-back sextuple phenyl embrace of molecules commonly adopted for $\mathrm{Ar}_{3} \mathrm{P}$ containing species ${ }^{36}$ is not observed, presumably due to the unsymmetrical nature of the adduct. There is however, a single long offset face-to-face (OFF) embrace between pairs of molecules and two consequent edge-to-face (EF) embraces (Figure 6.3.1.3), together with much shorter OFF embraces to diagonally neighbouring anti-parallel molecules which link to form chains that propagate along the crystallographic b axis. Importantly however, the donor-moiety does not electronically contribute to the packing observed in 34a.

Figure 6.3.1.2: Crystal packing of 34a looking down the crystallographic a axis, showing the anti-parallel arrangement of molecules.

D

E

Figure 6.3.1.3: (D) The offset face-to-face (OFF) and (E) edge-to-face (EF) interactions of aromatic molecules and substituents.

6.3.2 - Crystal Structure of 34b

Compound 34b crystallises as yellow blocks in the triclinic space group $P \overline{1}$, with a single molecule in the asymmetric unit (Figure 6.3.2.1). The geometry of the molecule can be considered a distorted trigonal bipyramid, with a close nitrogen-phosphorus contact (2.898(1) \AA) within the sum of the van der Waals radii. The donor NMe_{2} fragment is rotated such that the lone pair is orthogonal to the π-system, directed towards the phosphorus centre and trans to the apical phenyl substituent. Furthermore, the sum of the equatorial angles is 336.51°, greater than that seen for $\mathbf{3 4 g}\left(330.42^{\circ}\right)$, although the N1-P1-C1 angle still deviates significantly from linearity at $161.9(7)^{\circ}$. This deviation presumably stems from the rigidity of the chelate tether. The P1-I1 bond (2.4913(5) Å) is significantly longer than that of $\mathbf{3 4 g}$, whilst the I1-I2 distance is considerably shorter at $3.1238(3) \AA$. Despite the donation of the lone pair into phosphorus, the contraction of the I1-I2 bond indicates that the overall degree of charge transfer is in fact less than that of $\mathbf{3 4 g}$.

Figure 6.3.2.1: Crystal structure of 34b.

Molecules of $\mathbf{3 4 b}$ form dimer pairs linked by six EF embraces between the aryl rings (Figure 6.3.2.2). The aryl rings are twisted in the same direction adopting a staggered propeller conformation; the I1-P1-C $C_{P}-C_{\text {ortho }}$ torsion angles are $58.8(2)^{\circ}, 57.4(2)^{\circ}$ and $38.0(2)^{\circ}$, with the lowest torsion belonging to the equatorial phenyl ring. The sextuple phenyl embrace observed for this molecule suggests that the asymmetry of the phosphane does not necessarily prevent this packing arrangement as previously hypothesised for 34a, but does highlight the unpredictability of crystal packing within these systems.

Figure 6.3.2.2: Crystal packing of $\mathbf{3 4 b}$ looking down the crystallographic a axis, showing the sextuple phenyl embrace adopted between molecules.

6.3.3 - Crystal Structure of 34c

Compound 34c crystallises as yellow blocks in the monoclinic space group $P 2_{1} / c$ with a single molecule with unambiguous distorted trigonal bipyramidal geometry (Figure 6.3.3.1) in the asymmetric unit. The sum of angles about the equatorial plane is 339.7° and the nitrogen-phosphorus contact $(2.951(3) \AA$) is slightly elongated relative to $\mathbf{3 4 b}$. Despite the flexibility of the methylene linker which, in theory, allows the NMe_{2} group to twist away from the phosphorus centre to minimise steric clashes, it adopts an apical position, linearly trans to a phenyl ring - the N1-P1-C1 angle is $177.8(1)^{\circ}$. The P1-I1 bond length is comparable to $\mathbf{3 4 g}$ at $2.4791(7) \AA$, whilst the I1-I2 contact is elongated at $3.1884(3) \AA$, which indicates a greater degree of charge transfer.

Figure 6.3.3.1: Crystal structure of 34c.
The aryl rings in $\mathbf{3 4 c}$ adopt a staggered propeller conformation but the phenyl ring in the equatorial plane has a small torsion angle (4.1(3) ${ }^{\circ}$ compared to $47.5(3)^{\circ}$ and $\left.56.3(2)^{\circ}\right)$ such that an ortho-hydrogen is orientated upwards towards the P1-I1 bond. This molecule can therefore be termed as having an exo ${ }_{1}$ conformation using the notation of Howell. ${ }^{37}$ Molecules of 34c form side-to-side parallel and anti-parallel pairs in which the P-I-I spoke is directed diagonally along the crystallographic a and c axes (Figure 6.3.3.2). Parallel pairs are linked by a single EF embrace with a I1-P1‥P1-I1 torsion of $3.35(3)^{\circ}$, whilst anti-parallel pairs are linked by a single OFF embrace.

Figure 6.3.3.2: Crystal packing of 34c looking down the crystallographic a axis, showing the parallel and anti-parallel pairs of molecules.

6.3.4 - Crystal Structure of 34d

Compound 34d crystallises as yellow rhombohedra in the triclinic space group $P \overline{1}$, with a single molecule in the asymmetric unit (Figure 6.3.4.1). The molecules adopt a distorted tetrahedral geometry with both OMe fragments coplanar with their associated aryl rings, and short oxygen-phosphorus contacts ($01 \cdots$ P1 $=2.896(2) \AA$; $02 \cdots \mathrm{P} 1=2.898(1) \AA$) which arise through steric necessity. The primary methoxy moiety adopts an apical position, trans to the unsubstituted phenyl ring whilst the secondary OMe is trans to the primary anisole fragment, with both $\mathrm{O}-\mathrm{P}-\mathrm{C}_{\text {trans }}$ angles deviating significantly from linearity. Despite the addition of a second ortho-donor, the sum of equatorial angles (329.20 $)$ is smaller than $\mathbf{3 4 a}$ and the other $\mathrm{Ar}_{3} \mathrm{PI}_{2}$ adducts. Both $\mathrm{C}_{\text {ortho }}-\mathrm{O}$ bonds are contracted ($\mathrm{C}_{\text {ortho }}-\mathrm{O} 1=1.354$ (2) \AA; $\mathrm{C}_{\text {ortho }}-\mathrm{O} 2=1.358(3) \AA$) relative to free anisole, which indicates a significant degree of π-conjugation of the oxygen lone pairs into the ring. This leads to an elongation of the I1-I2 bond to $3.2648(3) \AA$ and a concomitant reduction of the P1-I1 bond length (2.4610(6) Å) compared to $\mathbf{3 4 g}$, due to increased donor strength, despite the increase in steric bulk which arises through the addition a second ortho-donor.

Figure 6.3.4.1: Crystal structure of 34d.
Molecules of 34d form side-to-side antiparallel pairs along the crystallographic c axes linked by two EF embraces; parallel neighbours are also linked by a single EF embrace along the crystallographic a axes (Figure 6.3.4.2). The P-I-I spoke is orientated diagonally through the crystallographic a and b axes. Each molecule adopts a staggered propeller conformation with I1-P1- $C_{P}-C_{o r t h o}$ torsions ranging from $41.9(2)^{\circ}$ to $64.8(2)^{\circ}$.

Figure 6.3.4.2: Crystal packing of 34d looking down the crystallographic a axis, showing the anti-parallel pairs of molecules.

6.3.5 - Crystal Structure of 34e

Compound 34e crystallises as yellow blocks in the monoclinic space group $P 2_{1} / c$ with two molecules in the asymmetric unit; both adopt distorted octahedral geometries with formally six-coordinate PIII centres (Figure 6.3.5.1). Both NMe_{2} fragments are twisted out of conjugation with the adjacent π-system, which makes them available for donation into the phosphorus centre. In each molecule, there are two 3c4ehypervalent bonding interactions with one NMe_{2} moiety adopting an apical position, trans to a phenyl ring as with $\mathbf{3 4 b}$ whilst the second is trans to the I1-I2 spoke.

Figure 6.3.5.1: Crystal structure of $\mathbf{3 4 e}$.
The N \cdots P contacts are again short (molecule 1, N1 \cdots P1 = 2.883(3) \AA, N2 \cdots P1 $=2.945(3)$ $\AA \AA$; molecule 2, N1' $\cdots \mathrm{P} 1^{\prime}=2.904(3) \AA \AA^{\prime}, \mathrm{N} 2^{\prime} \cdots \mathrm{P} 1^{\prime}=2.933(2) \AA$) , with the $\mathrm{N} 1 \cdots \mathrm{P} 1$ distances comparable to $\mathbf{3 4 b}$ but the $\mathrm{N} 2 \cdots \mathrm{P} 1$ distances are slightly longer. The N1-P1-C1 and N2-P1-I1 hypervalent interactions deviate from linearity (165.3(1) ${ }^{\circ}$ and $169.2(6)^{\circ}$
respectively) but are still expected to be strongly bonding. The significant contraction of the P1-I1 bond despite increased steric hindrance, and concomitant elongation of the I1-I2 bond, indicate increased overall donor strength for the phosphane relative to $\mathrm{Ph}_{3} \mathrm{P}$.

Compound $\mathbf{3 4 e}$ adopts an endo o_{1} conformation in which the secondary NMe_{2} orthosubstituted aryl ring is orientated such that the donor is pointing away from the P-I-I spoke and the I-P-C $\mathrm{C}_{P}-\mathrm{C}_{\text {ortho }}$ torsions approach 180°. The remaining two aryl rings are twisted in the same direction and have similar I-P-C $\mathrm{C}_{p}-\mathrm{C}_{\text {ortho }}$ torsions ranging from $59.0(2)^{\circ}$ to $68.6(2)^{\circ}$. The unit cell of $\mathbf{3 4 e}$ contains eight molecules that form two 'up' and 'down' facing sets of four which are diagonally offset in a zigzag arrangement (Figure 6.3.5.2). Each quartet contains two pairs of parallel molecules that are further coupled with anti-parallel molecules through an inversion centre. Molecules are linked by a single EF embrace and a long-range OFF embrace along the crystallographic c axes.

Figure 6.3.5.2: Crystal packing of 34e looking down the crystallographic a axis, showing the anti-parallel pairs of molecules.

Comparison of the bond metrics between the donor-functionalised diiodophoshoranes and unsubstituted $\mathrm{Ph}_{3} \mathrm{PI}_{2}$ donor allows the relative "phosphane donor strength" to be determined and the electronic and steric effects to be understood. As the P1-I1 bond length increases, there is a linear decrease in the I1-I2 distance (Graph 6.3.1) despite the substantial variance in the sum of the P1-I1 and I1-I2 bond lengths within the internally solvated set. The P1-I1 distances show greater susceptibly to the steric influences of the donor moieties, whilst the I1-I2 distances are highly indicative of the degree of charge transfer and thus overall donor strength. From this, we can see that of the singly substituted phosphanes, 33a is a stronger donor than both 33c and 33b, despite 34a having a longer P1-I1 bond length when compared to $\mathbf{3 4 g}$. The short I1-I2
distances observed for $\mathbf{3 4 b}$ and $\mathbf{3 4} \mathbf{c}$ suggests that the steric demand is significant even for a single additional substituent.

Graph 6.3.1: A scatterplot of the I1-I2 bond lengths versus the P1-I2 bond lengths observed crystallographically for the donor-functionalised diiodophosphoranes. Addition of a second donor moiety results in reduced P1-I1 bond lengths despite the increased steric demand at the phosphorus centre, with a concomitant increase in the I1-I2 distance which indicates a greater degree of charge transfer. Gratifyingly, 34b and 34c both show N1-P1-C1 3c4e- bonding interactions in preference to the potential N1-P1-I1 motif - it is only for 34e that both become observed - this is perhaps unsurprising considering that hypervalent bonding is stabilised by electronegative apical elements.

That the additional donor capacity of $\mathbf{3 4} \mathbf{a}$ and $\mathbf{3 4 d}$ arises from conjugation through the aromatic systems is further supported by examination of the known structure for tris-(2,4,6-trimethoxyphenyl)-diiodophosphorane, ${ }^{14}$ which shows greater P1-I1 separation (2.482(1) \AA) than $\mathbf{3 4 e}$, but comparable I1-I2 distances (3.3394(5) \AA) and no evidence of any 01-P1-I1 alignment, with all methoxy fragments essentially coplanar with the aromatic rings - the additional potential donor strength is therefore significantly offset by the increased steric bulk of additional ortho substituents. ${ }^{25}$

6.4-Synthesis and Structural Studies of Iodophosphonium Salts

6.4.1 - Initial Synthesis

Addition of one equivalent of $\mathrm{NaBAr}{ }^{\mathrm{F}}$ or I_{2} to the donor-functionalised $\mathrm{Ar}_{3} \mathrm{PI}_{2}$ adducts in dichloromethane afforded the corresponding iodophosphonium salts (Scheme 6.4.1.1). The reactions were monitored by ${ }^{31} \mathrm{P}$ NMR spectroscopy and formation of the product
was indicated by a downfield shift in the ${ }^{31} \mathrm{P}$ NMR spectra. As with triphenylphoshine and diiodine, where the chemical shifts changes continuously as the ratio of I_{2} is increased, ${ }^{38}$ a smooth shift to higher frequencies is observed when $\mathrm{NaBAr}^{\mathrm{F}}$ or I_{2} is added to the diiodophosphorane, and discrete reagent/product peaks are not observed due to rapid exchange on the NMR time scale.

Scheme 6.4.1.1: Synthesis of iodophosphonium salts.
The majority of the iodophosphoniums salts were isolated as pure free flowing solids, and were characterised by elemental analysis and multinuclear NMR spectroscopy. Addition of I_{2} to $\mathbf{3 4 b}$ in DCM resulted in a downfield shift in the ${ }^{31} \mathrm{P}$ NMR spectrum, indicative of the formation of $[\mathbf{3 5 b}] \mathbf{I}_{3}$. Attempts to isolate the product by precipitation with diethyl ether afforded a dark viscous oil that readily hydrolysed, and yielded a new major ${ }^{31} \mathrm{P}$ NMR peak at $\delta+41.3 \mathrm{ppm}$, consistent with the formation of the corresponding phosphine oxide.

Addition of I_{2} to $\mathbf{3 4 c}$ in DCM also resulted in an initial downfield shift in the ${ }^{31} \mathrm{P}$ NMR spectrum. Upon heating, to encourage dissolution of the iodine and to drive the reaction to completion, a new major signal emerged at $\delta+51.9 \mathrm{ppm}$, and the original signal at -0.7 ppm , corresponding to [$\mathbf{3 5 c} \mathbf{I}_{\mathbf{3}}$, was no longer observed. Attempts to crystallise the unknown species via slow diffusion of diethyl ether into a saturated solution in DCM yielded poor quality red crystals immersed in an intractable oil. Nevertheless, a suitable crystal was selected and the identity of the product was established as [36] \mathbf{I}_{3} (Figure 6.4.1.1). The elimination of $\mathrm{CH}_{3} \mathrm{I}$ and formation of a new nitrogen-phosphorus bond upon heating validates the strong donating capability provided by the $\mathrm{CH}_{2} \mathrm{NMe}_{2}$ fragment. Similar behaviour was also observed spectroscopically when preparing [35c]BArF, although attempts to grow single crystals for X-ray diffraction studies were unsuccessful.

Figure 6.4.1.1: Crystal structure of the thermal degradation product [36] \mathbf{I}_{3}. Counterion omitted for clarity.

6.4.2 - Structural Studies

Single crystals of the iodophosphonium salts [35]X were grown by slow diffusion of diethyl ether or hexane into a saturated solution of the product in dichloromethane. Out of the seven crystallographically characterised $\left[\mathrm{Ar}_{3} \mathrm{PI}\right] \mathrm{X}$ salts, the observed internal structural changes upon ionisation are minor when compared to the corresponding parent diiodophosphorane. The P1-I1 bond lengths however are significantly contracted, with the $\mathrm{BAr}^{\mathrm{F}}$ salts having slightly shorter P1-I1 distances than the triiodides due to weak contacts between the phosphorus-bound iodine and the I_{3} anion. Selected bond lengths and angles for the iodophosphonium salts are displayed in Table 6.4.2.1.

	Bond Lengths / Å				Bond Angles $/^{\circ}$		
	P1-I1	D1...P1	D2...P1	$11 \cdots{ }_{3}$	D1-P1-C1	D2-P1-C2	D2-P1-I1
[35a]BAr ${ }^{\text {F }}$	2.376(1)	2.855(5)			164.3(2)		
[35b]BAr ${ }^{\text {F }}$	2.379(6)	2.920(3)			164.8(1)		
[35d]BAr ${ }^{\text {F }}$	2.385(1)	2.875(5)	2.898(4)		163.1(1)	161.94(1)	
	2.382(1)	2.877(5)	2.902(3)		163.3(1)	161.37(1)	
[35g]BAr ${ }^{\text {F }}$	2.379(6)						
[35d] ${ }_{3}$	2.407(1)	2.895(3)	2.901(3)	$3.5167(5)$	161.8(2)	163.1(2)	
	2.411(1)	2.870(3)	2.886(3)	3.4872(5)	163.0(1)	163.5(2)	
[35e] ${ }_{3}$	2.427(1)	2.892(3)	2.845(3)	3.5802(4)	166.7(1)		167.9(6)
[35g] ${ }_{3}$	2.408(2)			$3.4837(2)$			

Table 6.4.2.1: Selected bond lengths and angles for the donor-functionalised iodophosphonium salts.

6.4.2.1 - Crystal Structure of [35a]BAr ${ }^{F}$

Compound [35a]BAr ${ }^{\text {F }}$ crystallises in the triclinic space group $P \overline{1}$ with a single ion pair in the asymmetric cell (Figure 6.4.2.1.1). The trifluoromethyl-groups of the BAr ${ }^{F}$ counterion are disordered and a single molecule of both hexane and dichloromethane crystallises in the unit cell. The P1-I1 bond length is significantly contracted relative to 34 (2.376(1) \AA vs. $2.4753(6) \AA)$ but is equivalent within errors to the other crystallographically characterised iodophosphonium $\mathrm{BAr}^{\mathrm{F}}$ salts. The $\mathrm{C}_{\text {ortho }}-\mathrm{O} 1$ distance (1.344(7) Å) contracts in comparison to $\mathbf{3 4 a}$ to accommodate the reduced P1-I1 bond length, and the $\mathrm{C}_{\text {ortho }}-\mathrm{C}_{P}-\mathrm{P} 1$ angle decreases slightly resulting in a reduced $01 \cdots \mathrm{P} 1$ contact and increased 01-P1-C1 angle (164.3(2) $)^{\circ}$ vs. $159.2(1)^{\circ}$ for 34a). The sum of equatorial angles decreases (330.85°) as the system approaches a more tetrahedral geometry but the cation maintains a staggered propeller conformation with I1-P1- $\mathrm{C}_{P^{-}}$ $C_{\text {ortho }}$ torsion angles ranging from $45.8(4)^{\circ}$ to $60.9(4)^{\circ}$.

Figure 6.4.2.1.1: Crystal structure of [35a]BArF. Disordered counterion and solvent molecules omitted for clarity.

6.4.2.2 - Crystal Structure of [35b]BAr ${ }^{\text {F }}$

Compound [35b]BAr ${ }^{\text {F }}$ crystallises in the triclinic space group $P \overline{1}$ with a single ion pair in the asymmetric unit (Figure 6.4.2.2.1). Again, the $\mathrm{BAr}^{\mathrm{F}}$ counterion is disordered and there is a single molecule of dichloromethane in the unit cell. The P1-I1 bond length is comparable to [35a]BAr ${ }^{F}$ despite the P1-I1 distance for the corresponding parent diiodophosphoranes, 34a and 34b, being dissimilar. The $\mathrm{C}_{\text {ortho }}-\mathrm{N} 1$ distance remains unchanged whilst the $\mathrm{N} 1-\mathrm{C}_{\text {ortho }}-\mathrm{C}_{P}$ and $\mathrm{C}_{\text {ortho }}-\mathrm{C}_{P}-\mathrm{P}$ angles increase relative to $\mathbf{3 4 b}$ which results in a slightly elongated $\mathrm{N} 1 \cdots \mathrm{P} 1$ contact $(2.920(3) \AA$ vs. $2.898(1) \AA$). This differs
from [35a]BAr ${ }^{\mathbf{F}}$ and reflects the second mode in which steric congestion about the phosphorus centre is minimised. The cation adopts a staggered propeller conformation with the equatorial phenyl ring approaching an exo configuration - the I1-P1-C C_{P} - $\mathrm{C}_{\text {ortho }}$ torsion angles range from $17.5(3)^{\circ}$ to $67.3(2)^{\circ}$. The sum of equatorial angles is slightly smaller than $\mathbf{3 4 b}\left(334.17^{\circ}\right)$ but the structure is still best described as a distorted trigonal bipyramid.

Figure 6.6.2.2.1: Crystal structure of [35b]BArF. Disordered counterion and solvent molecule omitted for clarity.

6.4.2.3 - Crystal Structure of [35d]BAr ${ }^{\text {F }}$

Compound [35d]BAr ${ }^{\text {F }}$ crystallises in the monoclinic space group $P 2_{1}$ with two ion pairs in the asymmetric cell along with a single molecule of dichloromethane and disordered counterions (Figure 6.4.2.3.1). The $01 \cdots \mathrm{P} 1$ contacts shorten upon ionisation (molecule 1, 2.875(5) \AA; molecule 2, $2.877(5) \AA$ vs. $2.896(2) \AA$ for $\mathbf{3 4 d}$) whilst the $02 \cdots$ P1 distances are unchanged. Unlike [35a]BAr ${ }^{\mathrm{F}}$, the $\mathrm{C}_{\text {ortho }}-\mathrm{O} 1$ bond length and $01-\mathrm{C}_{\text {ortho }}-\mathrm{C}_{P}$ angle remain constant whilst the $\mathrm{C}_{P}-\mathrm{P} 1$ distances contract significantly (molecule 1 , $1.782(5) \AA$; molecule $2,1.780(5) \AA$ vs. $1.790(5) \AA$) and results in a reduced oxygenphosphorus contact. The $\mathrm{C}_{\text {ortho }}-\mathrm{O} 2$ distance in molecule 1 of [35d]BAr${ }^{\mathbf{F}}$ is abnormally short $(1.337(6) \AA)$ but the $02 \cdots \mathrm{P} 1$ contact remains unchanged due to a slight contraction of the $\mathrm{C}_{P}-\mathrm{P} 1$ bond length $(1.787(5) \AA)$. The $\mathrm{C}_{\text {ortho }}-\mathrm{O} 2$ distance is longer than a typical carbon-oxygen double bond (1.2183 \AA for benzoquinone) ${ }^{39}$ and a carbonoxygen single bond that has substantial double bond character ($1.2813 \AA$ for benzoic acid at 100 K$)^{40}$ which confirms that there is significant π-conjugation of the oxygen lone pairs into the aryl ring. For molecule 1, the three $11-\mathrm{P} 1-\mathrm{C}_{P}-\mathrm{C}_{\text {ortho }}$ torsions have a smaller range $\left(48.6(4)^{\circ}\right.$ to $\left.60.7(4)^{\circ}\right)$ compared to $\mathbf{3 4 d}$ whilst molecule 2 has a slightly larger range of torsions $\left(33.1(5)^{\circ}\right.$ to $\left.64.0(4)^{\circ}\right)$. Both molecules maintain a staggered
propeller conformation with the lowest I1-P1- $\mathrm{C}_{P}-\mathrm{C}_{\text {ortho }}$ torsion belonging to the unsubstituted aryl ring.

Figure 6.4.2.3.1: Crystal structure of [35d]BAr ${ }^{\text {F }}$. Disordered counterion and solvent molecule omitted for clarity.

6.4.2.4 - Crystal Structure of $[35 g]$ BAr F

Compound [35g]BAr${ }^{\text {F }}$ crystallises in the triclinic space group $P \overline{1}$ with a single ion pair in the asymmetric cell along with a disordered molecule of dichloromethane (Figure 6.4.2.4.1). The molecule adopts a staggered propeller conformation with I1-P1-C $\mathrm{C}_{P}-\mathrm{C}_{\text {ortho }}$ torsion angles ranging from $44.2(3)^{\circ}$ to $64.5(3)^{\circ}$. This is slightly larger than the range of torsions observed in $\mathbf{3 4 g}\left(39.1(3)^{\circ}\right.$ to $\left.59.5(2)^{\circ}\right)$ which suggests that the aryl rings twist upon ionisation to reduce the steric demands that result from a contracted P1-I1 bond. Overall, the three C_{P}-P1 bonds are also marginally shorter than $\mathbf{3 4 g}$ (1.787$1.792(4) \AA$ Å vs. $1.792-1.798(3) \AA$) which is consistent with a change of oxidation state at phosphorus.

Figure 6.4.2.4.1: Crystal structure of [35g]BAr . Disordered counterion and solvent molecule omitted for clarity.

6.4.2.5 - Crystal Structure of [35d] I_{3}

Compound [35d]I \mathbf{I}_{3} crystallises in the monoclinic space group $P 2_{1} / n$ with two ion pairs in the asymmetric cell, together with two molecules of dichloromethane (Figure 6.4.2.5.1). Both molecules adopt comparable structures and bond metrics, with the $01 \cdots \mathrm{P} 1$ contacts, $\mathrm{C}_{\text {ortho }}-\mathrm{O} 1$ and $\mathrm{C}_{P}-\mathrm{P} 1$ bond lengths, and the $01-\mathrm{C}_{\text {ortho }}-\mathrm{C}_{P}$ angles being identical within errors for the two molecules, and for the parent diiodophosphorane, 34d, despite significant contraction of the P1-I1 bonds. A minor reduction of the 01$\mathrm{C}_{\text {ortho }}-\mathrm{C}_{P}$ and the $\mathrm{C}_{\text {ortho }}-\mathrm{C}_{P}-\mathrm{P} 1^{\prime}$ angles results in a shorter $01^{\prime} \cdots \mathrm{P} 1^{\prime}$ contact in molecule 2 (2.870(3) Å).

The I1-P1-C P $_{P}$ - ortho torsion angle decreases slightly upon ionisation, with both molecules sharing similar torsion angles in the range of $39.3(4)^{\circ}$ to $62.1(3)^{\circ}$ such that the staggered propeller conformation is maintained. [35d]I \mathbf{I}_{3} adopts a Z-shaped structural isomer in which two crystallographically inequivalent cations strongly interact with opposite ends of a single triiodide anion. The bridging and interstitial $\mathrm{I}_{3}-$ anions form offset perpendicular planes that weakly interact with one another via the terminal atoms (4.5359(6) \AA and $4.6707(6) \AA$); this distance is considerably longer than the sum of the van der Waals radii ($3.96 \AA$) and the I $1 \cdots I_{3}$ contacts observed in the analogous $\left(\mathrm{Ph}_{3} \mathrm{PI}\right) \mathrm{I}_{3}$ polymorph. ${ }^{41}$

Figure 6.4.2.5.1: Crystal structure of $[35 d] I_{3}$. Counterion and solvent molecules omitted for clarity.

6.4.2.6 - Crystal Structure of [35e] I_{3}

Compound [35e] I_{3} crystallises in the monoclinic space group $P 2_{1} / n$ with a single ion pair in the asymmetric unit (Figure 6.4.2.6.1). Upon ionisation, the $\mathrm{N} 2-\mathrm{C}_{\text {ortho }}-\mathrm{C}_{P}$ and
$\mathrm{C}_{\text {ortho }}-\mathrm{C}_{P}-\mathrm{P} 1$ angles decrease leading to a significantly contracted $\mathrm{N} 2 \cdots \mathrm{P} 1$ contact (2.845(3) \AA vs. $2.945(3) \AA$ and $2.933(2) \AA$ for 34e). This reduction suggests that the strength of the N2-P1-I1 $3 c 4 e^{-}$hypervalent interaction increases for the iodophosphonium salt whilst the remaining bond lengths and angles do not significantly differ from the parent diiodophosphorane.

The endo ${ }_{1}$ conformation is also maintained for $[\mathbf{3 5 e}] \mathbf{I}_{3}$ with the I1-P1- $\mathrm{C}_{P}-\mathrm{C}_{\text {ortho }}$ torsion angle for the secondary NMe_{2} ortho-substituted aryl ring closely approaching 180°. Again, the remaining two aryl rings are twisted in the same direction with I1-P1- $\mathrm{C}_{P^{-}}$ $C_{\text {ortho }}$ torsion angles $\left(59.9(3)^{\circ}\right.$ and $\left.71.6(3)^{\circ}\right)$ that do not deviate significantly from $\mathbf{3 4 e}$. Compound [35e] \mathbf{I}_{3} adopts the $1: 1$ structural motif such that each $\mathrm{Ar}_{3} \mathrm{PI}^{+}$fragment interacts strongly with a single $I_{3}-$ anion (3.5802(4) Å). The opposing end of the asymmetric triiodide counterion also shows contacts to the N-methyl hydrogens on an adjacent cation (closest cation ca. $3.254 \AA$) but does not appear to interact with any additional phosphorus-bound iodine atoms or $\mathrm{I}_{3}-$ anions.

Figure 6.4.2.6.1: Crystal structure of $[35 e] \mathbf{I}_{3}$. Counterion omitted for clarity.

6.4.2.7 - Polymorphism in $\mathrm{Ar}_{3} \mathrm{PI}_{4}$ Systems

The known compound $[\mathbf{3 5 g}] \mathbf{I}_{3}$ was prepared and single-crystal X-ray diffraction data was collected at 100 K to permit direct and precise bond metric comparisons with the donor-functionalised iodophosphonium triiodides. Slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a saturated solution of $[\mathbf{3 5 g}] \mathrm{I}_{3}$ in DCM yielded single crystals of the $\left[\left(\mathrm{Ph}_{3} \mathrm{PI}\right)_{2} \mathrm{I}_{3}\right] \mathrm{I}_{3}$ polymorph ${ }^{41}$ which consists of parallel zigzag chains of $\left[\left(\mathrm{Ph}_{3} \mathrm{PI}_{2}\right)_{2} \mathrm{I}_{3}\right]^{+}$cations sandwiched between layers of $\mathrm{I}_{3}-$ anions. The phosphorus-bound iodine of both $\mathrm{Ph}_{3} \mathrm{PI}$ fragments interact with the same terminal atoms of the triiodide anion (I1 $\cdots]_{3}=3.4837$ \AA). This is in contrast with the $\left(\mathrm{Ph}_{3} \mathrm{PI}\right) \mathrm{I}_{3}$ polymorph, crystallised from toluene by Cotton,
which forms a network of parallel infinite chains where the terminal atom of I_{3} strongly interacts with a single $\mathrm{Ph}_{3} \mathrm{PI}^{+}$fragment (3.551(1) \AA) whilst the opposite end of $\mathrm{I}_{3}{ }^{-}$binds weakly with a second $\mathrm{Ph}_{3} \mathrm{PI}^{+}$fragment (4.337(1) \AA), and further linked into a polymeric network by weak interactions between the triiodide anions (3.741(1) Å).

This structural isomerism is well documented for $\mathrm{R}_{3} \mathrm{PI}_{4}$ adducts ${ }^{42}$ and three isomers are commonly observed (Figure 6.4.2.7.1); the simple $1: 1$ ion pair, $\left[\mathrm{R}_{3} \mathrm{PI}\right]\left[\mathrm{I}_{3}\right]$ (Isomer A); a 2:1 $\left[\left(\mathrm{R}_{3} \mathrm{PI}\right)_{2} \mathrm{I}_{3}\right]\left[\mathrm{I}_{3}\right]$ compound where two $\mathrm{R}_{3} \mathrm{PI}^{+}$fragments are linked to the same terminal atom of one I_{3} anion giving a Y-shaped motif (Isomer B); and an alternative 2:1 $\left[\left(\mathrm{R}_{3} \mathrm{PI}\right)_{2} \mathrm{I}_{3}\right]\left[\mathrm{I}_{3}\right]$ compound where the two $\mathrm{R}_{3} \mathrm{PI}^{+}$fragments are linked to opposite ends of the triiodide anion giving a Z-shaped motif (Isomer \mathbf{C}). The structural isomer obtained is dependent on the choice of solvent used for crystallisation and the nature of the R groups. Compound [35d] \mathbf{I}_{3} adopts the structural isomer \mathbf{C} whilst compound [35e] \mathbf{I}_{3} adopts the structural isomer A. Due to the limited quantity of product, no attempts were made to grow crystals from different solvent systems to explore further polymorphism.

Isomer A

Isomer B

Isomer C

Figure 6.4.2.7.1: Structural isomers of $\mathrm{R}_{3} \mathrm{PI}_{4}$ adducts.

6.5-Computational Studies

Computational studies were performed to provide further insight into the mechanism by which the apparent donor strength of the phosphanes varies between the diiodophosphoranes and iodophosphonium salts. Initial calculations using the LanL2DZ ${ }^{43,44}$ effective core potential (ECP) to model the iodine atoms gave poor correlations with observed experimental data, and so the more computationally demanding def2TZVP split valence, triple- ζ basis set was employed. ${ }^{45}$ This gave reasonable correlation with experimental structural data.

6.5.1 - Bonding and Lewis Basicity of Functionalised Phosphanes

The counterintuitively weak Lewis basicity observed experimentally for the diiodophosphoranes clearly reflects the delicate balance between electronic and steric
effects in the adducts. These factors were quantified by examining the energy of the highest occupied molecular orbitals (HOMO) of the free phosphanes, which in all cases was found to correspond to an orbital with considerable phosphorus lone pair character, and through buried volume analysis ${ }^{46,47}$ ($\% V_{\text {Bur }}$) of the optimised $\mathrm{Ar}_{3} \mathrm{PI}_{2}$ adducts - these can be compared to the I1-I2 bond length as a measure of overall donor strength. Neglecting steric effects, phosphanes with a less negative HOMO energy should, in principle, be stronger donors relative to $\mathrm{Ph}_{3} \mathrm{P}$, which results in an elongation of the I1-I2 distance in the corresponding diiodophosphorane.

The computational studies also confirm that two possible modes exist by which phosphane donor strength is enhanced, namely π-conjugation or direct lone pair donation to phosphorus, and allow clear differences to be established for the oxygen and nitrogen donors. Examination of the Mayer bond indices between the donor atoms and the phosphorus center, and comparison of the occupied molecular orbitals of the free phosphanes provide good evidence for the origin of the different behaviour.

Table 6.5.1.1 shows the clear trend that substitution leads to an increase in both the HOMO energy and steric demand of the free phosphane, as seen in the increase in calculated buried volumes. At the same time, the nitrogen donors show a greater increase in steric demand than the oxygen donors, which may be understood in terms of coplanarity of the OMe fragments with the arene rings in comparison to the twisting out of the ring plane seen for the nitrogen fragments. Examination of the $\mathrm{C}_{\text {ortho }}-\mathrm{O}$ bond lengths and Mayer bond indices for 33a ${ }^{\text {c }}$ ($\mathrm{C}_{\text {ortho }}-\mathrm{O}=1.356 \AA$, bond index 1.049) and $\mathbf{3 3 d}^{\mathrm{c}}\left(\mathrm{C}_{\text {ortho }}-\mathrm{O}=1.357 \AA\right.$ each, bond indices 1.046 and 1.052$)$ confirm the presence of π donation of the oxygen lone pairs into the arene rings (bond indices >1), albeit with a slight reduction in $\mathrm{C}_{\text {ortho }}-\mathrm{O}$ bond index in comparison to free anisole (1.065), likely as a result of steric congestion. Nevertheless, the calculated $0 \ldots P$ bond indices are low (33a' ${ }^{\text {c }} 0.046$; 33d ${ }^{\text {c }, ~} 0.047$ and 0.043) despite the close $0 \cdots$ P contacts. In contrast, the orientations of the nitrogen lone pairs in $\mathbf{3 3} \mathbf{b}^{\mathrm{C}}$ and $\mathbf{3 3} \mathbf{e}^{\mathrm{C}}$ preclude such conjugation and the NMe_{2} fragments would thus be expected to act as electron withdrawing groups via the σ-bonding network - a significant increase in bond length ($\mathbf{3 3 b}^{\mathrm{c}}, \mathrm{C}_{\text {ortho }}-\mathrm{N}=1.436 \AA$, bond index 1.018; 33e ${ }^{\mathrm{C}}, \mathrm{C}_{\text {ortho }}-\mathrm{N}=1.430 \AA$ and $1.436 \AA$, bond indices 1.032 and 1.019) and decrease in bond indices are observed in comparison to free N, N-dimethylaniline ($\mathrm{C}_{\text {ortho }}-\mathrm{N}=1.383 \AA$, bond index 1.077). The nitrogen lone pairs of 33b ${ }^{\mathrm{C}}, \mathbf{3 3} \mathbf{c}^{\mathrm{C}}$, and $\mathbf{3 3} \mathbf{e}^{\mathrm{C}}$ are all oriented toward the phosphorus center, as seen in available crystallographic

$2.945 \AA$ And $2.890 \AA$). The energy change of the lone pair must therefore, as previously reported, ${ }^{8}$ arise from a small but significant degree of $N \cdots P$ bonding and leads to rehybridization at phosphorus - this is reflected in the calculated $\mathrm{N} \cdots \mathrm{P}$ bond indices (33bcc, 0.063; 33cc, 0.049 ; 33ec, 0.051 and 0.063) and, in each case, the HOMO -1 is identified as showing $\mathrm{N} \cdots \mathrm{P} \sigma$-bonding character (Figure 6.5.1.1). Ligand 33c ${ }^{\mathrm{c}}$ shows both greater buried volume and a higher energy lone pair in comparison to $\mathbf{3} \mathbf{b}^{\mathbf{c}}$, which may be understood as arising from the transition toward a pseudo-trigonalbipyramidal, five-coordinate geometry; the effect of this rehybridization may be seen in the lone pair of $\mathbf{3 3} \mathbf{c}^{\mathrm{c}}$ being raised above that of $\mathbf{3 3} \mathbf{d}$ c , despite the presence of two strongly conjugated donor moieties in the latter case.

	HOMO Energy (eV)	\% $\mathrm{V}_{\text {Bur }}$	$\begin{gathered} \text { D... P Distance } \\ \text { I A } \end{gathered}$	D...P Bond Index	$\begin{gathered} \mathrm{C}_{\text {ortho }}-\mathrm{D} \text { Distance } \\ / \AA \mathrm{A} \end{gathered}$	$C_{\text {ortho }}-$ D Bond Index
$33 a^{\text {c }}$	-0.268	23.5	2.852	0.046	1.356	1.049
$33 \mathrm{~b}^{\text {c }}$	-0.265	26.2	2.888	0.063	1.436	1.018
$33 c^{\text {c }}$	-0.262	28.8	2.878	0.049	1.453	0.964
$33 d^{\text {c }}$	-0.263	25.2	2.857	0.047	1.357	1.046
			2.846	0.043	1.357	1.052
$33 e^{\text {c }}$	-0.257	27.3	2.945	0.051	1.430	1.032
			2.890	0.063	1.436	1.019
$33 \mathrm{~g}{ }^{\text {c }}$	-0.273	21.8				
Anisole ${ }^{\text {c }}$					1.358	1.065
DMA ${ }^{\text {c }}$					1.383	1.077

Table 6.5.1.1: Selected parameters for the computed free phosphanes, showing calculated separations and Mayer bond indices for donor-phosphorus contacts and donor-arene bonds.
$33 b^{c}$

$33 c^{\text {c }}$

$33 e^{c}$

Figure 6.5.1.1: Visualisation of the HOMO - 1 orbitals for $\mathbf{3 3} \mathbf{b}^{c}, \mathbf{3 3} \mathbf{c}^{\mathrm{c}}$ and $\mathbf{3 3} \mathbf{e}^{\mathrm{C}}$ (isovalue $=0.05$), showing the $\mathrm{N} \cdots \mathrm{P} \sigma$-bonding interaction.

6.5.2 - Diiodophosphoranes

Geometry optimisation of the diiodophosphoranes confirmed the increase in donor strength of the phosphanes, with increased I1-I2 bond lengths relative to $\mathbf{3 4 g} \mathbf{g}^{\mathrm{C}}$ seen for all cases and shorter P1-I1 contacts for all save 34ce, as shown in Table 6.5.2.1. The same trend is seen in the P1-I1 and I1-I2 Mayer bond indices, though here the P1-I1 bond index is nevertheless increased for $\mathbf{3 4} \mathbf{c}^{\mathrm{C}}$ relative to $\mathbf{3 4} \mathbf{g}^{\mathrm{c}}$, which shows that the P1-I1 bond elongation arises from steric grounds. Considering first the monosubstituted phosphorane series, the trends clearly show that despite the increase in lone pair energy indicating an expected donor strength of $\mathbf{3 3} \mathbf{c}^{\mathrm{c}} \mathbf{~ 3 ~ 3 3 b ~}^{\mathrm{c}}>\mathbf{~ 3 3 a}^{\mathrm{c}}$, instead $\mathbf{3 3 a}^{\mathrm{c}}>\mathbf{3 3 b}^{\mathrm{C}} \approx \mathbf{3 3 c}^{\mathrm{C}}$ is found by both I1-I2 bond length and bond index comparison (the experimentally observed order is $\mathbf{3 3 a} \mathbf{>} \mathbf{3 3} \mathbf{c} \mathbf{>} \mathbf{3 3 b}$ by I1-I2 contacts in $\mathbf{3 4}$). Instead, this trend in donor strength follows the order dictated by the steric demand of the phosphane as measured by buried volume, with longer P1-I1 and shorter I1-I2 bonds as buried volume increases. Further substitution leads to a proportionately smaller change in buried volume, and so unsurprisingly, donor strength is found to increase such that 33d ${ }^{\mathbf{C}} \boldsymbol{>} \mathbf{3 3 a}^{\mathrm{C}}$ and $\mathbf{3 3} \mathbf{e}^{\mathrm{C}}>\mathbf{~ 3 3 b}^{\mathrm{C}}$. Interestingly, despite the increase in donor strength seen in the increase in I1-I2 bond lengths ($3.192 \AA$ vs. $3.173 \AA$) and decrease in I1-I2 bond indices (0.314 vs . 0.332) for $\mathbf{3 3} \mathbf{d}^{\mathrm{c}}$ relative to $\mathbf{3 3} \mathbf{a}^{\mathrm{c}}$, the P1-I1 bond lengths and bond indices are essentially invariant, which confirms that this metric is more sensitive to steric demand than the I1-I2 bond length.

Bond Lengths / A

P1-11	11-12	D1...P1	D2...P1	P1-11	11-12	D1... P1	D2...P1
2.483	3.173	2.858		0.929	0.332	0.037	
2.485	3.150	2.889		0.930	0.350	0.065	
2.491	3.149	2.943		0.925	0.350	0.075	
2.484	3.192	2.876	2.856	0.930	0.314	0.036	0.037
2.467	3.244	2.906	2.971	0.987	0.272	0.061	0.059
2.487	3.138			0.921	0.36		

Table 6.5.2.1: Selected bond lengths and bond indices for the computed diiodophosphoranes, showing calculated separations and Mayer bond indices for donor-phosphorus contacts and donor-arene bonds.

On binding of I_{2}, the computed $0 \cdots \mathrm{P}$ bond indices decrease for $\mathbf{3 4 a}{ }^{\mathrm{C}}$ and $\mathbf{3 4 d ^ { \mathrm { C } }}$ relative to the free phosphanes (e.g. 34ac: 0.037 vs 33ac: 0.046) whilst the $\mathrm{C}_{\text {ortho }}-\mathrm{O}$ bond indices increase. This demonstrates that conjugation through the arene rings dominates over direct donation to phosphorus in these systems, whilst an increase in N...P bond index
is observed for the mono-substituted nitrogen donor species. This increase is comparatively small for $\mathbf{3 4 b}^{\mathrm{C}}$ ($\mathbf{3 4 b}^{\mathrm{c}}$: $0.065 \mathrm{vs} . \mathbf{3 3 b}^{\mathrm{c}}$: 0.063), but substantially larger for 34c ${ }^{\text {C }}$ ($\mathbf{3 4 c}$ c: 0.075 vs. $33 \mathbf{c}^{\mathrm{C}}$: 0.049), despite both $\mathbf{3 4 b}{ }^{\mathrm{C}}$ and $\mathbf{3 4} \mathbf{c}^{\mathrm{C}}$ showing a simultaneous increase in $N \cdots P$ bond length ($\Delta N \cdots P 34 b^{c}: 0.001 \AA$; 34c $\mathbf{c}^{C} 0.065 \AA$). The increase in $\mathrm{N} \cdots \mathrm{P}$ separation likely arises from the increased steric bulk about phosphorus, but this is concommitant with a change in bond angle towards linearity (34c ${ }^{\mathrm{C}} \mathrm{N} 1-\mathrm{P} 1-\mathrm{C} 1$ angle: 171.4° to 177.1°) which nevertheless improves orbital overlap and thus bonding. For the bis-substituted donors, the same trends are evident, albeit with a slight decrease observed for the $\mathrm{N} \cdots \mathrm{P}$ contact in the N2-P1-I1 hypervalent interaction of $\mathbf{3 4 e}$. Overall, it can therefore be seen that whilst the internal solvation might be predicted to have a greater influence on donor strength than more remote conjugation, the steric demands imposed by the $\mathrm{N} \cdots \mathrm{P}$ bonding weaken the effect, with the bonding in $\mathbf{3 4} \mathbf{c}^{\mathrm{C}}$ indicating that $\mathbf{3 3} \mathbf{c}^{\mathrm{C}}$ is the weakest of the substituted donors despite having the second greatest lone pair energy. $\mathbf{3 4 \mathbf { c } ^ { c }}$ not only shows the smallest increase in I1-I2 separation but also manifests a P1-I1 contact slightly greater in length than that of $\mathbf{3 4 g} \mathbf{C}(\mathbf{3 4 c} \mathbf{c}: 2.491 \AA$ s. 34gc: $2.487 \AA$).

6.5.3 - Iodophosphonium Salts

The optimised iodophosphonium series, shown in Table 6.5.3.1, however, tells a very different story. All of the substituted cations exhibit longer P1-I1 bonds than $\mathbf{3 5 g}{ }^{\text {c }}$, but nevertheless are still shorter than the P1-I1 contacts seen in the diiodophosphoranes, which implies weaker donor strength and the reverse of the trend seen for the diiodophosphoranes. Interestingly, whilst the steric demands clearly dominate in this situation, the efficiency of direct $\mathrm{N} \cdots \mathrm{P}$ donation at enhancing donor strength can clearly be seen in that the P1-I1 contact of $\mathbf{3 5 c} \mathbf{c}^{\mathrm{C}}$ is essentially identical to that of $\mathbf{3 5 a}{ }^{\mathrm{C}}$, despite the enormous increase in steric bulk between 33c ${ }^{\text {c }}$ and 33ac. Furthermore, the nitrogen donor systems $\mathbf{3 5 b}{ }^{\mathrm{C}}, \mathbf{3 5 c} \mathbf{c}^{\mathrm{C}}$ and $\mathbf{3 5} \mathbf{e}^{\mathrm{C}}$ show P1-I1 bond indices greater than that for $\mathbf{3 5 g}{ }^{\text {c }}$, whilst the oxygen donor systems $\mathbf{3 5 a}{ }^{\text {c }}$ and $\mathbf{3 5 d}{ }^{\mathrm{c}}$ show reduced P1-I1 bond indices. This is mirrored in the bond indices for $\mathrm{C}_{\text {ortho }}-\mathrm{O}, \mathrm{O} \cdots \mathrm{P}$ and $\mathrm{N} \cdots \mathrm{P}$ contacts. The $0 \cdots P$ bond indices for $35 \mathbf{a c}^{\mathbf{C}}(0.039)$ and $35 \mathbf{d}^{\mathrm{C}}$ (0.038 and 0.040) do show a small increase relative to the diiodophosphoranes, but do not rise to the levels seen in the free phosphanes. There is also a significant increase in $\mathrm{C}_{\text {ortho }}-\mathrm{O}$ bond index (35ac: 1.084; $\mathbf{3 5 d}^{\text {c }}: 1.079$ and 1.081) commensurate with a greater degree of charge transfer to phosphorus through the arene ring. The $\mathrm{N} \cdots \mathrm{P}$ bonds indices for $\mathbf{3 5 b}{ }^{\mathrm{c}}, \mathbf{3 5 c} \mathbf{c}^{\mathrm{C}}$ and $\mathbf{3 5 e}{ }^{\mathrm{c}}$, (35bc: 0.070 ; 35cc: 0.088 ; 35ec: 0.064 and 0.083) on the other hand, are increased relative to the diiodophosphoranes, with the greatest increase seen for $\mathbf{3 5 c}{ }^{\mathrm{c}}$ despite a
slight associated increase in bond length ($\Delta \mathrm{N} \cdots \mathrm{P}$ 35c $\mathrm{c}^{\mathrm{C}} 0.005 \AA$). Unfortunately, since complete crystallographic data could not be obtained for either $\mathrm{I}_{3}{ }^{-}$or $\mathrm{BAr}^{\mathrm{F}}$ salts, it is not possible to directly and generally compare computational and experimental results, though the invariance of the P1-I1 bond length observed for [35]BAr ${ }^{\text {F }}$ suggests that packing effects, not computationally modelled, may be significant.

	Bond Lengths / A			Bond Indices		
	P1-I1	D1...P1	D2..P1	P1-11	D1...P1	D2... P1
$35 a^{\text {c }}$	2.399	2.866		1.036	0.039	
$35 b^{\text {c }}$	2.393	2.904		1.047	0.070	
$35 c^{\text {c }}$	2.398	2.949		1.044	0.088	
35d ${ }^{\text {c }}$	2.403	2.886	2.859	1.029	0.038	0.040
$35 e^{\text {c }}$	2.410	2.915	2.858	1.056	0.064	0.083
$35 \mathrm{~g} ~ ¢ ~$	2.392			1.040		

Table 5.5.3.1: Selected bond lengths and bond indices for the computed iodophosphonium cations, showing calculated separations and Mayer bond indices for donor-phosphorus contacts and donor-arene bonds.

6.5.4 - Summary of Computational Studies

The computational results give good correlation with experimental data and allow the relative donor strength of the donor-functionalised phosphanes to be explained in terms of electronic and steric effects. However, the apparent dramatically weak Lewis basicity observed experimentally in $\mathbf{3 4 b}$, which could not be fully predicted computationally, suggests that there are additional factors to consider. The crystal packing of the $\mathrm{Ar}_{3} \mathrm{PI}_{2}$ adducts, as discussed in section 6.3, will also influence the observed donor strength since favourable supramolecular interactions will alter the conformation and orientation of the aryl rings, which in turn affects the magnitude of the P-I and I-I bond lengths. ${ }^{25}$ Out of the six crystallographically characterised diiodophosphoranes, $\mathbf{3 4 b}$ is the only diiodophosphorane in which the back-to-back sextuple phenyl embrace is observed. This conformation, which is commonly adopted for $\mathrm{Ar}_{3} \mathrm{P}$ containing species, ${ }^{19}$ contains six attractive edge-to-face (EF) interactions between aryl groups and contributes to a significant attraction between molecules. Given that this intermolecular embrace is only seen for $\mathbf{3 4 b}$, and since crystal packing has not been considered computationally, it is plausible that this is responsible for the long P-I and short I-I bond lengths observed experimentally for this adduct.

6.6 - Conclusions

Analysis of the reported diiodophosphoranes, supplemented by computational studies, shows that the phosphorus centres of the nitrogen-donor substituted phosphanes are themselves internally solvated and act simultaneously as Lewis acid and Lewis base. In contrast, no significant internal solvation is observed for the oxygen-donor substituted phosphanes, with their increased donor ability arising from delocalisation of oxygen lone pairs onto phosphorus via an aromatic system. Comparison of the I_{2} adduct structures reveals a counterintuitively weak Lewis basicity for 33c, indicated by a decrease in the I-I bond length when compared to the unsubstituted $\mathrm{Ph}_{3} \mathrm{P}$ donor, shown to derive from a delicate balance between steric and electronic effects within the adducts.

Synthesis of the corresponding iodophosphonium salts, in tandem with further computational studies, reveals that the impact of the steric bulk on donor strength is more significant for the cationic species, but also that internal solvation is more efficient at increasing donor strength than through-ring conjugation. These observations imply that this internal solvation may be general to soft Lewis acid adducts of these donor-functionalized phosphanes, with implications for their utility in stabilizing main-group cations - the assumption that more donating substituents leads to better cation stabilization may not hold. Finally, the marked difference in behaviour between neutral adduct and cation clearly indicates that, when the donor strengths of ligands are compared, a single probe Lewis acid is insufficient to understand the overall trends in ligand behaviour

6.7 - Experimental

6.7.1 - Synthesis of Aryl-Lithiums

The ortho-donor functionalised aryl-lithiums 32a-c were all prepared according to known literature procedures. ${ }^{32-34}$ The synthesis of 32a is given as an example. All products were isolated as pyrophoric solids that were extremely sensitive to air and moisture.

6.7.1.1 - Synthesis of ($\boldsymbol{o}-\mathrm{OMe}-\mathrm{C}_{6} \mathrm{H}_{4}$) Li, 32a:

Anisole ($4 \mathrm{~cm}^{3}, 36.8 \mathrm{mmol}$) and TMEDA ($6.1 \mathrm{~cm}^{3} .40 .5 \mathrm{mmol}$) were dissolved in $\mathrm{Et}_{2} \mathrm{O}$ $\left(15 \mathrm{~cm}^{3}\right)$ and cooled to $0{ }^{\circ} \mathrm{C}$. ${ }^{\mathrm{n}} \mathrm{BuLi}$ in hexane ($16.2 \mathrm{~cm}^{3}, 2.5 \mathrm{M}, 40.5 \mathrm{mmol}$) was added dropwise over 30 minutes producing an off-white precipitate that was allowed to slowly warm to room temperature and stir for 17 hours. The yellow supernatant was removed by filtration and the pale pink solid product was washed with hexane (2 x 10 cm^{3}) and dried in vacuo. Yield: 2.747 g ($24.1 \mathrm{mmol}, 65.4$ \%).

6.7.1.2 - Synthesis of ($\boldsymbol{o}-\mathrm{NMe}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$)Li, 32b:

Off-white solid, 87.6 \% yield. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{THF}, 18.3^{\circ} \mathrm{C}$): $\delta 7.93(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}$, Ph), 6.70-6.80 (m, 3H, Ph), 3.45 (s, 2H, CH ${ }_{2} \mathrm{NMe}_{2}$), 2.14 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NMe}_{2}$).

6.7.1.3 - Synthesis of ($\boldsymbol{o}-\mathrm{CH}_{2} \mathrm{NMe}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$) Li, 32c:

Colourless solid, 84.5 \% yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 18.6^{\circ} \mathrm{C}$): $\delta 7.92$ (d, $J=5.7 \mathrm{~Hz}$, Ph, 1H), 6.78-6.71 (m, Ph, 3H), 3.43 (s, $\mathrm{CH}_{2} \mathrm{NMe}_{2}, 2 \mathrm{H}$), 2.12 ($\mathrm{s}, \mathrm{CH}_{2} N \mathrm{Ne}_{2}, 6 \mathrm{H}$).

6.7.2 - Synthesis of Donor Functionalised Phosphanes

The tri-aryl phosphines 33a-e were all prepared according to the same general unoptimised procedure using the appropriate aryl-lithium and chlorophosphine. ${ }^{8}$ The synthesis of $\mathbf{3 3}$ a is given as exemplar. Compounds 33a, 33b and $\mathbf{3 3}$ e were purified by recrystallization from boiling ethanol. Compound 33c was extracted into boiling hexane and filtered before removal of solvent under prolonged vacuum - this was found to remove any polar or ionic impurities. Compound 33d was recrystallised from DCM and hexanes. Attempts to purify $\mathbf{3 3 f}$ were unsuccessful, yielding a viscous amber oil which was found to contain an unknown phosphorus-containing impurity (ca. 5 \% by ${ }^{31} \mathrm{P}$ NMR) that interfered with subsequent experiments. Compound $\mathbf{3 3 f}$ was also found to rapidly oxidise on contact with trace air or moisture, preventing alternative purification via column chromatography from being employed.

6.7.2.1 - Synthesis of $\mathrm{Ph}_{2} \mathbf{P}\left(o-O M e-\mathrm{C}_{6} \mathrm{H}_{4}\right)$, 33a:

$\mathrm{Ph}_{2} \mathrm{PCl}\left(0.6 \mathrm{~cm}^{3}, 3.3 \mathrm{mmol}\right)$ was dissolved in THF ($10 \mathrm{~cm}^{3}$) and cooled to $-95{ }^{\circ} \mathrm{C}$. A solution of 32a ($0.400 \mathrm{~g}, 3.5 \mathrm{mmol}$) in THF ($15 \mathrm{~cm}^{3}$) was added dropwise yielding a cloudy yellow reaction mixture that was allowed to slowly warm to room temperature and stir overnight. The solvent was removed in vacuo and the residues were extracted into DCM ($2 \times 10 \mathrm{~cm}^{3}$) and filtered through celite. The filtrate was quenched with ice water ($20 \mathrm{~cm}^{3}$) and extracted into DCM ($3 \times 15 \mathrm{~cm}^{3}$). The combined organic extracts were washed with water and brine ($15 \mathrm{~cm}^{3}$ each), dried over MgSO_{4}, filtered and evaporated to dryness. The crude solids were recrystallised from boiling EtOH, and washed with cold hexanes to give 33a as colourless needles. Yield: $0.145 \mathrm{~g}(0.5 \mathrm{mmol}$, 15.2 \%). ${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 18.1^{\circ} \mathrm{C}$): $\delta 7.38-7.29$ (m, Ph, 7H), 7.28-7.22 (m, Ph, $4 \mathrm{H}), 6.91(\mathrm{dd}, J=4.8,8.2 \mathrm{~Hz}, P h, 1 \mathrm{H}), 6.84(\mathrm{t}, J=7.6 \mathrm{~Hz}, P h, 1 \mathrm{H}), 6.67-6.61(\mathrm{~m}, P h, 1 \mathrm{H})$, 3.73 ($\mathrm{s}, \mathrm{OMe}, 3 \mathrm{H}$). ${ }^{31} \mathbf{P}$ NMR ($161.8 \mathrm{MHz}, \mathrm{DCM}, 18.2^{\circ} \mathrm{C}$): $\delta-16.6(\mathrm{~s})$.

6.7.2.2 - Synthesis of $\mathrm{Ph}_{2} \mathbf{P}\left(\boldsymbol{o}-\mathrm{NMe}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}\right), \mathbf{3 3 b}$:

Yellow needles, 43.6 \% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 20.1^{\circ} \mathrm{C}$): δ 7.37-7.19 (m, Ph, 12H), 6.99 (t, $J=7.8 \mathrm{~Hz}, P h, 1 \mathrm{H}$), 6.76 (ddd, $J=1.0,3.7,7.3 \mathrm{~Hz}, P h, 1 \mathrm{H}$) , $2.60\left(\mathrm{~s}, \mathrm{NMe}{ }_{2}\right.$, 6H). ${ }^{31}$ P NMR (161.8 MHz, DCM, $20.1^{\circ} \mathrm{C}$): $\delta-13.7$ (s).

6.7.2.3 - Synthesis of $\mathrm{Ph}_{2} \mathrm{P}\left(\boldsymbol{o}-\mathrm{CH}_{2} \mathrm{NMe}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}\right), \mathbf{3 3 c}$:

Amber oil, 78.7 \% yield. $\mathbf{1}^{\mathbf{H}}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 20.5^{\circ} \mathrm{C}$): $\delta 7.44$ (dd, $J=4.6,7.3 \mathrm{~Hz}, P h$, 1 H), $7.35-7.22$ (m, $P h, 11 \mathrm{H}), 7.15(\mathrm{t}, J=7.3 \mathrm{~Hz}, P h, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=4.6,7.8 \mathrm{~Hz}, P h, 1 \mathrm{H})$, $3.60\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{NMe}_{2}, 2 \mathrm{H}\right.$), $2.01\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{NMe}{ }_{2}\right) .{ }^{31} \mathbf{P}$ NMR ($161.8 \mathrm{MHz}, \mathrm{DCM}, 20.5^{\circ} \mathrm{C}$): $\delta-15.7$ (s).

6.7.2.4 - Synthesis of $\mathrm{PhP}\left(\mathrm{o}-\mathrm{OMe}-\mathrm{C}_{6} \mathrm{H}_{4}\right)_{2}$, 33d:

Colourless needles, 92.6 \% yield. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 20.9^{\circ} \mathrm{C}$): $\delta 7.37-7.28(\mathrm{~m}, \mathrm{Ph}$, 5 H), $7.22(\mathrm{t}, J=7.3,8.0 \mathrm{~Hz}, P h, 2 \mathrm{H}), 6.91(\mathrm{dd}, J=4.6,8.0 \mathrm{~Hz}, P h, 2 \mathrm{H}), 6.83(\mathrm{t}, J=7.3,7.6$ $\mathrm{Hz}, \mathrm{Ph}, 2 \mathrm{H}$), 6.64-6.59 (m, Ph, 2H), 3.73 (s, OMe, 6H). ${ }^{31} \mathrm{P}$ NMR (161.8 MHz, DCM, $18.6^{\circ} \mathrm{C}$): δ-27.7 (s).

6.7.2.5 - Synthesis of $\operatorname{PhP}\left(o-\mathrm{NMe}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}\right)_{2}, 33 \mathrm{e}$:

Colourless needs 29.0 \% yield. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 20.1^{\circ} \mathrm{C}$): $\delta 7.34-7.26(\mathrm{~m}, \mathrm{Ph}$, 5H), 7.22-7.12 (m, Ph, 4H), 6.96 (t, $J=7.3 \mathrm{~Hz}, P h, 2 H$), 6.75 (ddd, 1.8, 3.2, $7.8 \mathrm{~Hz}, P h, 2 \mathrm{H}$), 2.65 (s, NMe $2,12 \mathrm{H}$). ${ }^{\mathbf{3 1}}{ }^{1}$ NMR ($161.8 \mathrm{MHz}, \mathrm{DCM}, 20.1^{\circ} \mathrm{C}$): $\delta-21.8$ (s).

6.7.3 - Synthesis of Diiodophosphoranes

The $\mathrm{Ar}_{3} \mathrm{PI}_{2}$ adducts $\mathbf{3 4 a - g}$ were all prepared by the reaction of donor-functionalised phosphane with 1 equivalent of diiodine in anhydrous diethyl ether. The synthesis of 34a is given as an example. All products were isolated as free-flowing yellow powders. Crystals suitable for single-crystal X-ray diffraction were grown by slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a concentrated solution of the product in DCM.

6.7.3.1 - Synthesis of $\left[\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{o}-\mathrm{OMe}-\mathrm{C}_{6} \mathrm{H}_{4}\right)\right] \mathrm{I}_{2}, 34 \mathrm{a}$:

To a stirred solution of $33 \mathrm{a}(0.200 \mathrm{~g}, 0.68 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3}\right)$ was added dropwise a solution of $\mathrm{I}_{2}(0.165 \mathrm{~g}, 0.65 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3}\right)$, generating an immediate yellow precipitate. The reaction mixture was stirred overnight, the pale yellow supernatant removed by filtration and the solid product washed with $\mathrm{Et}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3}\right)$ before being dried in vacuo to give the product as a bright yellow powder. Yield: $0.247 \mathrm{~g}(0.45 \mathrm{mmol}$, 70 \%). Anal. Calc. for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{I}_{2} \mathrm{OP}: \mathrm{C}, 41.79$; $\mathrm{H}, 3.14$. Found: C, 41.89 ; H, 3.17. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 20.9^{\circ} \mathrm{C}$): $\delta 7.76-7.67$ (bm, $\mathrm{Ph}, 3 \mathrm{H}$), 7.59-7.55 (m, Ph, 8H), 7.14-7.06 (m, $P h, 2 H), 6.98$ (dd, $J=14.7 \mathrm{~Hz}, 7.8 \mathrm{~Hz}, P h, 1 \mathrm{H}), 3.76$ (s, OMe, 3H). ${ }^{31} \mathbf{P}$ NMR (161.8 MHz, DCM, $20.9^{\circ} \mathrm{C}$): $\delta-23.4(\mathrm{~s}) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(100.5 \mathrm{MHz}, \mathrm{DCM}, 19.3^{\circ} \mathrm{C}\right): \delta 161.7\left(\mathrm{~d}, J_{C-P}=1.9\right.$ $\mathrm{Hz}, P h), 137.2\left(\mathrm{~d}, J_{C-P}=1.9 \mathrm{~Hz}, P h\right), 135.0\left(\mathrm{~d}, J_{C-P}=5.8 \mathrm{~Hz}, P h\right), 133.9\left(\mathrm{~d}, J_{C-P}=2.9 \mathrm{~Hz}, P h\right)$, $133.4\left(\mathrm{~d}, J_{C-P}=10.5 \mathrm{~Hz}, P h\right), 127.9\left(\mathrm{~d}, J_{C-P}=10.5 \mathrm{~Hz}, P h\right), 122.6\left(\mathrm{~d}, J_{C-P}=65.2 \mathrm{~Hz}, A r-\mathrm{P}\right.$), $121.8\left(\mathrm{~d}, J_{C-P}=12.5 \mathrm{~Hz}, P h\right), 112.7\left(\mathrm{~d}, J_{C-P}=6.7 \mathrm{~Hz}, P h\right), 109.3\left(\mathrm{~d}, J_{C-P}=64.0 \mathrm{~Hz}, A r-\mathrm{P}\right)$, 65.1 (s, OMe).

6.7.3.2 - Synthesis of $\left[\mathrm{Ph}_{2} \mathrm{P}\left(o-\mathrm{NMe}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}\right)\right] \mathrm{I}_{2}, \mathbf{3 4 b}$:

Yellow solid, 85 \% yield. Anal. Calc. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{I}_{2} \mathrm{NP}$: C, 42.96; H, 3.61; N, 2.50. Found: C, 42.92; H, 3.73; N, 2.65. 1H NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 20.5^{\circ} \mathrm{C}$): $\delta 7.76(\mathrm{t}, J=7.3 \mathrm{~Hz}, P h, 1 \mathrm{H}$), 7.65-7.50 (m, Ph, 11H), 7.35 (d of $\mathrm{t}, J=7.8,2.7 \mathrm{~Hz}, P h, 1 \mathrm{H}$), 7.18 (dd, $J=13.3,7.8 \mathrm{~Hz}, P h$, 1H), 2.24 (s, NMe ${ }_{2}, 6 \mathrm{H}$). ${ }^{\mathbf{3 1} \mathbf{P}}$ NMR ($161.8 \mathrm{MHz}, \mathrm{DCM}, 20.5^{\circ} \mathrm{C}$): $\delta-25.8$ (s). ${ }^{\mathbf{1 3}} \mathbf{C}\left\{\mathbf{1}^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}$ $\left(100.5 \mathrm{MHz}, \mathrm{DCM}, 20.5^{\circ} \mathrm{C}\right): \delta 159.2\left(\mathrm{~d}, J_{C-P}=6.7 \mathrm{~Hz}, P h\right), 136.3\left(\mathrm{~d}, J_{C-P}=2.9 \mathrm{~Hz}, P h\right)$, 134.6 (d, $J_{C-P}=7.7 \mathrm{~Hz}, P h$), 133.6 (s, Ph), 133.5 (s, Ph), 133.4 (singlet, $P h$), 129.6 (d, $J_{C-P}=$ $11.5 \mathrm{~Hz}, P h$), $127.4\left(\mathrm{~d}, J_{C-P}=11.5 \mathrm{~Hz}, P h\right), 126.5\left(\mathrm{~d}, J_{C-P}=7.7 \mathrm{~Hz}, P h\right), 124.4\left(\mathrm{~d}, J_{C-P}=63.3\right.$ $\mathrm{Hz}, A r-\mathrm{P}$), 122.7 (d, $\left.J_{C-P}=67.0 \mathrm{~Hz}, A r-\mathrm{P}\right), 45.6\left(\mathrm{~s}, \mathrm{~N} M e_{2}\right)$.

6.7.3.2 - Synthesis of $\left[\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{o}-\mathrm{CH}_{2} \mathrm{NMe}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}\right)\right] \mathrm{I}_{2}, 34 \mathrm{c}$:

Yellow solid, 93 \% yield. Anal. Calc. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{I}_{2} \mathrm{NP}: \mathrm{C}, 44.00$; H, 3.87; N, 2.44. Found: C, 43.89; H, 3.95; N, 2.56. ¹H NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 20.9{ }^{\circ} \mathrm{C}$): $\delta 7.75-7.34(\mathrm{bm}, \mathrm{Ph}, 13 \mathrm{H}$),
7.15 (dd, $J=14.2,7.3 \mathrm{~Hz}, \mathrm{Ph}, 1 \mathrm{H}$), 3.57 (bs, $\mathrm{CH}_{2} \mathrm{NMe}_{2}, 2 \mathrm{H}$), 1.65 (bs, $\left.\mathrm{CH}_{2} \mathrm{NMe}{ }_{2}, 6 \mathrm{H}\right) .{ }^{31} \mathbf{P}$ NMR ($161.8 \mathrm{MHz}, \mathrm{DCM}, 20.9^{\circ} \mathrm{C}$): $\delta-23.1(\mathrm{~s}) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100.5 \mathrm{MHz}, \mathrm{DCM}, 18.1^{\circ} \mathrm{C}$): δ $145.8\left(\mathrm{~d}, J_{C-P}=9.6 \mathrm{~Hz}, P h\right), 136.1\left(\mathrm{~d}, J_{C-P}=5.3 \mathrm{~Hz}, P h\right), 134.6\left(\mathrm{~d}, J_{C-P}=12.0 \mathrm{~Hz}, P h\right), 134.0$ (d, $J_{C-P}=7.2 \mathrm{~Hz}, P h$), 132.9 (d, $\left.J_{C-P}=8.6 \mathrm{~Hz}, P h\right), 131.8\left(\mathrm{~d}, J_{C-P}=11.5 \mathrm{~Hz}, P h\right), 129.5\left(\mathrm{~d}, J_{C-P}\right.$ $=11.5 \mathrm{~Hz}, P h), 128.0\left(\mathrm{~d}, J_{C-P}=12.0 \mathrm{~Hz}, P h\right), 125.8\left(\mathrm{~d}, J_{C-P}=62.8 \mathrm{~Hz}, A r-\mathrm{P}\right), 120.6\left(\mathrm{~d}, J_{C-P}=\right.$ $57.0 \mathrm{~Hz}, \mathrm{Ar}$-P), 59.4 ($\mathrm{s}, C H_{2} \mathrm{NMe}_{2}$), 43.8 ($\mathrm{s}, \mathrm{N} M e_{2}$).

6.7.3.4 - Synthesis of $\left.\left[\operatorname{PhP}\left(\boldsymbol{o - O M e}-\mathrm{C}_{6} \mathrm{H}_{4}\right)\right)_{2}\right] \mathbf{I}_{2}, 34 \mathrm{~d}$:

Yellow solid, 84.9 \% yield. Anal. Calc. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{I}_{2} \mathrm{O}_{2} \mathrm{P}: \mathrm{C}, 41.69 ; \mathrm{H}, 3.32$. Found: C, 41.51; H, 3.36. ${ }^{1 H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 19.7^{\circ} \mathrm{C}$): $\delta 7.62(\mathrm{~m}, ~ P h, 7 \mathrm{H}), 7.08(\mathrm{~m}, ~ P h, 6 \mathrm{H}), 3.75(\mathrm{~s}$, OMe, 6H). ${ }^{31} \mathbf{P}$ NMR ($161.8 \mathrm{MHz}, \mathrm{DCM}, 20.0^{\circ} \mathrm{C}$): $\delta-32.1(\mathrm{~s}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}(100.5 \mathrm{MHz}$, DCM, $18.7^{\circ} \mathrm{C}$): $\delta 161.0\left(\mathrm{~d}, J_{C-P}=2.9 \mathrm{~Hz}, P h\right), 136.1\left(\mathrm{~d}, J_{C-P}=2.9 \mathrm{~Hz}, P h\right), 134.2\left(\mathrm{~d}, J_{C-P}=\right.$ $6.7 \mathrm{~Hz}, P h), 132.9\left(\mathrm{~d}, J_{C-P}=2.9 \mathrm{~Hz}, P h\right), 132.7\left(\mathrm{~d}, J_{C-P}=9.6 \mathrm{~Hz}, P h\right), 128.8\left(\mathrm{~d}, J_{C-P}=13.4 \mathrm{~Hz}\right.$, $P h), 122.1\left(\mathrm{~d}, J_{C-P}=69.0 \mathrm{~Hz}, A r-\mathrm{P}\right), 121.0\left(\mathrm{~d}, J_{C-P}=12.5 \mathrm{~Hz}, P h\right), 112.1\left(\mathrm{~d}, J_{C-P}=6.7 \mathrm{~Hz}, P h\right)$, $108.6\left(\mathrm{~d}, J_{C-P}=67.1 \mathrm{~Hz}, A r-\mathrm{P}\right), 55.4(\mathrm{~s}, \mathrm{OMe})$.

6.7.3.5 - Synthesis of $\left[\operatorname{PhP}\left(o-\mathrm{NMe}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}\right)_{2}\right] \mathrm{I}_{2}$, 34 e :

Yellow solid, 82 \% yield. Anal. Calc. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{PI}_{2}$: C, 43.88; $\mathrm{H}, 4.18$: N, 4.65. Found: C, 43.75; H, 4.02; N, 4.62. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 20.4^{\circ} \mathrm{C}$): $\delta 7.84-7.73(\mathrm{~m}, ~ P h, 4 \mathrm{H}), 7.60-$ 7.45 ($\mathrm{m}, \mathrm{Ph}, 9 \mathrm{H}$), 2.14 ($\mathrm{s}, \mathrm{NMe}{ }_{2}, 12 \mathrm{H}$). ${ }^{31}{ }^{\text {P }}$ NMR ($161.8 \mathrm{MHz}, \mathrm{DCM}, 20.9^{\circ} \mathrm{C}$): $\delta-22.7$ (s). ${ }^{13} \mathbf{C}\{\mathbf{1} \mathbf{H}\}$ NMR ($100.5 \mathrm{MHz}, \mathrm{DCM}, 19.3^{\circ} \mathrm{C}$): $\delta 158.7\left(\mathrm{~d}, J_{C-P}=3.8 \mathrm{~Hz}, P h\right), 135.9\left(\mathrm{~d}, J_{C-P}=2.9\right.$ $\mathrm{Hz}, P h), 135.5\left(\mathrm{~d}, J_{C-P}=9.6 \mathrm{~Hz}, P h\right), 133.0\left(\mathrm{~d}, J_{C-P}=3.8 \mathrm{~Hz}, P h\right), 132.3\left(\mathrm{~d}, J_{C-P}=9.6 \mathrm{~Hz}, P h\right)$, $129.2\left(\mathrm{~d}, J_{c-P}=13.4 \mathrm{~Hz}, P h\right), 127.4\left(\mathrm{~d}, J_{C-P}=13.4 \mathrm{~Hz}, P h\right), 127.3\left(\mathrm{~d}, J_{C-P}=61.4 \mathrm{~Hz}, A r-\mathrm{P}\right)$, $125.9\left(\mathrm{~d}, J_{C-P}=7.7 \mathrm{~Hz}, P h\right), 121.9\left(\mathrm{~d}, J_{C-P}=72.9 \mathrm{~Hz}, A r-\mathrm{P}\right), 45.8\left(\mathrm{~s}, \mathrm{~N} M e_{2}\right)$.

6.7.3.6 - Synthesis of $\mathrm{Ph}_{3} \mathrm{PI}_{2}, 34 \mathrm{~g}:$

Yellow solid, 94.9 \% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 18.7^{\circ} \mathrm{C}$): $\delta 7.71(\mathrm{~m}, \mathrm{Ph}, 3 \mathrm{H}), 7.58$ ($\mathrm{m}, \mathrm{Ph}, 12 \mathrm{H}$). ${ }^{31}{ }^{31}$ NMR ($161.8 \mathrm{MHz}, \mathrm{DCM}, 18.8^{\circ} \mathrm{C}$): δ-19.8 (s).

6.7.4 - Synthesis of Iodophosphonium Salts

NMR scale samples of the iodophosphonium salts [35a-g]X were prepared by combination of appropriate donor-functionalised diiodophosphorane and $\mathrm{NaBAr}^{\mathrm{F}}$ or I_{2} in DCM unless stated otherwise. The synthesis of [35a]BAr ${ }^{\mathbf{F}}$ is given as exemplar. All reactions were monitored via NMR at each stage. Crystals suitable for X-ray diffraction were grown by slow diffusion of hexane or $\mathrm{Et}_{2} \mathrm{O}$ into a saturated solution of the product in DCM.

6.7.4.1 - Synthesis of $\left[\mathrm{Ph}_{2} \mathrm{P}\left(o-0 \mathrm{OMe}-\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{I}\right]\left[\mathrm{BAr}^{\mathrm{F}}\right][35 \mathrm{a}] \mathrm{BAr}^{\mathrm{F}}$:

To a J. Young's NMR tube fitted with a d ${ }_{6}$-DMSO capillary was added $\mathbf{3 4 a}$ ($20 \mathrm{mg}, 0.037$ mmol) and DCM ($0.7 \mathrm{~cm}^{3}$). $\mathrm{NaBAr}^{\mathrm{F}}$ ($33 \mathrm{mg}, 0.037 \mathrm{mmol}$) was added and the reaction mixture was heated to reflux for 1 hour. The supernatant was decanted into a crystallisation tube and layered with hexane. After 24 hours, the colourless crystals were filtered, washed with hexane ($5 \mathrm{~cm}^{3}$) and dried in vacuo. Yield: $27.3 \mathrm{mg}(0.021$ mmol, 58.2 \%). Anal. Calc. for $\mathrm{C}_{51} \mathrm{H}_{29} \mathrm{BF}_{24} \mathrm{IOP}$: C, 47.77; H, 2.28. Found: C, 47.86; H, 2.40. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 18.9^{\circ} \mathrm{C}$): $\delta 7.85(\mathrm{t}, J=7.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 7.79(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$, Ph), 7.71 (s, 8H, ArH (BAr$)$), 7.66 (q, $J=5.0,7.3,8.2 \mathrm{~Hz}, 4 \mathrm{H}, P h$), 7.58 (dd, $J=7.3,16.5$ $\mathrm{Hz}, 4 \mathrm{H}, P h$), $7.54\left(\mathrm{~s}, 4 \mathrm{H}, \operatorname{ArH}\left(\mathrm{BAr}^{\mathrm{F}}\right)\right.$), $7.17(\mathrm{q}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, P h), 6.93$ (dd, $J=7.8,16.5 \mathrm{~Hz}$, 1H, Ph), 3.8 (s, 3H, OMe). ${ }^{\mathbf{3 1} \mathbf{P}} \mathbf{N M R}\left(161.8 \mathrm{MHz}, \mathrm{DCM}, 18.9^{\circ} \mathrm{C}\right.$): $\delta 2.6$ (s). $\mathbf{1 3}^{\mathbf{3}} \mathbf{C}\left\{\mathbf{1}^{\mathbf{H}} \mathbf{H}\right\} \mathbf{N M R}$ (100.5 MHz, DCM, $19.0^{\circ} \mathrm{C}$): $\delta 162.3\left(\mathrm{~d}, J_{C-P}=1.9 \mathrm{~Hz}, P h\right), 161.9\left(\mathrm{q}, J_{C-B}=49.8 \mathrm{~Hz}\right.$, aromatic $\left.C\left(\mathrm{BAr}^{\mathrm{F}}\right)\right), 140.0\left(\mathrm{~d}, J_{C-P} 2.9 \mathrm{~Hz}, P h\right), 136.3\left(\mathrm{~d}, J_{C-P}=2.9 \mathrm{~Hz}, P h\right), 135.6\left(\mathrm{~d}, J_{C-P}=9.6 \mathrm{~Hz}, P h\right)$, 134.9 (bs, aromatic $C\left(\mathrm{BAr}^{\mathrm{F}}\right)$), $133.5\left(\mathrm{~d}, J_{C-P}=12.5 \mathrm{~Hz}, P h\right), 130.5\left(\mathrm{~d}, J_{C-P}=14.4 \mathrm{~Hz}, P h\right.$), $129.0\left(\mathrm{qq}, J_{C-F}=31.6 \mathrm{~Hz}, J_{C-B}=2.9 \mathrm{~Hz}, C-\mathrm{CF}_{3}\left(\mathrm{BAr}^{\mathrm{F}}\right)\right.$), $124.7\left(\mathrm{q}, J_{C-F}=272.2,272.7 \mathrm{~Hz}, C \mathrm{~F}_{3}\right.$ $\left.\left(\mathrm{BAr}^{\mathrm{F}}\right)\right), 122.5\left(\mathrm{~d}, J_{C-P}=14.4 \mathrm{~Hz}, P h\right), 119.9\left(\mathrm{~d}, J_{C-P}=82.4 \mathrm{~Hz}, P h\right), 117.6(\mathrm{~m}$, aromatic C $\left.\left(\mathrm{BAr}^{\mathrm{F}}\right)\right), 113.5\left(\mathrm{~d}, J_{C-P}=6.7 \mathrm{~Hz}, P h\right), 56.5(\mathrm{~s}, \mathrm{OMe}) .{ }^{11} \mathbf{B}$ NMR (128.3 MHz, DCM, $\left.18.6^{\circ} \mathrm{C}\right): \delta$ -8.2 (s, BAr $).{ }^{19}$ F NMR ($376.2 \mathrm{MHz}, \mathrm{DCM}, 18.4^{\circ} \mathrm{C}$): $\delta-63.3\left(\mathrm{~s}, \mathrm{CF} 3\left(\mathrm{BAr}^{\mathrm{F}}\right)\right.$).

6.7.4.2 - Synthesis of $\left[\mathrm{Ph}_{2} \mathrm{P}\left(o-\mathrm{NMe}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{I}\right]\left[\mathrm{BAr}^{\mathrm{F}}\right][35 b] \mathrm{BAr}^{\mathrm{F}}$:

Pale yellow crystals, 69.1 \% yield. Anal. Calc. for $\mathrm{C}_{52} \mathrm{H}_{32} \mathrm{BF}_{24}$ INP: C, 48.21; H, 2.49; N, 1.08. Found: C, 48.15: H, 2.40; N, 1.15. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 17.0^{\circ} \mathrm{C}$): $\delta 7.96-7.89$ (m, 1H, Ph), 7.78-7.73 (br, 2H, Ph), 7.72 (br, 8H, $\operatorname{ArH}\left(\mathrm{BAr}^{\mathrm{F}}\right)$), 7.69-7.63 (m, 6H, Ph), 7.62-7.55 (m, 5H, Ph), 7.54 (br, 4H, ArH ($\mathrm{BAr}^{\mathrm{F}}$)), 2.12 (s, 6H, NMe $)^{\text {). }}{ }^{31}$ P NMR (161.8 MHz, DCM, $17.6^{\circ} \mathrm{C}$): $\delta 6.1(\mathrm{~s}) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR ($100.5 \mathrm{MHz}, \mathrm{DCM}, 16.8^{\circ} \mathrm{C}$): $\delta 161.2\left(\mathrm{q}, J_{C-B}=\right.$ 49.8 Hz , aromatic $C\left(\mathrm{BAr}^{\mathrm{F}}\right)$), $159.4\left(\mathrm{~d}, J_{C-P}=5.8 \mathrm{~Hz}, P h\right), 139.4$ (d, $\left.J_{C-P}=2.4 \mathrm{~Hz}, P h\right), 136.7$ (d, $\left.J_{C-P}=12.5 \mathrm{~Hz}, P h\right), 135.7\left(\mathrm{~d}, J_{C-P}=3.4 \mathrm{~Hz}, P h\right), 134.9$ (br, aromatic $C\left(\mathrm{BAr}^{\mathrm{F}}\right)$), $133.0(\mathrm{~d}$, $\left.J_{C-P}=12.0 \mathrm{~Hz}, P h\right), 130.4\left(\mathrm{~d}, J_{C-P}=14.89 \mathrm{~Hz}, P h\right), 129.0\left(\mathrm{qq}, J_{C-F}=31.6 \mathrm{~Hz}, J_{C-B}=2.9 \mathrm{~Hz}, C-\right.$ $\left.\mathrm{CF}_{3}\left(\mathrm{BAr}^{\mathrm{F}}\right)\right), 127.3\left(\mathrm{~d}, J_{C=P}=8.2 \mathrm{~Hz}, P h\right), 124.7\left(\mathrm{q}, J_{C-F}=272.2,272.7 \mathrm{~Hz}, C \mathrm{~F}_{3}\left(\mathrm{BAr}^{\mathrm{F}}\right)\right.$), $122.1\left(\mathrm{~d}, J_{C-P}=82.9 \mathrm{~Hz}, P h\right), 118.6\left(\mathrm{~d}, J_{C-P}=88.2 \mathrm{~Hz}, P h\right), 117.6\left(\mathrm{~m}\right.$, aromatic $C\left(\mathrm{BAr}^{\mathrm{F}}\right)$), 45.6 ($\mathrm{s}, \mathrm{N} M e_{2}$). ${ }^{11} \mathbf{B}$ NMR (128.3 MHz, DCM, $17.2^{\circ} \mathrm{C}$): δ-8.2 ($\mathrm{s}, B \mathrm{Br}^{\mathrm{F}}$). ${ }^{\mathbf{1 9} \mathbf{F}} \mathbf{~ N M R ~ (3 7 6 . 2 ~}$ MHz, DCM, $17.4^{\circ} \mathrm{C}$): $\delta-63.3\left(\mathrm{~s}, \mathrm{CF}_{3}\left(\mathrm{BAr}^{\mathrm{F}}\right)\right.$).

6.7.4.3 - Synthesis of $\left[\mathrm{PhP}\left(o-O M e-\mathrm{C}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{I}\right]\left[\mathrm{BAr}^{\mathrm{F}}\right][35 \mathrm{~d}] \mathrm{BAr}^{\mathrm{F}}$:

Colourless solid, 45.5 \% yield. Anal. Calc. for $\mathrm{C}_{52} \mathrm{H}_{31} \mathrm{BF}_{24} \mathrm{IO} 2 \mathrm{P}: \mathrm{C}, 47.59 ; \mathrm{H}, 2.38$. Found: C , 47.40; H, 2.30. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 17.2^{\circ} \mathrm{C}$): $\delta 7.82$ (t, J = 7.4, $8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$), 7.76
(br, 1H, Ph), 7.71 (br, 8H, ArH (BArf)), 7.67-7.57 (m, 4H, Ph), 7.54 (br, 4H, ArH (BArF)), $7.15(\mathrm{q}, J=7.3,8.0 \mathrm{~Hz}, 4 \mathrm{H}, P h), 7.01(\mathrm{dd}, J=7.6,17.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 3.81(\mathrm{~s}, 6 \mathrm{H}, 0 \mathrm{OMe}) .{ }^{31} \mathbf{P}$ NMR ($161.8 \mathrm{MHz}, \mathrm{DCM}, 16.7^{\circ} \mathrm{C}$): $\delta-10.0(\mathrm{~s}) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR ($100.5 \mathrm{MHz}, \mathrm{DCM}, 17.5^{\circ} \mathrm{C}$): δ $162.1\left(\mathrm{~d}, J_{C-P}=2.9 \mathrm{~Hz}, P h\right), 161.9\left(\mathrm{q}, J_{C-B}=49.8 \mathrm{~Hz}\right.$, aromatic $C\left(\mathrm{BAr}^{\mathrm{F}}\right)$), $139.2\left(\mathrm{~d}, J_{C-P}=1.9\right.$ $\mathrm{Hz}, P h$), 135.7 (d, $J_{C-P}=3.4 \mathrm{~Hz}, P h$), 135.1 (d, $J_{C-P}=10.1 \mathrm{~Hz}, P h$), 134.9 (br, aromatic C $\left.\left(\mathrm{BAr}^{\mathrm{F}}\right)\right), 133.2\left(\mathrm{~d}, J_{C-P}=12.0 \mathrm{~Hz}, P h\right), 130.2\left(\mathrm{~d}, J_{C-P}=14.9 \mathrm{~Hz}, P h\right), 129.0\left(\mathrm{qq}, J_{C-F}=31.6 \mathrm{~Hz}\right.$, $\left.J_{C-B}=2.9 \mathrm{~Hz}, C-\mathrm{CF}_{3}(\mathrm{BAr})^{\mathrm{F}}\right), 124.7\left(\mathrm{q}, J_{C-F}=272.2,272.7 \mathrm{~Hz}, C \mathrm{~F}_{3}(\mathrm{BAr})^{\mathrm{F}}\right), 122.2\left(\mathrm{~d}, J_{C-P}=\right.$ $14.4 \mathrm{~Hz}, P h), 120.1\left(\mathrm{~d}, J_{C-P}=85.8 \mathrm{~Hz}, P h\right), 117.6\left(\mathrm{~m}\right.$, aromatic $C\left(\mathrm{BAr}{ }^{\mathrm{F}}\right)$), $113.3\left(\mathrm{~d}, J_{C-P}=\right.$ 6.7 Hz. Ph), $105.8\left(\mathrm{~d}, J_{C-P}=85.8 \mathrm{~Hz}, P h\right), 56.3(\mathrm{~s}, \mathrm{OMe})$.). 11B NMR (128.3 MHz, DCM, $17.3^{\circ} \mathrm{C}$): $\delta-8.2\left(\mathrm{~s}, \mathrm{BAr} \mathrm{F}^{\mathrm{F}}\right.$). ${ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($376.2 \mathrm{MHz}, \mathrm{DCM}, 17.3^{\circ} \mathrm{C}$): $\delta-63.3\left(\mathrm{~s}, \mathrm{CF}_{3}\left(\mathrm{BAr} \mathrm{F}^{\mathrm{F}}\right)\right.$).

6.7.4.4 - Synthesis of $\left[\mathrm{PhP}\left(o-\mathrm{NMe}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{I}\right]\left[\mathrm{BAr}{ }^{\mathrm{F}}\right][35 \mathrm{e}] \mathrm{BAr}^{\mathrm{F}}$:

Pale yellow solid, 48.6 \% yield. Anal. Calc. for $\mathrm{C}_{55} \mathrm{H}_{37} \mathrm{BF}_{24} \mathrm{IN}_{2} \mathrm{P}: \mathrm{C}, 48.45 ; \mathrm{H}, 2.79 ; \mathrm{N}, 2.09$. Found: C, 48.39; H, 2.72; N, 2.12. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 17.1^{\circ} \mathrm{C}$): $\delta 7.96$ (dd, $J=8.0$, $16.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.86(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.71(\mathrm{br}, 8 \mathrm{H}, \mathrm{ArH}$ (BArf)), 7.67-7.57(m, 5H, Ph), 7.54 (br, 4H, $\operatorname{ArH}(\mathrm{BAr} \mathrm{F})$), $7.50\left(\mathrm{t}, J=7.7,7.9 \mathrm{~Hz}, 4 \mathrm{H}, P h\right.$), $2.07\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{NMe} e_{2}\right) .{ }^{31} \mathbf{P}$ NMR (161.8 MHz, DCM, $17.0^{\circ} \mathrm{C}$): $\delta-3.0(\mathrm{~s}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100.5 \mathrm{MHz}, \mathrm{DCM}, 18.5^{\circ} \mathrm{C}$): δ $161.9\left(\mathrm{q}, J_{C-B}=49.8 \mathrm{~Hz}\right.$, aromatic $C\left(\mathrm{BAr}^{\mathrm{F}}\right)$), $158.6\left(\mathrm{~d}, J_{C-P}=5.3 \mathrm{~Hz}, P h\right), 138.0\left(\mathrm{~d}, J_{C-P}=2.4\right.$ $\mathrm{Hz}, P h$), 134.9 (br, aromatic $C\left(B A r^{\mathrm{F}}\right)$), 131.4 (d, $J_{C-P}=11.5 \mathrm{~Hz}, P h$), 129.8 (d, $J_{C-P}=14.4$ $\mathrm{Hz}, P h), 129.0\left(\mathrm{qq}, J_{C-F}=31.6 \mathrm{~Hz}, J_{c-B}=2.9 \mathrm{~Hz}, C-\mathrm{CF}_{3}\left(\mathrm{BAr}^{\mathrm{F}}\right)\right.$), 126.6 ($\mathrm{d}, J_{C-P}=8.6 \mathrm{~Hz}, P h$), 126.3 (d, $\left.J_{c-P}=85.3 \mathrm{~Hz}, P h\right), 124.7\left(\mathrm{q}, J_{C-F}=272.2,272.7 \mathrm{~Hz}, C F_{3}\left(B A r^{\mathrm{F}}\right)\right.$), $117.6(\mathrm{~m}$, aromatic $\left.C\left(\mathrm{BAr} \mathrm{F}^{\mathrm{F}}\right), 45.75(\mathrm{~s}, \mathrm{NMe})_{2}\right) .{ }^{11} \mathbf{B}$ NMR ($128.3 \mathrm{MHz}, \mathrm{DCM}, 18.1^{\circ} \mathrm{C}$): $\delta-8.2(\mathrm{~s}$, BArf). ${ }^{99}$ F NMR ($376.2 \mathrm{MHz}, \mathrm{DCM}, 17.7^{\circ} \mathrm{C}$): $\delta-63.3(\mathrm{~s}, \mathrm{CF} 3(\mathrm{BArF})$).

6.7.4.5 - Synthesis of $\left[\mathrm{PPh}_{3} \mathrm{I}\right]\left[\mathrm{BAr}{ }^{\mathrm{F}}\right][35 \mathrm{~g}] \mathrm{BAr}^{\mathrm{F}}$:

Colourless blocks, 75.1 \% yield. Anal. Calc. for $\mathrm{C}_{50} \mathrm{H}_{27} \mathrm{BF}_{24} \mathrm{IP}$: $\mathrm{C}, 47.95$; $\mathrm{H}, 2.17$. Found: C , 48.03; H, 2.03. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 16.9^{\circ} \mathrm{C}$): $\delta 7.83(\mathrm{t}, J=7.3,7.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ph}(\mathrm{PPh}-$ $\left.{ }_{3} \mathrm{I}\right)$), 7.75-7.66 (m, 14H, $\mathrm{Ph}, \operatorname{ArH}\left(\mathrm{PPh}_{3} \mathrm{I}, \mathrm{BArF}\right)$), $7.59\left(\mathrm{dd}, J=8.0,15.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{Ph}\left(\mathrm{PPh}_{3} \mathrm{I}\right)\right.$),
 (100.5 MHz, DCM, $18.1^{\circ} \mathrm{C}$): $\delta 161.9\left(\mathrm{q}, J_{C-B}=49.8 \mathrm{~Hz}\right.$, aromatic $C($ BArf) $), 137.0\left(\mathrm{~d}, J_{C-P}=\right.$ $3.8 \mathrm{~Hz}, \mathrm{Ph}), 134.9$ (bs, aromatic $C\left(\mathrm{BAr}^{\mathrm{F}}\right)$), $134.0\left(\mathrm{~d}, J_{C-P}=12.5 \mathrm{~Hz}, P h\right), 130.9\left(\mathrm{~d}, J_{C-P}=\right.$ $14.9 \mathrm{~Hz}, P h), 123.0\left(\mathrm{qq}, J_{C-F}=31.6 \mathrm{~Hz}, J_{C-B}=2.9 \mathrm{~Hz}, C-\mathrm{CF}_{3}(\mathrm{BArF})\right.$), 124.7 (q, $J_{C-F}=272.2$, $272.7 \mathrm{~Hz}, C_{3}\left(\mathrm{BAr}^{\mathrm{F}}\right)$), 119.7 (d, $\left.J_{C-P}=79.1 \mathrm{~Hz}, P h\right), 117.6\left(\mathrm{~m}\right.$, aromatic $\left.C\left(\mathrm{BAr}^{\mathrm{F}}\right)\right) .{ }^{11} \mathbf{B}$ NMR ($128.3 \mathrm{MHz}, \mathrm{DCM}, 17.0^{\circ} \mathrm{C}$): $\delta-8.2$ ($\mathrm{s}, \mathrm{BArF}$). ${ }^{19} \mathbf{F}$ NMR ($376.2 \mathrm{MHz}, \mathrm{DCM}, 17.7^{\circ} \mathrm{C}$): δ -63.3 (s, CF ${ }_{3}$ ($\mathrm{BAr}^{\mathrm{F}}$)).

6.7.4.6 - Synthesis of $\left[\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{o}-\mathrm{OMe}-\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{I}\right]\left[\mathrm{I}_{3}\right][35 \mathrm{a}] \mathrm{I}_{3}$:

Dark red solid, 53.5 \% yield. Anal. Calc. for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{I}_{4} \mathrm{OP}: \mathrm{C}, 28.53$; H, 2.14. Found: C, 28.61; H, 2.00. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 18.1^{\circ} \mathrm{C}$): $\delta 7.88(\mathrm{t}, J=7.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}$), $7.84-$ $7.77(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.73-7.65(\mathrm{~m}, 5 \mathrm{H}, P h), 7.62(\mathrm{t}, J=7.6,8.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ph}), 7.26-7.15(\mathrm{~m}, 2 \mathrm{H}$, Ph), 6.98 (dd, $J=7.8,16.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}$), 3.87 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$). ${ }^{31}$ P NMR (161.8 MHz, DCM, $18.4^{\circ} \mathrm{C}$): $\delta-2.4(\mathrm{~s}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~}^{\mathbf{1} \mathbf{H}\}} \mathbf{N M R}\left(100.5 \mathrm{MHz}, \mathrm{DCM}, 18.6^{\circ} \mathrm{C}\right.$): $\delta 162.2\left(\mathrm{~d}, \mathrm{~J}_{C-P}=2.4 \mathrm{~Hz}\right.$, $P h), 139.4\left(\mathrm{~d}, J_{C-P}=2.4 \mathrm{~Hz}, P h\right), 135.7\left(\mathrm{~d}, J_{C-P}=3.4 \mathrm{~Hz}, P h\right), 135.5\left(\mathrm{~d}, J_{C-P}=9.6 \mathrm{~Hz}, P h\right)$, $133.7\left(\mathrm{~d}, J_{C-P}=11.5 \mathrm{~Hz}, P h\right), 130.4\left(\mathrm{~d}, J_{C-P}=14.4 \mathrm{~Hz}, P h\right), 122.4\left(\mathrm{~d}, J_{C-P}=13.9 \mathrm{~Hz}, P h\right)$, $120.7\left(\mathrm{~d}, J_{C-P}=78.6 \mathrm{~Hz}, P h\right), 113.5\left(\mathrm{~d}, J_{C-P}=6.7 \mathrm{~Hz}, P h\right), 106.7\left(\mathrm{~d}, J_{C-P}=79.1 \mathrm{~Hz}, P h\right), 56.9$ (s, OMe).

6.7.4.7 - Synthesis of $\left[\mathrm{PhP}\left(o-\mathrm{OMe}-\mathrm{C}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{I}\right]\left[\mathrm{I}_{3}\right][35 \mathrm{~d}] \mathrm{I}_{3}$:

Orange solid, 66.1 \% yield. Anal. Calc. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{I}_{4} \mathrm{O}_{2} \mathrm{P}: \mathrm{C}, 28.94$; H, 2.31. Found: C, 28.85; H, 2.25. 1H NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 17.2^{\circ} \mathrm{C}$): $\delta 7.85(\mathrm{t}, J=7.1,7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.77(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 1 \mathrm{H}, P h$), 7.70-7.59 (m, 4H, Ph), 7.20 (q, $J=7.6,8.2 \mathrm{~Hz}, 4 \mathrm{H}, P h$), 7.06 (dd, $J=7.8$, $16.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 3.85(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OMe}) .{ }^{31} \mathrm{P}$ NMR ($161.8 \mathrm{MHz}, \mathrm{DCM}, 17.3^{\circ} \mathrm{C}$): $\delta-13.0(\mathrm{~s})$. ${ }^{13} \mathbf{C}\left\{\mathbf{1}^{\mathbf{H}}\right\} \mathbf{N M R}\left(100.5 \mathrm{MHz}, \mathrm{DCM}, 17.2^{\circ} \mathrm{C}\right): \delta 162.0\left(\mathrm{~d}, J_{C-P}=2.4 \mathrm{~Hz}, P h\right), 138.8\left(\mathrm{~d}, J_{C-P}=2.4\right.$ $\mathrm{Hz}, P h$), 135.3 (d, $J_{C-P}=3.4 \mathrm{~Hz}, P h$), $135.2\left(\mathrm{~d}, J_{C-P}=9.6 \mathrm{~Hz}, P h\right), 133.4\left(\mathrm{~d}, J_{C-P}=12.0 \mathrm{~Hz}\right.$, $P h), 130.1\left(\mathrm{~d}, J_{C-P}=14.4 \mathrm{~Hz}, P h\right), 122.2\left(\mathrm{~d}, J_{C-P}=14.4 \mathrm{~Hz}, P h\right), 120.7\left(\mathrm{~d}, J_{C-P}=82.4 \mathrm{~Hz}, P h\right)$, $113.4\left(\mathrm{~d}, J_{C-P}=7.2 \mathrm{~Hz}, P h\right), 106.5\left(\mathrm{~d}, J_{C-P}=82.9 \mathrm{~Hz}, P h\right), 56.7(\mathrm{~s}, \mathrm{OMe})$.

6.7.4.8 - Synthesis of $\left[\mathrm{PhP}\left(o-\mathrm{NMe}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{I}\right]\left[\mathrm{I}_{3}\right][35 \mathrm{e}] \mathrm{I}_{3}$:

Red solid, 71.5 \% yield. Anal. Calc. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{I}_{4} \mathrm{~N}_{2} \mathrm{P}: \mathrm{C}, 30.87$; H, 2.94; N, 3.27. Found: C, 30.69; H, 2.85; N, 3.26. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 17.0^{\circ} \mathrm{C}$): $\delta 8.0(\mathrm{dd}, J=7.8,16.5 \mathrm{~Hz}, 2 \mathrm{H}$, $P h$), 7.90 ($\mathrm{t}, J=7.3,7.8 \mathrm{~Hz}, 2 \mathrm{H}, P h$), $7.75-7.63(\mathrm{~m}, 5 \mathrm{H}, P h$), 7.59 ($\mathrm{dd}, J=7.8,15.1 \mathrm{~Hz}, 2 \mathrm{H}$, $P h), 7.55(\mathrm{t}, J=7.3,7.8 \mathrm{~Hz}, 2 \mathrm{H}, P h), 2.12\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{N} M e_{2}\right) .{ }^{31} \mathbf{P}$ NMR (161.8 MHz, DCM, $17.8^{\circ} \mathrm{C}$): $\left.\delta-5.3(\mathrm{~s}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~} \mathbf{1} \mathbf{H}\right\} \mathbf{N M R}\left(100.5 \mathrm{MHz}, \mathrm{DCM}, 17.6^{\circ} \mathrm{C}\right): \delta 158.6\left(\mathrm{~d}, J_{C-P}=5.8 \mathrm{~Hz}, P h\right)$, $137.6\left(\mathrm{~d}, J_{C-P}=2.4 \mathrm{~Hz}, P h\right), 135.6(\mathrm{br}, P h), 134.6\left(\mathrm{~d}, J_{C-P}=3.8 \mathrm{~Hz}, P h\right), 131.5\left(\mathrm{~d}, J_{C-P}=11.5\right.$ $\mathrm{Hz}, P h$), $129.8\left(\mathrm{~d}, J_{C-P}=14.4 \mathrm{~Hz}, P h\right), 128.5\left(\mathrm{~d}, J_{C-P}=14.9 \mathrm{~Hz}, P h\right), 126.5\left(\mathrm{~d}, J_{C-P}=8.6 \mathrm{~Hz}\right.$, $P h), 126.4\left(\mathrm{~d}, J_{C-P}=82.9 \mathrm{~Hz}, P h\right), 120.0\left(\mathrm{~d}, J_{C-P}=92.0 \mathrm{~Hz}, P h\right), 45.9\left(\mathrm{~s}, \mathrm{~N} M e_{2}\right)$.

6.7.4.9 - Synthesis of $\left[\mathrm{PPh}_{3} \mathrm{I}\right]\left[\mathrm{I}_{3}\right][35 \mathrm{~g}] \mathrm{I}_{3}$:

$\mathrm{PPh}_{3}(0.100 \mathrm{~g}, 0.381 \mathrm{mmol})$ was dissolved in $\mathrm{Et}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3}\right)$ and iodine $(0.194 \mathrm{~g}, 0.762$ mmol) was added dropwise as a solution in $\mathrm{Et}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3}\right)$, forming a bright yellow precipitate which darkened as addition continued. After stirring overnight, the supernatant was removed via filtration and the solids were washed with $\mathrm{Et}_{2} \mathrm{O}$ (2×5
cm^{3}) then dried in vacuo yielding the product as a free flowing dark red powder. Yield: 0.262 g ($0.340 \mathrm{mmol}, 89.4$ \% yield). Anal. Calc. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{PI}_{4}$: C, 28.08; H, 1.96. Found: C, 28.16; H, 1.87. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DCM}, 18.6^{\circ} \mathrm{C}$): $\delta 7.84(\mathrm{td}, J=2.5,7.1,7.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ph})$, 7.72 (sex, $J=3.0,3.7,4.4,4.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{Ph}$), 7.64 (dd, $J=7.6,15.3 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{Ph}$). ${ }^{31} \mathbf{P}$ NMR ($161.8 \mathrm{MHz}, \mathrm{DCM}, 18.1^{\circ} \mathrm{C}$): $\delta 6.0$ (s). ${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR ($100.5 \mathrm{MHz}, \mathrm{DCM}, 18.5^{\circ} \mathrm{C}$): $\delta 136.1$ $\left(\mathrm{d}, J_{C-P}=2.9 \mathrm{~Hz}, P h\right), 133.9\left(\mathrm{~d}, J_{C-P}=11.5 \mathrm{~Hz}, P h\right), 130.7\left(\mathrm{~d}, J_{C-P}=14.4 \mathrm{~Hz}, P h\right), 120.6\left(\mathrm{~d}, J_{C-P}\right.$ $=74.8 \mathrm{~Hz}, P h$).

6.8 - References

1 J. M. Farrell, J. A. Hatnean and D. W. Stephan, J. Am. Chem. Soc., 2012, 134, 15728-15731.
E. R. Clark and M. J. Ingleson, Organometallics, 2013, 32, 6712-6717.
P. Eisenberger, B. P. Bestvater, E. C. Keske and C. M. Crudden, Angew. Chem. Int. Ed., 2015, 54, 2467-2471.
T. Vom Stein, M. Peréz, R. Dobrovetsky, D. Winkelhaus, C. B. Caputo and D. W. Stephan, Angew. Chem. Int. Ed., 2015, 54, 10178-10182.
R. Arias Ugarte, D. Devarajan, R. M. Mushinski and T. W. Hudnall, Dalton Trans., 2016, 45, 11150-11161.
M. Hirai, J. Cho and F. P. Gabbai, Chem. Eur. J., 2016, 22, 6537-6541.
G. Talavera, J. Peña and M. Alcarazo, J. Am. Chem. Soc., 2015, 137, 8704-8707. E. R. Clark, A. M. Borys and K. Pearce, Dalton Trans., 2016, 45, 16125-16129.
G. S. Ananthnag, N. Edukondalu, J. T. Mague and M. S. Balakrishna, Polyhedron, 2013, 62, 203-207.
E. Shirakawa, Y. Yamamoto, Y. Nakao, S. Oda, T. Tsuchimoto and T. Hiyama, Angew. Chem. Int. Ed., 2004, 43, 3448-3451.
V. C. Chuit, R. J. P. Corriu, P. Monforte, C. Reye, J. Declercq and A. Dubourg, Angew. Chem. Int. Ed., 1993, 105, 1529-1531.
F. Weller, D. Nuszhär, K. Dehnicke, F. Gingl and J. Strähle, ZAAC - J. Inorg. Gen. Chem., 1991, 602, 7-16.
S. M. Godfrey, C. a Mcauli, R. G. Pritchard, J. M. She and G. M. Thompson, J. Chem. Soc., Dalt. Trans., 1997, 2, 4823-4827.
S. M. Godfrey, C. A. Mcauli, R. G. Pritchard and J. M. Sheffield, Dalton Trans., 1998, 1919-1923.
M. A. H. A. Al-Juboori, P. N. Gates and A. S. Muir, J. Chem. Soc., Chem. Commun., 1991, 1270-1271.
N. Bricklebank, S. M. Godfrey, A. G. Mackie, C. A. Mcauiiffe and R. G. Pritchard, J. Chem. Soc., Chem. Commun., 1992, 355-356.
F. Ruthe, W. Mont and P. G. Jones, Chem. Commun., 1997, 185, 1947-1948. S. M. Godfrey, C. A. Mcauli, I. Mushtaq, R. G. Pritchard and J. M. Sheffield, Dalton Trans., 1998, 3815-3818.
C. G. Hrib, F. Ruthe, E. Seppälä, M. Bätcher, C. Druckenbrodt, C. Wismach, P. G. Jones, W. W. Du Mont, V. Lippolis, F. A. Devillanova and M. Bühl, Eur. J. Inorg. Chem., 2006, 88-100.
B. W. Walther, M. Batcher, S. Pohl, W. Saak, J. Laugier and P. Rey, Angew. Chem. Int. Ed., 1987, 26, 912-913.
S. M. Godfrey, D. G. Kelly, C. A. Mcauliffe, A. G. Mackie, R. G. Pritchard and S. M. Watson, J. Chem. Soc., Chem. Commun., 1991, 2, 1163-1164.
N. Bricklebank, S. M. Godfrey, H. P. Lane, C. A. McAuliffe, R. G. Pritchard and J.-M. Moreno, J. Chem. Soc., Dalt. Trans., 1995, 2421-2424.
F. Ruthe, P. G. Jones, W.-W. du Mont, P. Deplano and M. L. Mercuri, Z. Anorg. Allg. Chem., 2000, 625, 1105-1111.
W. Mont and F. Ruthe, Coord. Chem. Rev., 1999, 189, 101-133.
N. A. Barnes, S. M. Godfrey, R. Z. Khan, A. Pierce and R. G. Pritchard, Polyhedron, 2012, 35, 31-46.
F. Teixedor, R. Nunez, C. Vinas, R. Sillanpaa and R. Kivevkas, Angew. Chem. Int. Ed., 2000, 39, 4290-4292.
N. a Barnes, S. M. Godfrey, R. T. a Halton, I. Mushtaq and R. G. Pritchard, Dalton Trans., 2008, 1346-54.
C. A. McAuliffe, B. Beagley, G. A. Gott, A. G. Mackie, P. P. MacRory and R. G. Pritchard, Angew. Chem. Int. Ed., 1987, 26, 264-265.
A. F. Wells, Structural Inorganic Chemistry, Clarendon Press, Oxford, 5th Editio., 1984.
N. A. Barnes, K. R. Flower, S. M. Godfrey, P. A. Hurst, R. Z. Khan and R. G. Pritchard, CrystEngComm, 2010, 12, 4240-4251.
N. A. Barnes, S. M. Godfrey, R. T. A. Halton, I. Mushtaq and R. G. Pritchard, Dalton Trans., 2006, 4795-4804.
F. N. Jones, M. F. Zinn and C. R. Hauser, J. Org. Chem., 1963, 28, 663-665.
M. Stratakis, J. Org. Chem., 1997, 62, 3024-3025.
D. W. Slocum, T. K. Reinscheld, C. B. White, M. D. Timmons, P. A. Shelton, M. G. Slocum, R. D. Sandlin, E. G. Holland, D. Kusmic, J. A. Jennings, K. C. Tekin, Q. Nguyen, S. J. Bush, J. M. Keller and P. E. Whitley, Organometallics, 2013, 32, 1674-1686.
R. W. Seidel and R. Goddard, Acta Cryst., 2015, C71, 664-666.
I. Dance and M. Scudder, J. Chem. Soc., Chem. Commun., 1995, 1039-1040.
J. A. S. Howell, M. G. Palin, P. C. Yates, P. McArdle, D. Cunningham, Z. Goldschmidt, H. E. Gottlieb and D. Hezroni-Langerman, J. Chem. Soc., Perkin Trans. 2, 1992, 1769.
P. Deplano, S. M. Godfrey, F. Isaia, C. A. McAuliffe, M. L. Mercuri and E. F. Trogu,

Chem. Ber., 1997, 130, 299-305. J. Trotter, Acta Cryst., 1960, 13, 86-95.
C. C. Wilson, N. Shankland and A. J. Florence, J. Chem. Soc., Faraday Trans., 1996, 92, 5051-5057.
F. A. Cotton and P. A. Kibala, J. Am. Chem. Soc., 1987, 109, 3308-3312.
F. B. Alhanash, N. A. Barnes, S. M. Godfrey, P. A. Hurst, A. Hutchinson, R. Z. Khan and R. G. Pritchard, Dalton Trans., 2012, 41, 7708.
P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299-310. W. R. Wadt and P. J. Hay, J. Chem. Phys., 1985, 82, 284-298.
F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297.
A. Poater, B. Cosenza, A. Correa, S. Giudice, F. Ragone, V. Scarano and L. Cavallo, Eur. J. Inorg. Chem., 2009, 1759-1766.
A. Poater, F. Ragone, S. Giudice, C. Costabile, R. Dorta, S. P. Nolan and L. Cavallo, Organometallics, 2008, 27, 2679-2681.
D. C. Mudalige, E. S. F. Ma, S. J. Rettig, B. O. Patrick and B. R. James, Can. J. Chem., 2014, 92, 716-723.
P. Suomalainen, S. Jääskeläinen, M. Haukka, R. H. Laitinen, J. Pursiainen and T. A. Pakkanen, Eur. J. Inorg. Chem., 2000, 2000, 2607-2613.

Supplementary Chapter 1
 Crystal Structures of \boldsymbol{N}-Arylamidines

"Hasta la vista, baby!"
Terminator 2: Judgement Day (1991)

S1.1 - A Very Brief Introduction to Amidines

Amidines are the dinitrogen analogues of carboxylic acids and esters. The synthesis of amidines was first described by Pinner in 1877^{1} - the reaction of nitriles with dry hydrogen chloride in anhydrous alcohol yields the intermediate imidic ester, which on treatment with ammonia affords the desired amidine (Scheme S1.1.1). This reaction which bears his name, and variations thereof, are still widely employed to this day. Many alternative methods have also been developed and amidines have found widespread use as ligands, as structural units in drug design, and as synthons for the synthesis of heterocyclic compounds. Further information on their synthesis, applications and subsequent reactivity can be found in reviews and books. 2,3,4,5

Figure S1.1.1: Synthesis of amidines via the Pinner reaction.

S1.2 - Monosubstituted N-Arylamidines

This thesis has explored the synthesis of sulfur-nitrogen and phosphorus-nitrogen heterocycles from monosubstituted N-arylamidines 1 . The reaction of N-arylamidines with SOCl_{2} afforded fused-ring 1,2,4-benzothiadiazine 1 -chlorides, which are reduced under mild conditions to give the corresponding neutral radical. Conversely, the reaction of N -arylamidines with halophosphines gave a diverse library of compounds, and was found to be highly sensitive to the substituents on the aryl-ring, the choice of halophosphine and the reaction conditions employed.

The majority of the N-arylamidines prepared in this thesis have been previously reported in the literature, and synthesised via a number of different routes. Of these twenty crystalline amidines (Figure S1.2.1) however, only three ($\mathbf{1 b},{ }^{6} \mathbf{1 m}^{7}$ and $\mathbf{1 t}^{8}$) have been structurally characterised by SCXRD. This chapter will therefore present and compare the remaining crystal structures.

1

	R	R'	Yield \%		R	R'	Yield \%
1a	Ph	Ph	89.7	1k	Ph	4-OMe-C66 H_{4}	77.0
1b	$2-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4}$	Ph	70.8	11	2,3-Me ${ }_{2}-\mathrm{C}_{6} \mathrm{H}_{3}$	$4-\mathrm{OMe}-\mathrm{C}_{6} \mathrm{H}_{4}$	73.7
1c	2,3-Me $2-\mathrm{C}_{6} \mathrm{H}_{3}$	Ph	86.8	1m	$4-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4}$	Ph	70.8
1d	$2,5-\mathrm{Me}_{2}-\mathrm{C}_{6} \mathrm{H}_{3}$	Ph	78.7	1n	$2,4-\mathrm{Me}_{2}-\mathrm{C}_{6} \mathrm{H}_{3}$	Ph	72.2
1 e	$3,5-\mathrm{Me}_{2}-\mathrm{C}_{6} \mathrm{H}_{3}$	Ph	77.8	10	2-Biphenyl	Ph	67.5
1 f	$3-\mathrm{OMe}-\mathrm{C}_{6} \mathrm{H}_{4}$	Ph	64.5	1p	Ph	${ }^{\text {t Bu }}$	41.0
1 g	Ph	$2-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4}$	62.8	1 r	3-NMe ${ }_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$	Ph	83.3
1h	2,3-Me $2-\mathrm{C}_{6} \mathrm{H}_{3}$	$2-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4}$	66.1	1t	$2,6-{ }^{\text {i }} \mathrm{Pr}_{2}-\mathrm{C}_{6} \mathrm{H}_{3}$	Ph	76.0
1 i	Ph	p-Pyridyl	87.9	14	$4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}$	Ph	85.1
1j	2,3-Me $2-\mathrm{C}_{6} \mathrm{H}_{3}$	p-Pyridyl	84.5	1a'	Ph	Ph	55.2

Figure S1.2.1: Structurally characterised N-arylamidines.

S1.3 - Structural Studies of Monosubstituted N-Arylamidines

Crystals suitable for single-crystal X-ray diffraction studies were grown by slow diffusion of hexane into a saturated solution of product in dichloromethane. SCXRD data was also collected for compound 1b, 1m and 1t to permit direct and precise comparisons of unit cell parameters and bond metrics across the N-arylamidines, since these were originally collected at higher temperatures. A summary of space groups and unit cell parameters is presented in Table S1.3.1.

	Space		Lengths			ell Angles		Cell Volume		
	Group	a	b	c	α	β	γ	$1 A^{3}$	Z	Z'
1a	$P \overline{1}$	5.4339(2)	8.3854(4)	11.8797(6)	73.514(4)	82.856(4)	87.377(4)	514.99(4)	2	1
1b	$P^{\overline{1}}$	10.2688(3)	10.5908(4)	11.3233(4)	96.798(3)	103.414(3)	95.890(3)	1178.61(7)	4	2
1c	Pcon	24.3256(3)	10.1501(1)	9.9674(1)	90	90	90	2461.02(5)	8	1
1d	$P 2_{1} / \mathrm{c}$	10.0868(2)	14.2443(2)	9.9091(2)	90	118.647(3)	90	1249.45(5)	4	1
1 e	$P 2_{1} 2_{1} 2_{1}$	9.5344(1)	10.6770(1)	12.4805(1)	90	90	90	1270.50(2)	4	1
1 f	$P 2_{1} 2_{1} 2_{1}$	9.4623(6)	10.6120(5)	11.9934(5)	90	90	90	1204.30(1)	4	1
1 g	$P 2_{1} / \mathrm{c}$	12.4627(3)	8.3753(1)	11.9105(2)	90	113.892(2)	90	1136.67(4)	4	1
1h	$P 2_{1} / \mathrm{c}$	7.5114(1)	23.1222(2)	7.6891(1)	90	99.936(1)	90	1315.41(3)	4	1
1 i	$P 2_{1} / \mathrm{c}$	12.1511(1)	15.8057(1)	10.6230(1)	90	94.309(1)	90	2034.45(3)	8	2
1j	$P \overline{1}$	11.3101(4)	14.8285(5)	15.5662(5)	89.538(3)	89.587(3)	70.936(3)	2467.34(2)	8	4
1k	$P 2_{1} / \mathrm{C}$	6.7241(2)	18.5287(4)	10.0457(2)	90	104.416(2)	90	1212.17(5)	4	1
11	C2/c	14.0729(2)	14.0982(2)	27.9338(4)	90	94.718(1)	90	5523.36(1)	16	2
1m	$P \overline{1}$	9.8107(3)	10.0969(3)	12.1839(4)	84.082(3)	81.768(3)	80.108(3)	1172.89(7)	4	2
1 n	$P \overline{1}$	9.9907(3)	11.4856(5)	12.9769(5)	71.156(4)	69.266(3)	71.367(3)	1282.11(9)	4	2
10	$P \overline{1}$	5.3943(2)	11.6235(4)	12.5219(4)	111.639(3)	96.098(2)	95.440(2)	718.01(5)	2	1
1p	Fdd2	21.8833(2)	18.8771(2)	10.0811(1)	90	90	90	4164.43(7)	16	1
1 r	Pc	9.2938(2)	11.0641(1)	12.6836(2)	90	93.393(1)	90	1301.94(4)	4	2
1t	$P 2_{1} / c$	11.2586(2)	14.6602(2)	10.1408(1)	90	92.558(1)	90	1672.10(4)	4	1
1u	$P \overline{1}$	5.4326(1)	8.2909(2)	13.3920(5)	73.704(3)	84.285(2)	86.871(2)	575.86(3)	2	1
1a'	$\mathrm{Pna2}_{1}$	14.7232(7)	21.2711(1)	6.2506(4)	90	90	90	1957.55(2)	4	1

Table S1.3.1: Space group and unit cell parameters.

All nitrogen-bound hydrogen atoms were located in the difference map and refined freely unless otherwise stated. In all cases, both hydrogen atoms were located on a single nitrogen (tautomer \mathbf{A}) and not as the tautomeric form \mathbf{B} (Figure S1.3.1). ${ }^{2}$

Figure S1.3.1: Tautomerism in amidines.

This is further supported by the $\mathrm{C} 1=\mathrm{N} 2$ and $\mathrm{C} 1-\mathrm{N} 1$ bond lengths (Figure S1.3.2) which are in good agreement with literature values for carbon-nitrogen single and double bonds respectively. ${ }^{9}$ All amidines herein adopt hydrogen bonded networks in the solidstate between H1A and N2 of a neighbouring molecule; H1B was found to not be involved in hydrogen bonding, likely due to steric hindrance. In the case of the 4pyridyl substituted amidines, $\mathbf{1 i} \mathbf{i} \mathbf{j}$, the hydrogen bonding was observed between H1A and the pyridyl nitrogen, N3. A summary of hydrogen bond distances and angles is shown in Table S1.3.2.

Figure S1.3.2: Structural labelling scheme.

	Torsion Angles ${ }^{\circ}$		$\begin{gathered} \text { Deviation } \\ \text { From } \\ \text { Coplanarity } /^{\circ} \end{gathered}$	Hydrogen Bond Distances / A			Hydrogen Bond Angle ${ }^{\circ}$
	C3-N2-C1-N1	C3-N2-C1-C2		N1-H1A	H1A \cdots N2	N1 \ldots N2	N1-H1A \ldots N2
1a	3.2(2)	178.6(1)	88.8	0.89(2)	2.38(2)	3.093(2)	137.4(2)
1b	5.1(1)	175.2(9)	76.1	0.89(2)	2.12(2)	2.966(1)	159.6(1)
	0.7(1)	180.0(8)	77.0	0.89(2)	2.13(2)	3.001(1)	165.7(1)
1c	3.9(1)	179.3(8)	73.6	0.91(2)	2.16(2)	3.052(1)	166.2(1)
1d	4.9(2)	176.3(9)	74.8	0.89(2)	2.03(2)	2.894(1)	163.5(1)
1 e	10.7(2)	171.6(1)	74.2	0.90(2)	2.19(2)	3.055(2)	161.8(2)
1 f	3.1(2)	179.2(1)	65.3	0.87(2)	2.14(2)	2.998(2)	170.9(2)
1g	173.2(2)	8.7(3)	61.1	0.91(3)	2.16(3)	3.074(2)	175.7(2)
1h	0.2(2)	176.7(8)	9.1	0.87(1)	2.09(1)	2.961(1)	177.8(1)
1 i	2.3(2)	176.4(8)	46.6	0.90(1)	2.12(1)*	2.987(1)*	163.2(1)*
	3.0(2)	174.8(9)	70.1	0.89(2)	2.15(2)*	3.002(1)*	161.1(1)*
1j	1.1(2)	179.6(1)	57.3	0.89(2)	2.11(2)*	2.981(1)*	166.5(2)*
	3.1(2)	179.5(1)	90.0	0.88(2)	2.20(2)*	3.050(1)*	163.1(2)*
	1.0(2)	176.9(1)	66.5	0.89(2)	2.14(2)*	2.995(2)*	160.5(2)*
	2.5(2)	173.7(1)	80.3	0.89(2)	2.17(2)*	3.032(2)*	162.8(2)*
1k	0.2(1)	177.6(8)	79.6	0.90(2)	2.02(2)	2.904(1)	166.6(1)
11	5.3(2)	177.5(9)	76.0	0.87(1)	2.22(1)	3.076(1)	165.4(1)
	3.7(2)	179.7(9)	73.9	0.88(2)	2.20(2)	3.068(1)	167.3(1)
1m	0.4(1)	178.3(8)	56.2	0.90(2)	2.11(2)	3.005(1)	170.1(1)
	3.5(2)	177.1(9)	45.1	0.89(2)	2.18(2)	3.015(1)	157.5(1)
1n	1.1(2)	178.5(1)	60.1	0.90(2)	2.12(2)	3.009(2)	169.7(2)
	0.1(2)	179.5(1)	41.9	0.90(2)	2.15(2)	3.032(2)	166.3(2)
10	7.4(2)	173.5(9)	85.4	0.92(2)	2.28(2)	$3.067(1)$	143.9(1)
1p	5.5(2)	173.6(1)	t	0.94(2)	2.46(2)	3.016(2)	117.8(2)
1 r	4.4(6)	179.6(3)	73.7	0.90(6)	2.13(6)	2.951(5)	150.3(5)
	2.4(6)	178.7(4)	81.6	0.83(5)	2.19(5)	2.921(5)	146.9(5)
1 t	4.1(1)	178.8(8)	43.0	0.89(2)	2.08(2)	2.921(1)	155.9(1)
1u	2.3(2)	177.5(1)	86.5	0.86(2)	2.39(2)	3.086(1)	138.4(1)
1a'	166.3(2)	11.2(4)	63.4	\dagger	\dagger	+	+

Table S1.3.2: Summary of key structural parameters.
Significant variation in the hydrogen bond parameters are observed across the monosubstituted N-arylamidines, with the H1A $\cdots \mathrm{N} 2$ distance spanning a range of $2.02(2) \AA$ to $2.46(2) \AA$. These would be considered as moderately weak hydrogen bonds following the notation of Jeffery, ${ }^{10}$ and is typical for $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ species. Amidines bearing electron withdrawing groups such as $\mathbf{1 a}, \mathbf{1 0}$ and $\mathbf{1 u}$ were found to have the longest hydrogen bond lengths, whilst those with electron-donating groups were considerably shorter. The strength of the hydrogen bond is strongly correlated with the $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ bond angle, with linear geometries favouring stronger interactions. ${ }^{10}$

The torsion angles for C3-N2-C1-N2 and C3-N2-C1-C2 are both close to 0° and 180° respectively such that they adopt the idealised geometry shown in Figure S1.3.3. In the case of $\mathbf{1 g}$ and $\mathbf{1 a}$ ' however, these values are inversed such that the two aryl rings are held in much closer proximity. There is considerable deviation in the coplanarity of the two aryl rings; a deviation angle approaching 90° is observed for the majority of the amidines whilst a near coplanar conformation is only adopted for $\mathbf{1 h}$. Steric influences
and external packings forces are believed to be the primary factors responsible for these changes.

A

B

Figure S1.3.3: Idealised geometry with $0^{\circ} \mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 2$ and $180^{\circ} \mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2$ torsion angles: (A) Side-view; (B) View along the N2-C1 bond.

S1.3.1 - Crystal Structure of 1a

Compound 1a crystallises as colourless plates in the triclinic space group $P \overline{1}$ with a single molecule in the asymmetric unit (Figure S1.3.1.1). The geometry adopted is typical of many of the N -arylamidines; the torsion angles for C3-N2-C1-N2 and C3-N2-C1-C2 are $3.2(2)^{\circ}$ and $178.6(1)^{\circ}$ respectively, whilst the deviation from coplanarity of the two phenyl rings is 88.8°.

Figure S1.3.1.1: Asymmetric unit of 1a.

Molecules of 1a are associated through long hydrogen bonds (2.38(2) Å) between H1A and N2 of neighbouring molecule, forming chains that propagate along the crystallographic a axis (Figure S1.3.1.2). These chains weakly interact with adjacent and parallel off-set chains through two weak edge-to-face (EF) embraces ${ }^{11}$ between the phenyl rings.
a)

b)

Figure S1.3.1.2: a) Hydrogen bonding chains of 1a looking down the crystallographic b axis. b) Crystal packing of 1a looking down the crystallographic c axis.

S1.3.2 - Crystal Structure of 1b

Compound 1b crystallises as colourless blocks in the triclinic space group $P \overline{1}$ with two molecules in the asymmetric unit (Figure S1.3.2.1). The two molecules differ slightly in the C3-N2-C1-N2 and C3-N2-C1-C2 torsion angles (5.1(1) ${ }^{\circ}$ and $175.2(9)^{\circ}$ vs. $0.7(1)^{\circ}$ and $\left.180.0(8)^{\circ}\right)$ whilst the deviations from coplanarity of the o-tolyl and phenyl rings are similar at 76.1° and 77.0°. The two molecules are orientated in a head-to-tail fashion to minimise the steric hindrance resulting from the additional methyl group.

Figure S1.3.2.1: Asymmetric unit of $\mathbf{1 b}$.
Molecules of $\mathbf{1 b}$ are associated through short hydrogen bonds with alternating distances of $2.12(2) \AA$ and $2.13(2) \AA$ between H1A and N2 of the neighbouring
molecule, resulting in infinite chains that propagate along the crystallographic a axis with offset chains related through an inversion centre (Figure S1.3.2.2).
a

b)

Figure S1.3.2.2: a) Hydrogen bonding chains of $\mathbf{1 b}$ looking down the crystallographic b axis. b) Crystal packing of $\mathbf{1 b}$ looking down the crystallographic c axis.

S1.3.3 - Crystal Structure of 1c

Compound 1c crystallises as colourless blocks in the orthorhombic space group Pccn with a single molecule in the asymmetric unit (Figure S1.3.3.1). The pendant aryl ring deviates from coplanarity of the 2,3 -xylyl ring by 73.6°, slightly less than the deviation observed for 1a and 1b, but the C3-N2-C1-N2 and C3-N2-C1-C2 torsion angles are close to ideal at $3.9(1)^{\circ}$ and $179.3(8)^{\circ}$.

Figure S1.3.3.1: Asymmetric unit of $\mathbf{1 c}$.
Molecules of 1c are associated through hydrogen bonds between H1A and N2 (2.16(2) Å) of a neighbouring molecule, leading to infinite chains of alternating head-to-tail molecules along the crystallographic b axis (Figure S1.3.3.2). These chains further interact with offset parallel chains through a single weak EF embrace.
a)

b)

Figure S1.3.3.2: a) Hydrogen bonding chains of 1c looking down the crystallographic c axis. b) Crystal packing of 1c looking down the crystallographic a axis.

S1.3.4 - Crystal Structure of 1d

Compound 1d crystallises as colourless blocks in the monoclinic space group $P 2_{1} / c$ with a single molecule in the asymmetric unit (Figure S1.3.4.1). The structural parameters are again similar to many of the N -arylamidines; the $\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 2$ and $\mathrm{C} 3-$ N2-C1-C2 torsion angles are $4.9(2)^{\circ}$ and $176.3(9)^{\circ}$ respectively, and the deviation from coplanarity between the 2,5 -xylyl ring and pendant phenyl rings is 74.8°.

Figure S1.3.4.1: Asymmetric unit of 1d.

Molecules of $\mathbf{1 d}$ form infinite chains along the crystallographic c axis through a strong hydrogen bond network between H1A and N2 (2.03(2) Å) of a twisted neighbouring molecule (Figure S1.3.4.2). An inversion related offset chain runs parallel to the chain without any significant additional intermolecular interactions.
a)

b)

Figure S1.3.4.2: a) Hydrogen bonding chains of 1d looking down the crystallographic a axis. b) Crystal packing of $\mathbf{1 d}$ looking perpendicular to the crystallographic $b c$ plane.

7.3.5 - Crystal Structure of 1e

Compound $\mathbf{1 e}$ crystallises as colourless irregular crystals in the orthorhombic space group $P 2_{1} 2_{1} 2_{1}$ with a single molecule in the asymmetric unit (Figure S1.3.5.1). The C3-N2-C1-N2 and C3-N2-C1-C2 torsion angles deviate considerably from the idealised geometry at $10.7(2)^{\circ}$ and $171.6(1)^{\circ}$, whilst the difference in angles of the planes of the $3,5-x y l y l$ and phenyl ring is typical within the other amidines at 74.2°. These deviations may arise to minimise the steric influence of the methyl groups with the NH_{2} fragment, or due to other external packing effects.

Figure S1.3.5.1: Asymmetric unit of $1 \mathbf{e}$.

Hydrogen bonded chains propagate along the crystallographic a axis with alternating head-to-tail molecules associated through H1A $\cdots \mathrm{N} 2$ contacts 2.19(2) \AA (Figure S1.3.5.2). The difference in hydrogen bond length between $\mathbf{1 e}$ and its isomer $\mathbf{1 d}$ illustrates the impact of external packing forces on the intermolecular interactions in the solid-state.
a)

a)

b)

Figure S1.3.5.2: a) Hydrogen bonding chains of 1 e looking down the crystallographic b axis. b) Crystal packing of $\mathbf{1 e}$ looking down the crystallographic c axis.

S1.3.6 - Crystal Structure of 1 f

Compound $1 \mathbf{f}$ crystallises as colourless blocks in the orthorhombic space group $P 2_{1} 2_{1} 2_{1}$ with a single molecule in the asymmetric unit (Figure S1.3.6.1) and is isostructural to 1e. The C3-N2-C1-N2 and C3-N2-C1-C2 torsion angles are close to the idealised geometry at $3.1(2)^{\circ}$ and $179.2(1)^{\circ}$ respectively. The deviation from coplanarity is 65.3° and the methoxy group is coplanar with its associated aryl ring.

Figure S1.3.6.1: Asymmetric unit of 1f.

Molecules of $\mathbf{1 f}$ are associated through moderate H1A $\cdots \mathrm{N} 2$ hydrogen bonds (2.14(2) Å) between neighbouring head-to-tail molecules, forming infinite chains along the crystallographic a axis (Figure S1.3.6.2). Offset parallel chains are weakly associated through a single EF embrace.
a)

b)

Figure S1.3.6.2: a) Hydrogen bonding chains of $\mathbf{1 f}$ looking down the crystallographic b axis. b) Crystal packing of $\mathbf{1 f}$ looking down the crystallographic c axis.

S1.3.7 - Crystal Structure of 1g

Compound $\mathbf{1 g}$ crystallises as colourless planks in the monoclinic space group $P 2_{1} / c$ with a single molecule in the asymmetric unit (Figure S1.3.7.1). The C3-N2-C1-N2 and C3-N2-C1-C2 torsion angles are $173.2(2)^{\circ}$ and $8.7(3)^{\circ}$, resulting in a 'folded' conformation. This differs considerably from the other structurally characterised amidines discussed herein and from the idealised geometry with C3-N2-C1-N2 and C3-N2-C1-C2 torsion angles close to 0° and 180° respectively. The deviation from coplanarity of the o-tolyl and pendant phenyl rings is $61.1(1)^{\circ}$, which is smaller than many of the other substituted amidines.

Figure S1.3.7.1: Asymmetric unit of $\mathbf{1 g}$.
Molecules of $\mathbf{1 g}$ form infinite hydrogen bonded chains that propagate along the crystallographic b axis, associated through moderate H1A‥N2 contacts (2.16(3) \AA) between neighbouring molecules along the screw axes (Figure S1.3.7.2). Neighbouring molecules are further associated through H1B \cdots arene interactions ${ }^{12}$ (H1B $\cdots \mathrm{C}_{\text {aryl }}$ range $=2.671(2)-2.78(3) \AA$), and may explain why amidine $\mathbf{1 g}$ favours the 'folded' conformation in the solid-state.
a)

b)

Figure S1.3.7.2: a) Hydrogen bonding chains of $\mathbf{1 g}$ looking down the crystallographic c axis. b) Crystal packing of $\mathbf{1 g}$ looking perpendicular to the crystallographic $a b$ plane, highlighting the $\mathrm{H} 1 \mathrm{~B} \cdots$ arene interactions.

S1.3.8 - Crystal Structure of $\mathbf{1 h}$

Compound $\mathbf{1 h}$ crystallises as colourless blocks in the monoclinic space group $P 2_{1} / c$ with a single molecule in the asymmetric unit (Figure S1.3.8.1). The C3-N2-C1-N2 and C3-N2-C1-C2 torsion angles are close to the idealised geometry at $0.2(2)^{\circ}$ and $176.7(8)^{\circ}$ respectively, but the two arenes are almost coplanar with only a slight deviation of 9.1°, unlike many of the other structurally characterised amidines.

Figure S1.3.8.1: Asymmetric unit of $\mathbf{1 h}$.

Molecules of $\mathbf{1 h}$ arrange in head-to-tail chains associated through moderately strong N1-H1A‥N2 hydrogen bonds (2.09(1) Å); these chains propagate diagonally through the crystallographic ac axes. (Figure S1.3.8.2). Molecules are further associated through a single offset face-to-face (OFF) embrace ${ }^{11}$ between the o-tolyl and 2,3 -xylyl rings.
a)

b)

Figure S1.3.8.2: a) Hydrogen bonding chains of $\mathbf{1 h}$ looking down the crystallographic a axis. b) Crystal packing of $\mathbf{1 g}$ looking down the crystallographic a axis.

S1.3.9 - Crystal Structure of 1i

Compound $\mathbf{1 i}$ crystallises as colourless irregular crystals in the monoclinic space group $P 2_{1} / c$ with two molecules in the asymmetric unit (Figure S1.3.9.1). The C3-N2-C1-N2 and C3-N2-C1-C2 torsion angles are similar for both molecules at $2.0(2)^{\circ} / 176.4(8)^{\circ}$, and $3.2(2)^{\circ} / 174.8(9)^{\circ}$ respectively, whilst the deviation from coplanarity of the phenyl and pyridyl rings differ markedly at 46.6° and 70.1°.

Figure S1.3.9.1: Asymmetric unit of 1 i .
Molecules of $\mathbf{1 i}$ are associated through hydrogen bonds between H1A and the pyridyl nitrogen N3 (2.12(1) A and 2.15(2) \AA), resulting in square tetrameric rings that slice perpendicular to the crystallographic ac plane (Figure S1.3.9.2). Offset tetramers further interact through several EF embraces (Figure S1.3.9.3).

Figure S1.3.9.2: Hydrogen bonded tetramers of 1i looking diagonally through the crystallographic ac axis.

Figure S1.3.9.3: Crystal packing of 1i looking down the crystallographic b axis.

S1.3.10 - Crystal Structure of 1j

Compound $\mathbf{1} \mathbf{j}$ crystallises as colourless plates in the triclinic space group $P \overline{1}$ with four molecules in the asymmetric unit (Figure S1.3.10.1). The C3-N2-C1-N2 and C3-N2-C1C 2 torsion angles for the four molecules are close to the idealised geometry and range from 1.0(1)-3.1(1) ${ }^{\circ}$ and 173.7(1)-179.6(1). In contrast, the deviations from coplanarity of the 2,3 -xylyl and 4 -pyridyl rings vary considerably from 57.3° to 90.0°.

Figure S1.3.10.1: Asymmetric unit of $\mathbf{1 j}$.
Molecules of $\mathbf{1 j}$ exhibit hydrogen-bonding interactions with two neighbouring molecules through N1 and N3; the H1A $\cdots \mathrm{N} 3$ contacts range from 2.11(2) \AA to $2.20(2) \AA$. This results in tetrameric rings that propagate through the crystallographic c axis, with each molecule representing the corner of a square (Figure S1.3.10.2).

Figure S1.3.10.2: Hydrogen bonded tetramers of $\mathbf{1 j}$ looking perpendicular to the crystallographic abc plane.

S1.3.11 - Crystal Structure of 1 k

Compound $\mathbf{1 k}$ crystallises as colourless blocks in the monoclinic space group $P 2_{1} / c$ with a single molecule in the asymmetric unit (Figure S1.3.11.1). The C3-N2-C1-N2 and C3-N2-C1-C2 torsion angles are close to the idealised geometry at $0.2(1)^{\circ}$ and $177.6(8)^{\circ}$ respectively. The deviation from coplanarity is 79.6° and the methoxy group is coplanar with the associated aryl ring.

Figure S1.3.11.1: Asymmetric unit of 1k.
Molecules of $\mathbf{1 k}$ are associated through strong hydrogen bonds between H1A and N2 of a neighbouring molecule (2.02(2) Å), resulting in infinite chains that propagate along the crystallographic c axis (Figure S1.3.11.2). Adjacent molecules are twisted by 75.1° with respect to the pendant aryl rings, whilst the phenyl rings are almost coplanar with a minor deviation of 7.5°.
a)

b)

Figure S1.3.11.2: a) Hydrogen bonding chains of $1 \mathbf{k}$ looking diagonally through the crystallographic $a b$ axis. b) Crystal packing of $\mathbf{1 k}$ looking down the crystallographic a axis.

S1.3.12 - Crystal Structure of 11

Compound $\mathbf{1 1}$ crystallises as colourless blocks in the monoclinic space group $C 2 / c$ with two molecules in the asymmetric unit (Figure S1.3.12.1). The C3-N2-C1-N2 and C3-N2-C1-C2 torsion angles are similar for both molecules at $5.3(2)^{\circ} / 177.5(9)^{\circ}$ and $3.7(2)^{\circ} / 179.7(9)^{\circ}$ respectively, as are the deviations from coplanarity for the two aryl rings at 76.0° and 73.9°. The methoxy group is coplanar with its associated aryl ring for both molecules.

Figure S1.3.12.1: Asymmetric unit of 11 .
Molecules of $\mathbf{1 1}$ form infinite hydrogen bonded chains that propagate diagonally through the crystallographic $a b$ axes with alternating head-to-tail molecules (Figure S1.3.12.2). The H1A $\cdots \mathrm{N} 2$ distance (2.22(1) \AA and $2.20(2) \AA$) is considerably longer than $\mathbf{1} \mathbf{k}(2.02(2) \AA$) despite the introduction of additional electron donating groups. This is likely to arise due to the increased steric hindrance of the 2,3 -xylyl ring compared to a phenyl ring, which prevents close contact of adjacent molecules. Neighbouring hydrogen bonding chains run perpendicular to the crystallographic $a b$ plane.
a)
b)

Figure S1.3.12.2: a) Hydrogen bonding chains of 11 looking perpendicular to the crystallographic $a b$ plane. b) Crystal packing of 11 looking down the crystallographic c axis.

S1.3.13 - Crystal Structure of 1m

Compound 1m crystallises as colourless irregular crystals in the triclinic space group $P \overline{1}$ with two molecules in the asymmetric unit (Figure S1.3.13.1). The C3-N2-C1-N2 and C3-N2-C1-C2 torsion angles are close to the idealised geometry at $0.4(1)^{\circ} / 178.3(8)^{\circ}$ and $3.5(2)^{\circ} / 177.1(9)^{\circ}$ respectively, whilst the deviations from coplanarity of the two aryl rings are 56.2° and 45.1°, which is considerably less than the majority of N arylamidines with values approaching 90°.

Figure S1.3.13.1: Asymmetric unit of 1m.

Molecules of $\mathbf{1 m}$ are associated through moderate hydrogen bonds between H 1 A and N2 (2.11(2) Å and 2.18(2) A) of adjacent molecules (Figure S1.13.3.2). This leads to infinite chains of alternating head-to-tail molecules that propagate along the crystallographic b axis, with neighbouring offset chains related through an inversion centre.
a)
b)

Figure S1.3.13.2: a) Hydrogen bonding chains of 1m looking down the crystallographic a axis. b) Crystal packing of 1m looking diagonally through the crystallographic ac axes.

S1.3.14 - Crystal Structure of 1 n

Compound 1 n crystallises as colourless rods in the triclinic space group $P \overline{1}$ with two molecules in the asymmetric unit (Figure S1.3.14.1). The C3-N2-C1-N2 and C3-N2-C1C2 torsion angles are similar for both molecules and again close to the idealised geometry at $1.1(2)^{\circ} / 178.5(1)^{\circ}$ and $0.1(2)^{\circ} / 179.5(1)^{\circ}$ respectively. The deviations from coplanarity, like $\mathbf{1 m}$, are also low at 60.1° and 41.9°.

Figure S1.3.14.1: Asymmetric unit of 1n.
Molecules of $\mathbf{1 n}$ are associated through moderate H1A $\cdots \mathrm{N} 2$ hydrogen bonds (2.12(2) \AA and $2.15(2) \AA$) resulting in infinite chains of alternating head-to-tail molecules that propagate along the crystallographic a axis (Figure S1.3.14.2).
a)

b)

Figure S1.3.14.2: a) Hydrogen bonding chains of 1 n looking down the crystallographic b axis. b) Crystal packing of $\mathbf{1 n}$ looking diagonally through the crystallographic $b c$ axes.

S1.3.15 - Crystal Structure of 10

Compound $\mathbf{1 0}$ crystallises as colourless rods in the triclinic space group $P \overline{1}$ with a single molecule in the asymmetric unit (Figure S1.3.15.1). Departure from the idealised C3-N2-C1-N2 and C3-N2-C1-C2 torsion angles (7.4(2) ${ }^{\circ}$ and 173.5(9) ${ }^{\circ}$) is observed due to the increased steric hindrance of the 2-biphenyl moiety. The deviation from coplanarity for the N-phenyl and pendant phenyl ring is 85.4°, whilst the deviation between the two rings of the 2 -biphenyl moiety is 46.5°.

Figure S1.3.15.1: Asymmetric unit of 10.
Molecules of $\mathbf{1 0}$ are associated through weak H1A…N2 hydrogen bonds (2.28(2) \AA) resulting in infinite chains that propagate along the crystallographic a axis (Figure S1.3.15.2). Inversion-related offset chains are further associated through two weak EF embraces.
a)

b)

Figure S1.3.15.2: a) Hydrogen bonding chains of $\mathbf{1 0}$ looking perpendicular to the crystallographic $a b$ plane. b) Crystal packing of $\mathbf{1 0}$ looking perpendicular to the crystallographic $a b c$ plane.

S1.3.16 - Crystal Structure of 1p

Compound 1p crystallises as colourless rods in the orthorhombic space group Fdd2 with a single molecule in the asymmetric unit (Figure S1.3.16.1). The C3-N2-C1-N2 and C3-N2-C1-C2 torsion angles are $5.5(2)^{\circ}$ and $173.6(1)^{\circ}$, similar to the other amidines bearing a pendant aryl group. The deviation from coplanarity of the phenyl ring with respect to the $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C}_{\text {trans }}$ fragment is 84.9° and the $\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C}_{\text {trans }}$ torsion angle is $175.6(1)^{\circ}$.

Figure S1.3.16.1: Asymmetric unit of 1p.

Molecules of $\mathbf{1 p}$ are associated through long and weak hydrogen bonds (2.46(2) Å) between H 1 A and N 2 of an adjacent molecule resulting in infinite chains that propagate along the crystallographic c axis with alternating head-to-tail molecules (Figure S1.3.16.2).
a)

b)

Figure S1.3.16.2: a) Hydrogen bonding chains of 1p looking perpendicular to the crystallographic $a b$ plane. b) Crystal packing of 1p looking perpendicular to the crystallographic $a b$ plane.

S1.3.17 - Crystal Structure of 1r

Compound 1r crystallises as colourless needles in the monoclinic space group Pc with two molecules in the asymmetric unit (Figure S1.3.17.1).). The C3-N2-C1-N2 and C3-N2-C1-C2 torsion angles are similar for both molecules and close to the idealised geometry at $4.4(6)^{\circ} / 179.6(3)^{\circ}$ and $2.4(6)^{\circ} / 178.7(4)^{\circ}$ respectively. The deviations from coplanarity are 73.7° and 81.6°, and the NMe_{2} moiety is coplanar with its associated aryl ring such that the nitrogen lone pairs are conjugated into the ring system.

Figure S1.3.17.1: Asymmetric unit of 1r.

Molecules of $\mathbf{1 r}$ form infinite hydrogen bonded chains that propagate along the crystallographic a axis; the H1A $\cdots \mathrm{N} 2$ distances are moderate at 2.13(6) \AA and 2.19(5) \AA, and adjacent molecules are twisted by 48.0° to minimise steric clashes (Figure S1.3.17.2).
a)

b)

Figure S1.3.17.2: a) Hydrogen bonding chains of $1 \mathbf{r}$ looking down the crystallographic b axis. b) Crystal packing of $1 \mathbf{r}$ looking diagonally through the crystallographic $b c$ axes.

S1.3.18 - Crystal Structure of 1t

Compound 1t crystallises as colourless hexagonal prisms in the monoclinic space group $P 2_{1} / c$ with a single molecule in the asymmetric unit (Figure S1.3.18.1). The C3-N2-C1-N2 and C3-N2-C1-C2 torsion angles are comparable to many of the other N arylamidines at $4.1(1)^{\circ}$ and $178.8(8)^{\circ}$, whilst the deviation from coplanarity of the two aryl rings is considerably smaller at 43.0°.

Figure S1.3.18.1: Asymmetric unit of 1t.

Molecules of $\mathbf{1 r}$ are associated through comparatively short hydrogen bonds (2.08(2) \AA) between H1A and N 2 of a neighbouring molecule. This results in infinite chains that propagate along the crystallographic c axis; adjacent molecules are related by a c glide plane, and twisted by 60.9° (Figure S1.3.18.2).
a)

b)

Figure S1.3.18.2: a) Hydrogen bonding chains of $1 \mathbf{t}$ looking perpendicular to the crystallographic $a b$ plane. b) Crystal packing of 1t looking down the crystallographic a axes.

S1.3.19 - Crystal Structure of $\mathbf{1 u}$

Compound $\mathbf{1 u}$ crystallises as colourless hexagonal plates in the triclinic space group $P \overline{1}$ with a single molecule in the asymmetric unit (Figure S1.3.19.1). The C3-N2-C1-N2 and C3-N2-C1-C2 torsion angles are again close to the idealised geometry at $2.3(2)^{\circ}$ and $177.5(1)^{\circ}$ respectively, and the deviation from coplanarity of the two aryl rings is 86.5°.

Figure S1.3.19.1: Asymmetric unit of $1 \mathbf{u}$.

Molecules of $\mathbf{1 u}$ form infinite hydrogen bonded chains that propagate along the crystallographic a axis via long and weak H1A $\cdots \mathrm{N} 2$ contacts (2.39(2) Å) between adjacent molecules (Figure S1.3.19.2). Offset parallel chains are further associated through two weak EF embraces between the p-Cl-phenyl and pendant phenyl rings.
a)

b)

Figure S1.3.19.2: a) Hydrogen bonding chains of $1 \mathbf{u}$ looking down the crystallographic b axis. b) Crystal packing of $\mathbf{1 u}$ looking down the crystallographic c axes.

S1.3.20 - Crystal Structure of 1a'

Compound 1a' crystallises as colourless needles in the orthorhombic space group $P n a 2_{1}$ with a single molecule in the asymmetric unit (Figure S1.3.20.1). The C3-N2-C1N 2 and C3-N2-C1-C2 torsion angles are contrary to the idealised geometry, at $166.3(2)^{\circ}$ and $11.2(4)^{\circ}$, resulting in a 'folded' conformation with the two phenyl rings in close proximity. The deviation from coplanarity is 63.1°.

Figure S1.3.20.1: Asymmetric unit of 1a'.
Molecules of 1a' exhibit no significant intermolecular interactions with neighbouring molecules in the solid-state; all contacts are outside the sum of the van der Waals radii (Figure S1.3.20.1).

Figure S1.3.20.2: Crystal packing of 1a' looking down the crystallographic c axes.

S1.4-N,N'- and N, N-Substituted Amidines

The reactions of N, N^{\prime} and N, N-substituted amidines 11-13a (Figure S1.4.1) with PhPCl2 was also investigated and is discussed in section 4.3.2. Symmetric N, N 'substituted amidines such as 12a have been used extensively as monoanionic ligands to transition metals ${ }^{4,5}$ whilst asymmetric N, N^{\prime} - and N, N-substituted amidines have found limited use in this field.

11a

12a

13a

Figure S1.4.1: N, N^{\prime} and N, N-substituted amidines prepared in this thesis.

S1.4.1 - Structural Studies

Crystals suitable for single-crystal X-ray diffraction studies were grown by slow diffusion of hexane into a saturated solution of product in dichloromethane. SCXRD data was also collected for compound $\mathbf{1 2 a}^{13}$ to permit direct and precise unit comparisons of unit cell parameters and bond metrics across the N, N^{\prime} and $N, N-$ substituted amidines at the same temperature. A summary of space groups and unit cell parameters is presented in Table S1.4.1.1.

	Space	Cell Lengths / Å			Cell Angles $/^{\circ}$			Cell Volume		
	Group	a	b	c	α	β	γ	$1 A^{3}$	Z	Z'
11a	$P \overline{1}$	8.7163(3)	11.5669(3)	11.7044(4)	101.996(2)	95.478(3)	93.621(2)	1144.82(6)	4	2
12a	$P 2_{1} / \mathrm{c}$	9.4039(1)	10.1563(1)	30.8417(5)	90	92.438(1)	90	2951.44(6)	8	2
13a	Pna2 ${ }_{1}$	7.1598(6)	25.7024(2)	6.2044(4)	90	90	90	1141.76(1)	4	1

Table S1.4.1.1: Space group and unit cell parameters.

A summary of selected torsion angles and deviations from coplanarity for the N, N^{\prime} and N, N-substituted amidines are shown in Tables S1.4.1.2 and S1.4.1.3, along with the corresponding structural labelling scheme.

Table S1.4.1.2: Torsion angles and deviations from planarity for N, N^{\prime}-substituted amidines 11a and 12a.

Table S1.4.1.3: Torsion angles and deviations from coplanarity for N, N substituted amidine 13a.

S1.4.2 - Crystal Structure of 11a

Compound 11a crystallises as colourless rods in the triclinic space group $P \overline{1}$ with two molecules in the asymmetric unit (Figure S1.4.2.1). The C4-N2-C2-N1 and C1-N2-C2-C3 torsion angles are close to 180° whilst the C4-N2-C2-C3 and C1-N1-C2-N2 torsion angles are close to 0° for both molecules. This 'folded' conformation is similar to that observed for N-arylamidines $\mathbf{1 g}$ and $\mathbf{1 a}{ }^{\prime}$, and results in the two phenyl rings being held in close proximity to each other; the deviation from coplanarity for the two rings is 62.4° and 59.9° for the two crystallographically inequivalent molecules.

Figure S1.4.2.1: Asymmetric Unit of 11a.

Molecules of 11a form infinite hydrogen bonded chains that propagate along the crystallographic a axis via alternating short and long H1 $\cdots \mathrm{N} 2$ contacts (2.09(2) \AA and $2.30(2) \AA$) between symmetry inequivalent molecules (Figure S1.4.2.2).
a)

b)

Figure S1.4.2.2: a) Hydrogen bonding chains of 11a looking down the crystallographic b axis. b) Crystal packing of 11a looking perpendicular to the crystallographic $a c$ plane.

S1.4.3 - Crystal Structure of 12a

Compound 12a crystallises as colourless blocks in the monoclinic space group $P 2_{1} / c$ with two molecules in the asymmetric unit (Figure S1.4.3.1).

Figure S1.4.3.1: Asymmetric unit of 12a. Disordered phenyl rings shown in a single site for clarity.

The phenyl rings at N 1 are heavily disordered across two discrete atomic sites in both molecules (Figure S1.4.3.2). In molecule 1, the N1 phenyl ring can adopt two positions which differ slightly in their C1-N2-C2-C3 and C1-N1-C2-N2 torsion angles (174.8(8) ${ }^{\circ}$
and $7.9(8)^{\circ}$ vs. $167.8(8)^{\circ}$ and $14.6(8)^{\circ}$ respectively). In contrast, the N 1 phenyl ring in molecule 2 can adopt two positions which have the same C1-N2-C2-C3 and C1-N1-C2N 2 torsion angles but are twisted about the N1-C1 bond by 26.3°. Further structural parameters are given for the primary atomic positions.

Figure S1.4.3.2: Disordered N1-phenyl rings: a) Molecule 1; b) Molecule 2. Symmetry inequivalent molecules show independently for clarity.

The C4-N2-C2-N1 and C1-N2-C2-C3 torsion angles deviate more compared to 11a from the idealised 180° value; the same is observed for the C4-N2-C2-C3 and C1-N1-C2-N2 torsion angles. A 'folded' conformation is again observed with deviations from coplanarity for the N2- and C2-bound phenyl rings of 71.5° and 61.9° for the two molecules.

Molecules of 12a form infinite hydrogen bonded chains that propagate along the crystallographic a axis via alternating and long H1 $\cdots \mathrm{N} 2$ contacts (2.38(1) \AA and 2.44(2) \AA £) between adjacent symmetry inequivalent molecules (Figure S1.4.3.3).
a)

b)

Figure S1.4.3.3: a) Hydrogen bonding chains of 12a looking down the crystallographic b axis. b) Crystal packing of 12a looking down the crystallographic b axis. Disordered phenyl rings shown in a single site for clarity.

S1.4.4 - Crystal Structure of 13a

Compound 13a crystallises as colourless irregular crystals in the orthorhombic space group $P n a 2_{1}$ with a single molecule in the asymmetric unit (Figure S1.4.4.1). The C4-N2-C1-N1 and C4-N2-C1-C2 torsion angles deviate considerably from the idealised values of 180° and 0° respectively (see Table S1.4, whilst the C3-N2-C1-C2 and C3-N2-C1-N1 torsion angles are much closer to idealised values. Compound 13a adopts a 'folded' conformation with the deviation from coplanarity of the two phenyl rings approaching orthogonality at 90°.

Figure S1.4.4.1: Asymmetric unit of 13a.
Unlike the other protio- N-arylamidines, no hydrogen bonding is observed for compound 13a; the addition of the N-methyl-group precludes N 2 from acting as a hydrogen-bond acceptor. Adjacent molecules are associated through a single EF embrace (Figure S1.4.4.2).

Figure S1.4.4.2: Crystal packing of 13a looking along the crystallographic c axis.

S1.5 - Conclusions

The variation in conformations and bond metrics observed for the crystallographically characterised monosubstituted N-arylamidines highlights how minor alterations to the molecular structure can have major consequences to the solid-state structure. The N arylamidines typically adopt infinite hydrogen bonded chains in the solid-state whilst tetrameric hydrogen bonded ring structures were observed for the 4-pyridyl analogues 1i and $\mathbf{1 j}$ which possess an additional hydrogen bond accepting site. The addition of electron withdrawing or donating groups was shown to influence the strength of the hydrogen bonding between adjacent molecules, with electron poor systems exhibiting the longest H1A‥N2 contacts.

No apparent correlation was found in the structural parameters within the structurally characterised amidines. This was highlighted in the differences that were observed between positional isomers or symmetry inequivalent molecules within the asymmetric unit. For the N -arylamidines, the C3-N2-C1-N1 and C3-N2-C1-C2 torsion angles were typically close to the idealised values of 0° and 180°, with inverse values observed for $\mathbf{1 g}$ and $\mathbf{1 a}$ '. The deviation from coplanarity of the two aryl-rings (excluding 1p) showed considerable variation, ranging from 41.9° to 90.0°. This suggests that there is significant freedom of rotation about the C3-N2 and C1-C2 bonds, whilst the amidine core remains fairly rigid. A single example in which the two aryl rings were close to coplanar (9.1°) was observed for $\mathbf{1 h}$, suggesting that external packing forces, including offset face-to-face (OFF) and edge-to-face (EF) embraces, may also have a significant impact on the solid-state conformation.

For the N, N 'substituted amidines, the torsion angles and degree of coplanarity deviated more from the idealised values for the bulkier $N 1$-phenyl derivative 12a. The amidine core of the N, N-disubstituted amidine 13a was found to be severely twisted compared to the other structurally characterised amidines, with torsion angles deviating significantly from the idealised geometry. The addition of the $N 2$-methyl group precludes the formation of hydrogen bonding networks.

S1.6-References

1 A. Pinner and F. Klein, Ber., 1877, 10, 1889-97.
2 R. L. Shriner and F. W. Neumann, Chem. Rev., 1944, 35, 351-425.
3 P. J. Dunn, in Comprehensive Organic Functional Group Transformations II, Elsevier, 2005, pp. 656-692.

4 M. P. Coles, J. Chem. Soc., Dalt. Trans., 2006, 60, 985985-10011001.
5 J. Barker and M. Kilner, Coord. Chem. Rev., 1994, 133, 219-300.
6 L. Z. Zhang and H. B. Tong, Acta Cryst. Sect. E, 2008, 64, 1031-1033.
7 C. P. A. T. Lawson, A. M. Z. Slawin and N. J. Westwood, Chem. Commun., 2011, 47, 1057-1059.

8 J. Wang, F. Xu, T. Cai and Q. Shen, Org. Lett., 2008, 10, 445-448.
9 A. G. Orpen, L. Brammer, F. H. Allen, O. Kennard, D. G. Watson and R. Taylor, J. Chem. Soc., Dalt. Trans., 1987, S1-S83.

10 G. A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford University Press, 1997.
11 I. Dance, Mol. Cryst. Liq. Cryst., 2005, 440, 265-293.
12 G. R. Desiraju and T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology, Oxford University Press, 1999.

13 N. W. Alcock, J. Barker and M. Kilner, Acta Cryst. Sect. C, 1988, 44, 712-715.

Appendix 1

General Experimental

A1.1 - Starting Materials

Unless otherwise stated, all starting materials were used as supplied from Acros Organics, Alfa Aesar, Avocado, Fisher Scientific, Fluorochem, Lancaster Synthesis, Matrix Scientific, or Sigma Aldrich. N -bromo-succinimide was recrystallised from $\mathrm{H}_{2} \mathrm{O}$ and dried in a vacuum desiccator overnight prior to use. $\mathrm{Ph}_{3} \mathrm{P}$ was recrystallised from DCM and hexane. $\mathrm{Ph}_{2} \mathrm{PCl}$ and PhPCl_{2} were vacuum distilled prior to use and stored under argon. ${ }^{i} \operatorname{Pr}_{2} \mathrm{NPCl}_{2}$ was prepared via standard literature procedures ${ }^{1}$ and purified by distillation. Pyridine and $\mathrm{Et}_{3} \mathrm{~N}$ were vacuum distilled over CaH_{2} and stored under argon over activated molecular sieves. ${ }^{2}$ DABCO and ferrocene were purified by vacuum sublimation. TMSOTf was purified by repeated vacuum distillations. $\mathrm{K}_{2} \mathrm{CO}_{3}$ was dried under vacuum at $100^{\circ} \mathrm{C}$ for 12 hours prior to use. $\mathrm{NaBAr}^{\mathrm{Cl}}$ was prepared via standard literature procedures. ${ }^{3} \mathrm{NaBAr}{ }^{\mathrm{Cl}}$ and $\mathrm{NaBAr}^{\mathrm{F}}$ were washed with DCM and dried in vacuo at $80^{\circ} \mathrm{C}$ for 12 hours prior to use.

A1.2 - Drying of Solvents

All solvents were distilled over an appropriate desiccant ${ }^{2}$ and stored under an atmosphere of argon. DCM, MeCN, DMF, PhCl and $o-$ DCB were distilled over CaH_{2} and stored over activated molecular sieves. THF was distilled over potassium and stored over activated molecular sieves. Hexane and $\mathrm{Et}_{2} \mathrm{O}$ were distilled over sodium/benzophenone and stored over potassium mirrors. Benzene and toluene were distilled over sodium and stored over activated molecular sieves. Acetone was distilled over CaSO_{4} and stored over activated molecular sieves.

A1.3 - Air and Moisture Sensitive Techniques

All manipulations were carried out under an atmosphere of argon using standard Schlenk-line techniques unless otherwise stated. ${ }^{4}$ Air and moisture sensitive liquid reagents and solvents were stored under argon in J. Young's ampoules. Air and moisture sensitive solids were stored and manipulated in a MBraun glovebox under an atmosphere of argon. All glassware used in the manipulation or air and moisture sensitive materials was pre-dried at $100^{\circ} \mathrm{C}$ for at least 12 hours and flame-dried under vacuum prior to use.

A1.4 - NMR Spectroscopy

NMR spectra were recorded on either a JEOL ECS 400 MHz NMR spectrometer, a Bruker AV II 400 MHz spectrometer, or a Bruker Avance NEO 400 MHz spectrometer. NMR spectra were recorded in protio-solvents with an inset d_{6}-capillary, and referenced to residual solvent peaks in ppm.

A1.5 - Single-Crystal X-Ray Diffraction

Diffraction data were recorded on a Rigaku Oxford Diffraction Supernova Dual Diffractometer with $\operatorname{Mo~} \mathrm{K} \alpha(\lambda=0.71073 \AA)$ or $\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184 \AA$) radiation at 100 K . Single crystals were mounted on nylon cryloops or MiTeGen microloops. Unit cell determination, data, reduction and absorption corrected were performed using CrysAlisPro 38.41. Using the Olex2 GUI, ${ }^{5}$ the structures were solved with the SHELXT structure solution program via intrinsic phasing ${ }^{6}$ and refined with the SHELXL refinement package using least squares minimisation. ${ }^{7}$ Non-hydrogen atoms were refined anisotropically, and hydrogen atoms were included using a riding model unless otherwise stated. Crystal structures images were generated using the VMD molecular graphics viewer. ${ }^{8}$ Crystallographic data tables for all compounds are supplied in Appendix 2.

A1.6 - Cyclic Voltammetry

Electrochemical studies were performed with a Biologic multichannel potentiostat and carried out in a three-electrode electrochemical cell consisting of a glassy carbon working electrode, a platinum wire counter-electrode, and a silver wire pseudoreference electrode. The glassy carbon working electrode was polished prior to use with a $3 \mu \mathrm{~m}$ and $1 \mu \mathrm{~m}$ diamond suspension, followed by a $0.05 \mu \mathrm{~m}$ alumina suspension. All cyclic voltammetry studies were performed under an atmosphere of argon with 2 mM concentration of analyte unless otherwise stated, and a 50 mM concentration of [${ }^{~} \mathrm{Bu}_{4} \mathrm{~N}$] [PF_{6}] supporting electrolyte in $10 \mathrm{~cm}^{3}$ of anhydrous DCM. All experiments were performed at $100 \mathrm{mV} \mathrm{s}^{-1}$ unless otherwise stated. Ferrocene was added during the final measurements as an internal reference. ${ }^{9}$ Cyclic voltammograms were corrected in situ for uncompensated Ohmic loss using positive feedback at the 85% level relative to the measured solution resistance prior to the experiment. Data were processed with the EC Lab software and plotted with Matlab.

A1.7-EPR Spectroscopy

EPR spectra were recorded on a continuous wave X-band ADANI CMS 8400 EPR spectrometer at ambient temperature in toluene. EPR spectral simulation and analysis were performed using the EasySpin computational package. ${ }^{10}$

A1.8 - SQUID Magnetometry

Magnetic studies were performed using a Quantum Design MPMS 5 magnetometer and recorded between 2-300 K in either a 1000 Oe or 10000 Oe applied magnetic field. Samples were finely ground and placed in gelatin capsules enclosed inside a pierced
straw with a uniform diamagnetic background. Diamagnetic corrections were applied according to literature procedures. ${ }^{11}$

A1.9-Elemental Analysis

Elemental analysis was performed by Stephen Boyer at London Metropolitan University.

A1.10 - References

1 S. Stadlbauer, R. Frank, L. Maulana, P. Lönnecke, B. Kirchner and E. Hey-Hawkins, Inorg. Chem., 2009, 48, 6072-6082.

2 W. L. F. Armarego and C. L. L. Chai, Purification of Laboratory Chemicals, Elsevier, 6th edn., 2009.

3 R. Anulewicz-Ostrowska, T. Kliś, D. Krajewski, B. Lewandowski and J. Serwatowski, Tetrahedron Lett., 2003, 44, 7329-7331.

4 D. F. Schriver and M. A. Drezdon, The Manipulation of Air Sensitive Compounds, Wiley, New York, 2nd edn., 1986.

5 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339-341.

6 G. M. Sheldrick, Acta Crystallogr. Sect. A Found. Crystallogr., 2015, 71, 3-8.
7 G. M. Sheldrick, Acta Crystallogr. Sect. C Struct. Chem., 2015, 71, 3-8.
8 W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graph., 1996, 14, 33-38.
9 G. Gritzner and J. Kuta, Int. Union Pure Appl. Chem., 1984, 1, 462-466.
10 S. Stoll and A. Schweiger, J. Magn. Reson., 2006, 178, 42-55.
11 G. A. Bain and J. F. Berry, J. Chem. Educ., 2008, 85, 532.

Appendix 2

Computational Details

A2.1-1,2,4-Benzothiadiazinyl Radicals

A2.1.1 - Electronic and EPR Studies

Calculations were performed using the Gaussian 16 suite of programs. ${ }^{1}$ Structures were optimised in the gas-phase, from single-crystal X-ray diffraction data where available, at the DFT ${ }^{2}$ UB3LYP/6-31g level of theory. ${ }^{3}$ All structures were confirmed as minima by frequency analysis and the absence of imaginary frequencies. Single-point calculations for the EPR parameters were performed at the UB3LYP/cc-pVDZ level of theory ${ }^{4}$ from the UB3LYP/6-31g optimised geometry. Orbital visualisations were made using the VMD molecular graphics viewer. ${ }^{5}$ Exemplar input files are given in section A2.1.1.1 and full Cartesian coordinates are provided in section A2.4.

A2.1.1.1 - Example Input Files

```
%chk=3a_Opt.chk
# opt ub3lyp/6-31g nosymm
3a_Opt - Initial geometry optimisation
0
    S
    1.44160731 7.23848075
    6.70979405 8.26398912 7.17651304
    6.16536031 11.41379741 7.54890333
    3.22610587 12.42633569 8.42211098
    4.33811093 6.58115710 7.68483377
    2.08587062 5.71897321 8.00957583
    4.04980467 7.89867758 7.85410286
    3.42882875 5.60171975 7.75808138
    2.77694783 8.41231480 8.21703961
    3.88236893 4.21969127 7.49158131
    2.53195504 9.77636134 8.40278008
    1.55828551 10.13272189 8.71542991
    5.08876093 8.86422254 7.64898117
    5.21120449 3.98865575 7.08715342
    5.87989262 4.83317218 6.97851841
    4.85199356 10.21963402 7.81232162
    3.00186895 3.13061981 7.64007242
    1.98312756 3.31224393 7.95827220
    3.56378335 10.67173131 8.19344137
    5.64910435 2.68804889 6.83614396
    6.67458630 2.51660294 6.52620939
    3.44702520 1.83247910 7.38569310
    2.76467350 0.99761978 7.50520472
    4.76952293 1.60705121 6.98324687
    5.11324410 0.59633713 6.78769355
%chk=3a_Opt.chk
# ub3lyp/cc-pvdz geom=check nosymm prop=epr
3a_EPR - EPR parameters
```

02

A2.1.2 - Magnetic Exchange Interactions

Single-point exchange energies were performed on the Gaussian 16 suite of programs ${ }^{1}$ and calculated at the UB3LYP/6-311g(d,p) level of theory ${ }^{6}$ with a simple dinuclear nearest-neighbour exchange model from pairwise combinations of radicals. ${ }^{7,8}$ Atomic coordinates were taken from crystallographic data. The individual pairwise exchange energies, J, were estimated in terms of the difference between the total energies of the triplet (TS) and broken symmetry single (BSS) states and the respective expectation values of the two states according to the expression:

$$
\begin{equation*}
J=-\frac{\left(E_{T S}-E_{B S S}\right)}{\left\langle S^{2}\right\rangle_{T S}-\left\langle S^{2}\right\rangle_{B S S}} \tag{1}
\end{equation*}
$$

A2.1.2.1 - Method and Example Input Files

The atomic coordinates of a pairwise combination of radicals is first inputt into Gaussian 16 and a single-point calculation is performed:

```
%chk=3a_pil_triplet_spc.chk
# ub3lyp/6-311g(d,p) scf=tight
3a_pil_triplet_spc
0
\begin{tabular}{lrll} 
Cl & 8.21670000 & 3.11910000 & 5.10980000 \\
S & 9.57380000 & 8.29920000 & 4.50700000 \\
Cl & 11.16690000 & 2.30170000 & 4.54680000 \\
Cl & 1.31430000 & 4.51490000 & 3.90950000 \\
N & 7.72390000 & 5.94930000 & 5.04030000 \\
N & 7.97560000 & 8.36320000 & 4.78190000 \\
C & 7.32120000 & 7.19490000 & 5.02970000 \\
C & 9.03380000 & 5.65970000 & 4.77660000 \\
C & 10.03340000 & 6.62550000 & 4.49310000 \\
C & 5.87040000 & 7.38650000 & 5.30310000 \\
C & 9.42810000 & 4.32110000 & 4.77070000 \\
C & 5.28740000 & 8.61470000 & 5.31730000 \\
C & 3.94550000 & 8.85610000 & 5.55300000 \\
C & 10.75820000 & 3.95050000 & 4.50950000 \\
C & 3.13070000 & 7.77090000 & 5.75490000 \\
C & 3.60760000 & 6.50290000 & 5.73970000 \\
C & 5.00790000 & 6.32980000 & 5.52240000 \\
C & 11.35820000 & 6.2990000 & 4.22510000 \\
C & 11.68130000 & 4.97940000 & 4.23450000 \\
H & 12.46490000 & 7.00710000 & 4.05630000 \\
H & 5.37500000 & 5.53300000 & 5.48660000 \\
H & 3.12330000 & 5.73930000 & 5.87130000 \\
H & 2.24950000 & 7.91060000 & 5.96820000 \\
H & 5.75160000 & 9.37170000 & 5.24820000 \\
H & 3.61700000 & 9.67980000 & 5.62430000 \\
Cl & 8.58320000 & 3.11910000 & 1.42110000 \\
S & 7.22610000 & 8.2992000 & 2.02390000 \\
Cl & 5.63300000 & 2.30170000 & 1.98410000
\end{tabular}
```

Cl	3.48560000	4.51490000	2.62140000
N	9.07600000	5.94930000	1.49060000
N	8.82430000	8.36320000	1.74900000
C	9.47870000	7.19490000	1.50120000
C	7.76610000	5.65970000	1.75430000
C	6.76650000	6.62550000	2.03780000
C	10.92950000	7.38650000	1.22780000
C	7.37180000	4.32110000	1.76020000
C	11.51250000	8.61470000	1.21360000
C	12.85440000	8.85610000	0.97790000
C	6.04170000	3.95050000	2.02140000
C	13.66920000	7.77090000	0.77600000
C	13.19230000	6.50290000	0.79120000
C	11.79200000	6.32980000	1.00850000
C	5.44170000	6.29900000	2.30580000
C	5.11860000	4.97940000	2.29640000
H	4.33500000	7.00710000	2.47460000
H	11.42490000	5.53300000	1.04430000
H	13.67660000	5.73930000	0.65960000
H	14.55040000	7.91060000	0.56270000
H	11.04830000	9.37170000	1.28270000
H	13.18290000	9.67980000	0.90660000

The stability of the triplet state wave-function is then confirmed to be stable in the provided geometry:

```
%chk=3a_pil_triplet_spc.chk
# ub3lyp/6-\overline{3}11g(d,p) guess=read geom=check stable=opt
3a_pil_triplet_guess
0
```

A broken symmetry singlet fragment guess job is set up by first selecting one of the two radicals:

In the atom group editor, the selected atoms are added to fragment 2 , and each fragment is given opposing spin states (α and β) for their unpaired electrons.
-02(2) 006)2300

A guess calculation is performed on one of the two fragments to obtain the initial broken symmetry single wave-function:
\%chk=3a_pi1_BSS_guess.chk
\# ub3lyp/6-311g(d,p) guess=(only,fragment=2) geom=connectivity
3a_pi1_BSS_guess
$\begin{array}{llllll}0 & 1 & 0 & 2 & 0 & -2\end{array}$
Cl (Fragment=2)
S (Fragment=2)
Cl(Fragment=2)
Cl (Fragment=2)
N(Fragment=2)
N (Fragment=2)
C (Fragment=2)
C (Fragment=2)
C (Fragment $=2$)
C (Fragment $=2$)
C(Fragment=2)
C(Fragment=2)
C(Fragment=2)
C(Fragment=2)
C (Fragment=2)
C(Fragment=2)
C (Fragment $=2$)
C (Fragment $=2$)
8.21670000
9.57380000
3.11910000
5.10980000
11.1669000
8.29920000
4.50700000
13.31430000
2.30170000
4.54680000
4.51490000
3.90950000
7.72390000
5.94930000
5.04030000
7.97560000
8.36320000
4.78190000
7.32120000
7.19490000
5.02970000
9.03380000
5.65970000
4.77660000
10.03340000
6.62550000
4.49310000
5.87040000
7.38650000
5.30310000
9.42810000
4.32110000
4.77070000
5.28740000
8.61470000
5.31730000
3.94550000
8.85610000
5.55300000
10.75820000
3.95050000
4.50950000
$3.13070000 \quad 7.77090000$
5.75490000
3.60760000
6.50290000
5.73970000
5.00790000
6.32980000
5.52240000
$11.35820000 \quad 6.29900000 \quad 4.22510000$
$11.68130000 \quad 4.97940000 \quad 4.23450000$
$12.46490000 \quad 7.00710000 \quad 4.05630000$
5.37500000
5.53300000
5.48660000
$3.12330000 \quad 5.73930000 \quad 5.87130000$
$2.24950000 \quad 7.91060000 \quad 5.96820000$
$5.75160000 \quad 9.37170000 \quad 5.24820000$
$3.61700000 \quad 9.67980000 \quad 5.62430000$
$8.58320000 \quad 3.11910000 \quad 1.42110000$
$7.22610000 \quad 8.29920000 \quad 2.02390000$
$5.63300000 \quad 2.30170000 \quad 1.98410000$
Cl (Fragment=1)
3.48560000
4.51490000
2.62140000

$\mathrm{N}($ Fragment $=1$)	9.07600000	5.94930000	1.49060000
$\mathrm{N}($ Fragment $=1$)	8.82430000	8.36320000	1.74900000
C (Fragment=1)	9.47870000	7.19490000	1.50120000
C (Fragment=1)	7.76610000	5.65970000	1.75430000
C (Fragment=1)	6.76650000	6.62550000	2.03780000
C (Fragment=1)	10.92950000	7.38650000	1.22780000
C (Fragment=1)	7.37180000	4.32110000	1.76020000
C (Fragment=1)	11.51250000	8.61470000	1.21360000
C (Fragment=1)	12.85440000	8.85610000	0.97790000
C (Fragment=1)	6.04170000	3.95050000	2.02140000
C (Fragment=1)	13.66920000	7.77090000	0.77600000
C (Fragment=1)	13.19230000	6.50290000	0.79120000
C (Fragment=1)	11.79200000	6.32980000	1.00850000
C (Fragment=1)	5.44170000	6.29900000	2.30580000
C (Fragment=1)	5.11860000	4.97940000	2.29640000
H (Fragment=1)	4.33500000	7.00710000	2.47460000
H (Fragment=1)	11.42490000	5.53300000	1.04430000
H (Fragment=1)	13.67660000	5.73930000	0.65960000
H (Fragment=1)	14.55040000	7.91060000	0.56270000
H (Fragment=1)	11.04830000	9.37170000	1.28270000
H (Fragment=1)	13.18290000	9.67980000	0.90660000

A stability calculation is then performed on the resulting wave-function to confirm that it is stable:

```
%chk=3a_pi1_BSS_guess.chk
# ub3\overline{l}yp/\overline{6}-31\overline{1}g(d,p) scf=nosymm guess=read geom=check
stable=opt
3a_pil_BSS_guess_stab
0 1 0 2 0 -2
```

The exchange energy is then calculated using equation 1 from the total energies of the triplet and broken symmetry singlet states and their respective expectation values, and converted to cm^{-1}.

A2.2 - Phosphorus-Nitrogen Heterocycles

A2.2.1 - Geometry Optimisations

Calculations were performed using the Gaussian 16 suite of programs. ${ }^{1}$ Structures were optimised from single crystal X-ray diffraction data, where available, using the M06-2X hybrid functional ${ }^{9}$ using the $6-311 \mathrm{~g}(\mathrm{~d}, \mathrm{p})$ basis set. ${ }^{6}$ PCM (dichloromethane) solvation was used in all cases, and all structures were confirmed as minima by frequency analysis and the absence of imaginary frequencies. NBO calculations were performed using NBO 3.1. ${ }^{10}$ Mayer bond indices ${ }^{11,12}$ were calculated using Multiwfn 3.3.9.13 Orbital visualisations were made using the VMD molecular graphics viewer. ${ }^{5}$ Full Cartesian coordinates for the optimised geometries are provided in section A2.4, along with optimised energies. A typical input file is provided in section A2.2.1.1.

A2.2.1.1 - Example Input Files

H	6.28090000	2.93530000	5.88730000
C	3.08290000	3.22550000	6.23310000
H	2.33170000	2.74760000	6.50150000
C	2.32970000	5.78080000	2.77990000
H	3.24720000	5.63930000	2.71920000
C	0.11100000	5.42570000	1.92340000
H	-0.45760000	5.04630000	1.29320000
C	0.35600000	10.23060000	1.52930000
H	-0.10380000	9.55680000	1.08210000
C	-0.19350000	11.49730000	1.61600000
H	-1.01960000	11.67610000	1.22860000
C	1.48120000	5.18420000	1.86600000
H	1.82640000	4.62080000	1.21160000
C	5.74820000	14.41180000	1.34460000
H	6.19940000	15.20010000	1.54650000
C	4.32090000	2.61660000	6.25030000
H	4.40380000	1.73100000	6.52170000
C	1.73500000	12.24230000	2.85650000
H	2.19740000	12.91930000	3.29500000
C	5.34700000	14.16820000	0.04260000
H	5.53740000	14.78210000	-0.62990000
C	8.21450000	10.69230000	7.31970000
H	8.81750000	11.05750000	7.92640000
C	3.62420000	9.56320000	9.42510000
H	3.82780000	9.72970000	10.31720000
C	4.66010000	13.00360000	-0.24840000
H	4.38360000	12.83740000	-1.12060000
SNBO BNDIDX \$END			

Orbital populations were calculated using the pop=orbital keyword from the optimised geometry checkpoint file:

```
%chk=10a0pt.chk
#p m062x/6-311g(d,p) nosymm pop=orbital geom=check
10a-Pop - Orbital Population
O 1
```


A2.2.2 - NICS Calculations

Nucleus independent chemical shift calculations ${ }^{14}$ were performed at the M06-2X/6$311 \mathrm{~g}(\mathrm{~d}, \mathrm{p})$ level of theory ${ }^{6,9}$ by placing a dummy atom at the geometric centre of the ring structure in question using a previously optimised geometry. An example input file is given in section A2.2.2.1.

A2.2.2.1 - Example Input Files

\%chk=19rOptNICS.chk
\#p m062x/6-311g(d,p) nosymm nmr

```
19r_Opt NICS Calculation
```

01
1.88245300
3.739759 10.84497907
9.24389065
5.60781095
2.93373611
9.06795620
6.78485250
1.86188349
9.01047999
$7.66662124 \quad 3.11008050 \quad 8.66117903$
$2.15246009 \quad 4.05743154$
12.19040069
3.69114828
2.34576641
12.59129913
0.32334042
5.68682135
12.18978161
4.51237954
4.97375016
9.90522113
3.63377048
5.50077575
10.26117549
10.20029767
9.16306745
0.61616344

86886
12.83800516
$\begin{array}{lll}1.38170105 & 5.02461385 & 12.83800516 \\ 1.63412000 & 5.23787315 & 13.86710182\end{array}$
$5.68878317 \quad 5.67846522 \quad 9.65899438$
$5.71726444 \quad 6.74958749 \quad 9.82126452$
$0.06727360 \quad 5.35381958$
10.83832335
$-0.72365199 \quad 5.84429281$
10.28941953
$4.64669509 \quad 1.67099904$
13.51236732
9.21611356
$7.74017862 \quad 5.56141978 \quad 9.02926689$
-0.02166169 7.07864928
14.16039260
$-0.00233821 \quad 6.25223433$
14.87509156

H	-0.73587316	7.81478457	14.52185183
H	0.97472804	7.53768001	14.13934918
C	-1.38070191	7.42857493	12.09463654
H	-0.88611476	8.02107437	11.31471347
H	-1.88742664	8.10770238	12.77628981
H	-2.14159346	6.80385568	11.62047738
C	6.43349532	0.43655601	15.26430418
H	7.12557481	-0.04401398	15.94537572
C	6.57592528	0.26571928	13.89166888
H	7.38509429	-0.33815468	13.49942090
C	5.68436613	0.87833225	13.01700440
H	5.82020005	0.76564822	11.94716024
C	4.51638347	1.84938665	14.89165772
H	3.71267715	2.47342202	15.26100523
C	5.40274657	1.23133885	15.76246291
H	5.29057274	1.36628489	16.83148747
Bq	2.876915225	2.97966226	11.66056232
Bq	1.106555067	4.70938584	11.51696459

A2.3 - Donor-Functionalised Diiodophosphoranes

A2.3.1 - Geometry Optimisations

Calculations were performed using the Gaussian 09 suite of programs. ${ }^{15}$ Structures were optimised from single-crystal X-ray diffraction data, where available, using the M06-2X hybrid functional ${ }^{9}$ with the def2TZVP43 split valence, triple- ζ basis set ${ }^{16}$ to describe the iodine atoms and the $6-311 \mathrm{~g}(\mathrm{~d}, \mathrm{p})$ basis set ${ }^{6}$ for all other atoms. PCM (dichloromethane) solvation was used in all cases, and all structures were conformed as minima by frequency analysis and the absence of imaginary frequencies. NBO calculations were performed using NBO 3.1. ${ }^{10}$ Mayer bond indices ${ }^{11,12}$ were calculated using Multiwfn 3.3.9. ${ }^{13}$ Orbital visualisations were made using the VMD molecular graphics viewer. ${ }^{5}$ Full Cartesian coordinates for the optimised geometries are provided in section A2.4, along with optimised energies and selected bond lengths and Mayer Bond Indices. A typical input file is provided in section A2.3.1.1.

A2.3.1.1 - Example Input Files

```
%chk=34a_Opt.chk
#p opt freq gen scrf=(solvent=dichloromethane) nosymm m062x
pop=nboread pseudo=read
34a_Opt
O 1
    I -0.25037821 0.36625167 2.12488543
P 2.03112774 5.67328166 3.01457760
O -0.21976091 6.40915380 1.41672230
C 2.09358455 6.63921403 1.50189421
C 0.62960853 7.83758587 4.08868355
H 0.79741619 8.34346873 3.14525772
```

C	0.88720611	6.88434666	0.81911908
C	3.30292323	7.09575938	0.97610884
H	4.22917258	6.90108972	1.50328335
C	0.90677725	7.58830893	-0.38269361
H	-0.00975383	7.78667425	-0.92088901
C	4.55878724	4.50850876	3.07584048
H	4.18625715	3.82219901	2.32361161
C	3.72336652	5.48727052	3.62083004
C	1.09208630	6.53742838	4.28848485
C	-0.04574449	8.48544747	5.11739966
H	-0.40746842	9.49505775	4.96806850
C	-0.25672775	7.83915678	6.33074196
H	-0.78493649	8.34808168	7.12794695
C	3.31770714	7.79977229	-0.22065375
H	4.25495561	8.15732545	-0.62612741
C	0.88019504	5.88432660	5.50554846
H	1.24011928	4.87169969	5.65462811
C	4.20487464	6.36592542	4.59480095
H	3.55797403	7.12392298	5.02025991
C	6.35566001	5.28586776	4.47964650
H	7.38101533	5.20320316	4.81886997
C	5.87499588	4.41280469	3.50724128
H	6.52230290	3.65234597	3.08907720
C	5.52368426	6.25991560	5.02072649
H	5.89756127	6.93765667	5.77791170
C	0.20679914	6.54052269	6.52609985
H	0.04118400	6.03789791	7.47062663
C	-1.46975785	6.54757630	0.74822603
H	-1.43820669	6.05718399	-0.22703110
H	-1.72787428	7.60252464	0.63183079
H	-2.19940418	6.05648965	1.38552058
C	2.12215089	8.03724598	-0.88981393
H	2.12810329	8.58408452	-1.82495303

```
C H P O O
6-311g(d,p)
****
I 0
def2TZVP
****
I 0
def 2 TZVP
```

\$NBO BNDIDX \$END

A2.4 - Cartesian Coordinates for Optimised Geometries

Full Cartesian coordinates and total energies for all optimised geometries are given below:

```
2a
```



```
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Center \\
Number
\end{tabular}} & \multirow[t]{2}{*}{Atomic Number} & \multirow[t]{2}{*}{Atomic Type} & \multicolumn{3}{|r|}{Coordinates (Angstroms)} \\
\hline & & & X & Y & Z \\
\hline 1 & 16 & 0 & 1.441607 & 7.238480 & 8.519775 \\
\hline 2 & 17 & 0 & 1.416780 & 7.329372 & 11.064734 \\
\hline 3 & 17 & 0 & 6.709794 & 8.263989 & 7.176513 \\
\hline 4 & 17 & 0 & 6.165360 & 11.413797 & 7.548903 \\
\hline 5 & 17 & 0 & 3.226106 & 12.426335 & 8.422110 \\
\hline 6 & 7 & 0 & 4.338111 & 6.581157 & 7.684833 \\
\hline 7 & 7 & 0 & 2.085870 & 5.718973 & 8.009575 \\
\hline 8 & 6 & 0 & 4.049804 & 7.898677 & 7.854102 \\
\hline 9 & 6 & 0 & 3.428829 & 5.601719 & 7.758081 \\
\hline 10 & 6 & 0 & 2.776948 & 8.412314 & 8.217039 \\
\hline 11 & 6 & 0 & 3.882369 & 4.219691 & 7.491581 \\
\hline 12 & 6 & 0 & 2.531955 & 9.776361 & 8.402779 \\
\hline 13 & 1 & 0 & 1.558285 & 10.132721 & 8.715429 \\
\hline 14 & 6 & 0 & 5.088761 & 8.864222 & 7.648981 \\
\hline 15 & 6 & 0 & 5.211204 & 3.988655 & 7.087153 \\
\hline 16 & 1 & 0 & 5.879892 & 4.833172 & 6.978518 \\
\hline 17 & 6 & 0 & 4.851993 & 10.219633 & 7.812321 \\
\hline 18 & 6 & 0 & 3.001869 & 3.130620 & 7.640072 \\
\hline 19 & 1 & 0 & 1.983127 & 3.312244 & 7.958272 \\
\hline 20 & 6 & 0 & 3.563783 & 10.671731 & 8.193441 \\
\hline 21 & 6 & 0 & 5.649104 & 2.688049 & 6.836143 \\
\hline 22 & 1 & 0 & 6.674586 & 2.516603 & 6.526209 \\
\hline 23 & 6 & 0 & 3.447025 & 1.832479 & 7.385693 \\
\hline 24 & 1 & 0 & 2.764673 & 0.997620 & 7.505204 \\
\hline 25 & 6 & 0 & 4.769523 & 1.607051 & 6.983246 \\
\hline 26 & 1 & 0 & 5.113244 & 0.596337 & 6.787693 \\
\hline
\end{tabular}
Total energy E(UB3LYP) = -2847.12972313 Hartrees
```

2b

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	17	0	7.317996	6.799277	7.292015
2	16	0	6.738006	0.908202	4.916811
3	17	0	9.046558	4.360726	8.503876
4	17	0	6.319687	6.892489	3.529507
5	17	0	5.271316	-0.041658	6.769585
6	7	0	5.264526	3.439336	3.951648
7	7	0	5.777360	1.105287	3.491726
8	6	0	6.131554	3.610985	4.989637
9	6	0	6.246488	4.934705	5.547097
10	6	0	5.134336	2.294461	3.268691
11	6	0	7.135852	5.144246	6.595202
12	6	0	4.233269	2.283770	2.096011
13	6	0	5.406740	6.019556	4.969179
14	1	0	5.191294	6.817365	5.672163
15	1	0	4.512015	5.617962	4.506204
16	6	0	7.907134	4.087977	7.135196
17	6	0	6.927209	2.582035	5.553326
18	6	0	3.861084	1.068923	1.488216
19	1	0	4.237225	0.137740	1.892684
20	6	0	7.799333	2.808122	6.623160
21	1	0	8.376360	2.000055	7.055994
22	6	0	3.744695	3.497549	1.576106
23	1	0	4.047296	4.428593	2.038309
24	6	0	3.007974	1.072195	0.383522
25	1	0	2.719693	0.132392	-0.075262
26	6	0	2.894268	3.493427	0.470114
27	1	0	2.525305	4.432863	0.072245
28	6	0	2.522362	2.282086	-0.128246
29	1	0	1.859664	2.281732	-0.987716

Total energy E(UB3LYP) $=-2886.44928161$ Hartrees
2c

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	17	0	5.069510	1.884385	3.627555
2	16	0	2.980081	3.320418	3.923627
3	17	0	4.578637	6.439213	-0.288167
4	17	0	3.993752	9.737949	1.286108
5	17	0	3.674616	9.282836	5.243824
6	7	0	3.913668	5.719641	5.616809
7	7	0	2.724870	3.596869	5.611955
8	6	0	4.050203	5.854892	4.265851
9	6	0	3.285649	4.695545	6.208193
10	6	0	3.819463	5.058785	1.943947
11	1	0	3.536403	4.287404	1.238464
12	6	0	4.642346	7.073407	3.772743
13	6	0	4.790342	7.275900	2.392368
14	6	0	3.114313	4.739821	7.676769
15	6	0	3.647986	4.880591	3.320195
16	6	0	3.355379	5.938374	8.374974
17	1	0	3.652443	6.820333	7.821610
18	6	0	2.705260	3.593918	8.386048
19	1	0	2.522557	2.673946	7.845157
20	6	0	2.549139	3.648010	9.772054
21	1	0	2.240821	2.759588	10.312929
22	6	0	3.194627	5.985906	9.760103
23	1	0	3.377090	6.914390	10.290852
24	6	0	4.374605	6.242574	1.504816
25	6	0	5.081542	8.067329	4.795949
26	1	0	5.897419	8.708382	4.478181
27	1	0	5.306821	7.576460	5.736788
28	6	0	2.793055	4.841826	10.462587
29	1	0	2.669862	4.881368	11.540173
30	6	0	5.368493	8.538282	1.833925
31	1	0	5.946722	8.365057	0.930664
32	1	0	5.949032	9.107504	2.551149

Total energy E(UB3LYP) $=-2925.75973149$ Hartrees

2d

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	17	0	5.114392	1.885218	3.656962
2	16	0	3.003736	3.325893	3.930355
3	17	0	4.573405	6.582082	-0.267685
4	17	0	3.601751	9.310635	5.201712
5	7	0	3.912534	5.722758	5.624374
6	7	0	2.752905	3.589924	5.618298
7	6	0	4.045437	5.861449	4.274344
8	6	0	3.299792	4.691635	6.218023
9	6	0	4.619588	7.091107	3.798861
10	6	0	4.746121	7.266920	2.428314
11	6	0	3.134234	4.731008	7.687015
12	6	0	3.656486	4.891050	3.316198
13	6	0	3.376034	5.927619	8.388121
14	1	0	3.670360	6.811466	7.836461
15	6	0	2.730644	3.581798	8.394010
16	1	0	2.548229	2.663070	7.850921
17	6	0	2.579857	3.631021	9.780768
18	1	0	2.275734	2.740184	10.319986
19	6	0	3.220784	5.970263	9.774047
20	1	0	3.404299	6.897109	10.307196
21	6	0	4.353820	6.270354	1.500714
22	6	0	5.042079	8.111362	4.795536
23	1	0	5.834591	8.760182	4.438177
24	1	0	5.275485	7.654048	5.750621
25	6	0	2.824130	4.823095	10.474248
26	1	0	2.705472	4.858725	11.552447
27	6	0	3.810206	5.057228	1.920647
28	6	0	3.412248	3.945013	0.981042
29	1	0	3.539749	4.231426	-0.060542
30	1	0	4.025121	3.054948	1.170443
31	1	0	2.361922	3.665224	1.126785
32	17	0	5.433075	8.819312	1.807177

Total energy E(UB3LYP) $=-2925.75928790$ Hartrees

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	17	0	5.117940	1.858223	3.670225
2	16	0	3.006183	3.305436	3.936486
3	17	0	4.619052	6.537357	-0.262588
4	7	0	3.882221	5.713190	5.632863
5	7	0	2.750009	3.566328	5.620911
6	6	0	4.029659	5.847490	4.287465
7	6	0	3.289521	4.670860	6.224801
8	6	0	4.579895	7.061717	3.776606
9	6	0	4.766971	7.280612	2.417564
10	6	0	3.140582	4.703302	7.695719
11	6	0	3.667590	4.870845	3.322145
12	6	0	3.532047	5.851467	8.410332
13	1	0	3.937668	6.694558	7.865414
14	6	0	2.613243	3.598127	8.390979
15	1	0	2.320345	2.714599	7.837986
16	6	0	2.479795	3.645095	9.779580
17	1	0	2.075904	2.789009	10.309620
18	6	0	3.396800	5.890405	9.798439
19	1	0	3.700980	6.777883	10.343405
20	6	0	4.381268	6.241351	1.518750
21	6	0	2.869998	4.789358	10.486805
22	1	0	2.766286	4.822475	11.566680
23	6	0	3.841389	5.026693	1.928042
24	6	0	3.462044	3.905290	0.991359
25	1	0	3.613960	4.181055	-0.049886
26	1	0	4.066484	3.014734	1.202579
27	1	0	2.407176	3.631056	1.113949
28	17	0	5.028235	8.333700	4.975916
29	6	0	5.348729	8.561858	1.913412
30	1	0	5.886152	8.441131	0.978892
31	1	0	5.958702	9.060984	2.658359
32	17	0	3.969639	9.816457	1.509648

Total Energy E(UB3LYP) $=-2925.75684163$ Hartrees

2f

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	16	0	1.446734	7.223536	8.427569
2	17	0	1.465630	7.186049	10.957944
3	17	0	6.769622	8.229599	7.276682
4	17	0	6.182444	11.376091	7.545914
5	17	0	3.272801	12.414003	8.335738
6	7	0	4.379787	6.542431	7.725085
7	7	0	2.108941	5.698753	7.947318
8	6	0	4.083509	7.863978	7.848103
9	6	0	3.457471	5.571616	7.752520
10	6	0	2.791643	8.375237	8.121295
11	6	0	3.913299	4.186512	7.501053
12	6	0	2.505739	9.750741	8.235887
13	6	0	5.122861	8.827736	7.661058
14	6	0	5.255735	3.947183	7.150776
15	1	0	5.933863	4.787659	7.073279
16	6	0	4.857962	10.181730	7.774266
17	6	0	3.020143	3.103433	7.610131
18	1	0	1.991182	3.292385	7.888820
19	6	0	3.554141	10.652038	8.076093
20	6	0	5.694537	2.644128	6.913382
21	1	0	6.730760	2.466325	6.645295
22	6	0	3.465904	1.802856	7.369180
23	1	0	2.773445	0.972417	7.458387
24	6	0	4.802126	1.569052	7.020290
25	1	0	5.146460	0.556415	6.835598
26	8	0	1.204031	10.036140	8.572814
27	6	0	0.416524	11.098525	7.916630
28	1	0	-0.610462	10.738796	7.964369
29	1	0	0.518976	12.034013	8.463710
30	1	0	0.730264	11.225571	6.877343

Total Energy E(UB3LYP) $=-2961.60478588$ Hartrees

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	16	0	1.344517	7.426041	8.045327
2	17	0	0.854436	7.381120	10.552427
3	17	0	6.816270	8.119685	7.674848
4	17	0	6.417535	11.286889	8.085817
5	17	0	3.444104	12.472938	8.504754
6	7	0	4.293500	6.590298	7.730159
7	7	0	1.975317	5.873522	7.592812
8	6	0	4.062346	7.918265	7.886768
9	6	0	3.327759	5.666026	7.606319
10	6	0	2.780237	8.509185	8.047930
11	6	0	3.758677	4.266447	7.377646
12	6	0	2.595241	9.881160	8.250386
13	1	0	1.606985	10.295029	8.407936
14	6	0	5.180708	8.816756	7.896425
15	6	0	5.041296	4.084960	6.815416
16	1	0	5.631208	4.965157	6.593355
17	6	0	5.005957	10.178639	8.076038
18	6	0	2.966100	3.132038	7.709110
19	6	0	3.702358	10.707378	8.257402
20	6	0	5.543268	2.813977	6.553479
21	1	0	6.527812	2.698953	6.113207
22	6	0	3.505487	1.861216	7.440452
23	1	0	2.916392	0.987081	7.699561
24	6	0	4.766643	1.692805	6.865869
25	1	0	5.142543	0.693381	6.670882
26	6	0	1.602051	3.197691	8.362143
27	1	0	1.576860	3.897841	9.202502
28	1	0	0.833294	3.533423	7.659620
29	1	0	1.320992	2.207271	8.733362

Total energy E(UB3LYP) $=-2886.43218800$ Hartrees

2h

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	17	0	4.556548	1.811706	3.475745
2	16	0	2.639022	3.480072	3.786505
3	17	0	4.599391	6.567510	-0.293639
4	17	0	4.319813	9.851085	1.412854
5	17	0	3.873386	9.249849	5.346044
6	7	0	3.840621	5.678658	5.574162
7	7	0	2.414766	3.711331	5.494349
8	6	0	3.978562	5.861785	4.230702
9	6	0	3.113032	4.698947	6.131851
10	6	0	3.684679	5.185740	1.877993
11	1	0	3.330247	4.475736	1.141082
12	6	0	4.683237	7.040203	3.788334
13	6	0	4.863760	7.279160	2.418495
14	6	0	2.971471	4.715322	7.607166
15	6	0	3.484053	4.971568	3.245991
16	6	0	3.000221	5.979717	8.233247
17	1	0	3.116621	6.860776	7.613414
18	6	0	2.826871	3.538439	8.391047
19	6	0	2.710486	3.694912	9.783468
20	1	0	2.614396	2.804131	10.396452
21	6	0	2.870358	6.103153	9.613962
22	1	0	2.882532	7.084902	10.074832
23	6	0	4.358958	6.323896	1.489131
24	6	0	5.192504	7.952778	4.853876
25	1	0	6.054733	8.545604	4.567083
26	1	0	5.370825	7.408136	5.775258
27	6	0	2.723136	4.950937	10.394020
28	1	0	2.623881	5.028272	11.472150
29	6	0	5.566414	8.499626	1.912300
30	1	0	6.129002	8.306730	1.003287
31	1	0	6.197480	8.978417	2.652586
32	6	0	2.825834	2.134377	7.825318
33	1	0	1.876600	1.900353	7.333652
34	1	0	3.607179	1.986880	7.073631
35	1	0	2.984553	1.408731	8.629049

Total energy E(UB3LYP) $=-2965.06307593$ Hartrees

2k

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	16	0	1.433747	7.249040	8.360912
2	17	0	1.267296	7.136511	10.905424
3	17	0	6.755540	8.380470	7.354115
4	17	0	6.185928	11.487205	7.972145
5	17	0	3.208361	12.423493	8.802606
6	7	0	4.370066	6.661124	7.616884
7	7	0	2.103836	5.780247	7.755509
8	6	0	4.069576	7.959070	7.881167
9	6	0	3.461218	5.677309	7.565878
10	6	0	2.780404	8.442273	8.229243
11	6	0	3.927211	4.326800	7.218193
12	6	0	2.523575	9.785054	8.521997
13	1	0	1.535986	10.113441	8.821481
14	6	0	5.113123	8.939179	7.805308
15	6	0	5.277893	4.116269	6.860648
16	1	0	5.953041	4.962451	6.848442
17	6	0	4.865432	10.275444	8.074478
18	6	0	3.049145	3.227583	7.237830
19	1	0	2.014847	3.382612	7.518168
20	6	0	3.560842	10.694414	8.436945
21	6	0	5.730354	2.847193	6.534097
22	1	0	6.762407	2.667199	6.258506
23	6	0	3.496847	1.948338	6.910231
24	1	0	2.801658	1.118893	6.937964
25	6	0	4.841764	1.756228	6.556509
26	8	0	5.390865	0.535572	6.215400
27	6	0	4.547534	-0.650667	6.216757
28	1	0	5.206036	-1.465239	5.919585
29	1	0	4.142700	-0.845088	7.216043
30	1	0	3.728113	-0.552649	5.496098

Total energy E(UB3LYP) $=-2961.61586995$ Hartrees

21

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	17	0	4.974897	1.870553	3.748893
2	16	0	2.913754	3.376450	3.900513
3	17	0	4.834940	6.322388	-0.301758
4	17	0	4.250859	9.684155	1.141104
5	17	0	3.686384	9.353336	5.087153
6	7	0	3.821349	5.798154	5.575628
7	7	0	2.572545	3.708147	5.559756
8	6	0	4.033263	5.890753	4.231685
9	6	0	3.134265	4.807014	6.161626
10	6	0	3.913872	5.030500	1.923372
11	1	0	3.651339	4.244668	1.225964
12	6	0	4.683074	7.079454	3.736798
13	6	0	4.915063	7.235489	2.361854
14	6	0	2.890103	4.891560	7.610010
15	6	0	3.659984	4.898952	3.291945
16	6	0	3.153007	6.091971	8.306762
17	1	0	3.521675	6.948905	7.757650
18	6	0	2.388705	3.787774	8.324185
19	1	0	2.187239	2.864664	7.795346
20	6	0	2.160982	3.866843	9.697673
21	1	0	1.783139	2.999718	10.224245
22	6	0	2.926305	6.179711	9.671824
23	1	0	3.116442	7.094488	10.219924
24	6	0	4.524003	6.186109	1.482293
25	6	0	5.087862	8.093812	4.753451
26	1	0	5.934297	8.708055	4.464165
27	1	0	5.248289	7.626770	5.719352
28	6	0	2.430880	5.066266	10.375112
29	6	0	5.558382	8.464833	1.801218
30	1	0	6.180925	8.249367	0.937440
31	1	0	6.113306	9.040400	2.533462
32	8	0	2.242353	5.255357	11.730418
33	6	0	1.724973	4.160100	12.537305
34	1	0	2.402814	3.299653	12.514903
35	1	0	1.666214	4.558352	13.548938
36	1	0	0.728219	3.857239	12.197994

Total energy E(UB3LYP) $=-3040.24578786$ Hartrees
3a

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	16	0	1.377408	7.275125	8.482359
2	17	0	6.676776	8.230900	7.118504
3	17	0	6.210369	11.385620	7.556857
4	17	0	3.285176	12.438391	8.464905
5	7	0	4.282453	6.583468	7.615383
6	7	0	2.080180	5.671990	8.131903
7	6	0	4.014959	7.908023	7.818922
8	6	0	3.379281	5.589979	7.766559
9	6	0	2.756463	8.431951	8.216548
10	6	0	3.863097	4.209427	7.498315
11	6	0	2.546103	9.795595	8.408367
12	1	0	1.578135	10.175477	8.711954
13	6	0	5.069162	8.852071	7.621642
14	6	0	5.199101	4.000734	7.110204
15	1	0	5.854871	4.856595	7.013496
16	6	0	4.868346	10.215391	7.810882
17	6	0	2.999909	3.105159	7.627877
18	1	0	1.972220	3.269794	7.926834
19	6	0	3.599036	10.679630	8.205646
20	6	0	5.661480	2.707626	6.856413
21	1	0	6.693590	2.555770	6.557523
22	6	0	3.468470	1.815243	7.372691
23	1	0	2.796241	0.969507	7.474955
24	6	0	4.799573	1.611628	6.986385
25	1	0	5.161428	0.607544	6.788555

Total energy E(UB3LYP) = -2386.96710162 Hartrees

3b

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	17	0	7.247433	6.817043	7.309422
2	16	0	6.839585	0.889498	4.895722
3	17	0	8.988317	4.392485	8.559115
4	17	0	6.377162	6.905935	3.530429
5	7	0	5.327195	3.423619	3.913511
6	7	0	5.708827	1.047608	3.523262
7	6	0	6.172495	3.601662	4.977186
8	6	0	6.256496	4.925727	5.530998
9	6	0	5.154970	2.251925	3.261310
10	6	0	7.114039	5.154148	6.608532
11	6	0	4.233140	2.265428	2.093781
12	6	0	5.424412	6.002348	4.928107
13	1	0	5.170529	6.792625	5.627001
14	1	0	4.556129	5.591370	4.425351
15	6	0	7.880498	4.113944	7.160954
16	6	0	6.956548	2.576212	5.564139
17	6	0	3.847582	1.063881	1.469734
18	1	0	4.228717	0.124943	1.851437
19	6	0	7.805219	2.826787	6.640173
20	1	0	8.404489	2.036705	7.076739
21	6	0	3.744386	3.487380	1.597351
22	1	0	4.056012	4.409665	2.070325
23	6	0	2.982779	1.087706	0.374264
24	1	0	2.687832	0.156053	-0.097522
25	6	0	2.882390	3.505312	0.498699
26	1	0	2.515533	4.453692	0.119872
27	6	0	2.496843	2.307123	-0.114770
28	1	0	1.825736	2.323240	-0.967702

Total energy $\mathrm{E}(\mathrm{UB} 3 L Y P)=-2426.28581316$ Hartrees

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	16	0	2.884716	3.319212	3.868381
2	17	0	4.651132	6.444569	-0.291774
3	17	0	4.062383	9.771314	1.280322
4	17	0	3.613427	9.298375	5.205034
5	7	0	3.836220	5.719280	5.598607
6	7	0	2.777373	3.523829	5.639254
7	6	0	4.003607	5.853341	4.243197
8	6	0	3.254430	4.657683	6.198911
9	6	0	3.824021	5.069769	1.925822
10	1	0	3.533718	4.316381	1.203581
11	6	0	4.608683	7.068785	3.772034
12	6	0	4.801937	7.280231	2.391303
13	6	0	3.109807	4.721855	7.678404
14	6	0	3.626872	4.874189	3.291121
15	6	0	3.364131	5.926644	8.358312
16	1	0	3.654050	6.800803	7.789575
17	6	0	2.709821	3.587972	8.410438
18	1	0	2.509948	2.663200	7.883677
19	6	0	2.575898	3.659371	9.798114
20	1	0	2.271373	2.778773	10.354355
21	6	0	3.224529	5.993219	9.746347
22	1	0	3.416699	6.929209	10.260699
23	6	0	4.404990	6.254887	1.501238
24	6	0	5.021004	8.062744	4.805653
25	1	0	5.852077	8.696696	4.513325
26	1	0	5.207379	7.574258	5.755892
27	6	0	2.833012	4.860802	10.470927
28	1	0	2.726347	4.914434	11.549776
29	6	0	5.404020	8.539047	1.855836
30	1	0	5.998901	8.367552	0.963199
31	1	0	5.974693	9.098104	2.589098

Total energy E(UB3LYP) $=-2465.59604853$ Hartrees

3d

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	16	0	2.926148	3.314008	3.882421
2	17	0	4.678699	6.572571	-0.263549
3	17	0	3.553929	9.334520	5.143822
4	7	0	3.838899	5.722320	5.613434
5	7	0	2.820012	3.512868	5.651587
6	6	0	4.006780	5.856730	4.259269
7	6	0	3.276013	4.651596	6.214795
8	6	0	4.597992	7.083006	3.803337
9	6	0	4.775693	7.262228	2.433674
10	6	0	3.131624	4.712424	7.694222
11	6	0	3.647779	4.882995	3.295911
12	6	0	3.384171	5.915743	8.377179
13	1	0	3.673764	6.791232	7.810451
14	6	0	2.734226	3.575843	8.423439
15	1	0	2.536300	2.652078	7.894134
16	6	0	2.600518	3.643376	9.811300
17	1	0	2.297833	2.760772	10.365392
18	6	0	3.245069	5.978500	9.765452
19	1	0	3.436638	6.913260	10.282252
20	6	0	4.403501	6.273923	1.503205
21	6	0	4.990696	8.105410	4.809426
22	1	0	5.807036	8.740953	4.482661
23	1	0	5.171696	7.653150	5.777929
24	6	0	2.855677	4.843550	10.487170
25	1	0	2.749515	4.894119	11.566225
26	6	0	3.827251	5.063318	1.912915
27	6	0	3.408683	3.972539	0.956202
28	1	0	3.552540	4.264094	-0.082201
29	1	0	3.987565	3.057094	1.133441
30	1	0	2.349702	3.722308	1.094620
31	17	0	5.503885	8.811392	1.838511

Total energy $E(U B 3 L Y P)=-2465.59426778$ Hartrees

3 e

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	16	0	2.920541	3.293032	3.885030
2	17	0	4.705361	6.529517	-0.259643
3	7	0	3.777686	5.719224	5.618465
4	7	0	2.823428	3.480270	5.656313
5	6	0	3.965105	5.847553	4.268929
6	6	0	3.255530	4.629468	6.219639
7	6	0	4.524577	7.059658	3.776207
8	6	0	4.761941	7.285607	2.419436
9	6	0	3.131622	4.683813	7.700946
10	6	0	3.645124	4.862167	3.300558
11	6	0	3.541944	5.836817	8.394449
12	1	0	3.943191	6.669834	7.831375
13	6	0	2.606989	3.593886	8.420468
14	1	0	2.291782	2.708344	7.882696
15	6	0	2.496305	3.659303	9.810500
16	1	0	2.090639	2.814380	10.357526
17	6	0	3.428319	5.895960	9.785178
18	1	0	3.746645	6.789660	10.312130
19	6	0	4.411055	6.246682	1.519941
20	6	0	2.906081	4.809344	10.497548
21	1	0	2.818622	4.857870	11.578432
22	6	0	3.854186	5.028441	1.919458
23	6	0	3.476554	3.917644	0.968691
24	1	0	3.695693	4.174832	-0.065654
25	1	0	4.020756	2.996144	1.210616
26	1	0	2.404883	3.693495	1.040201
27	17	0	4.928599	8.342279	4.985341
28	6	0	5.356534	8.566709	1.937231
29	1	0	5.919385	8.450725	1.017165
30	1	0	5.943722	9.065678	2.700426
31	17	0	3.995736	9.836099	1.492646

[^0]3f

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	16	0	1.403019	7.311891	8.477996
2	17	0	6.750398	8.236210	7.239622
3	17	0	6.273991	11.386937	7.679885
4	17	0	3.353815	12.451619	8.527337
5	7	0	4.332615	6.591805	7.664455
6	7	0	2.103567	5.712262	8.110807
7	6	0	4.066842	7.918739	7.858631
8	6	0	3.408889	5.611659	7.776050
9	6	0	2.797951	8.443514	8.206527
10	6	0	3.877229	4.227747	7.497522
11	6	0	2.570579	9.811105	8.375806
12	6	0	5.127822	8.858880	7.692059
13	6	0	5.217017	4.002994	7.132087
14	1	0	5.888097	4.849520	7.061271
15	6	0	4.916630	10.220522	7.877124
16	6	0	2.994449	3.135829	7.594730
17	1	0	1.964415	3.313615	7.877688
18	6	0	3.638237	10.699519	8.224811
19	6	0	5.663665	2.706329	6.868328
20	1	0	6.698926	2.542002	6.587350
21	6	0	3.447177	1.842232	7.329566
22	1	0	2.759907	1.005975	7.407274
23	6	0	4.782055	1.622636	6.965668
24	1	0	5.131741	0.615715	6.760329
25	8	0	1.300713	10.207296	8.777464
26	6	0	0.428855	10.849239	7.769315
27	1	0	-0.515205	11.009358	8.286985
28	1	0	0.851106	11.802730	7.446991
29	1	0	0.285949	10.181033	6.914923

Total energy $E(U B 3 L Y P)=-2426.26898651$ Hartrees

3h

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	16	0	2.541636	3.491537	3.716797
2	17	0	4.643213	6.596914	-0.302828
3	17	0	4.396085	9.897680	1.437784
4	17	0	3.840512	9.256270	5.333837
5	7	0	3.772438	5.676047	5.549308
6	7	0	2.461711	3.622679	5.506451
7	6	0	3.935537	5.861735	4.201318
8	6	0	3.083738	4.653490	6.112590
9	6	0	3.673880	5.213294	1.850682
10	1	0	3.306240	4.530216	1.094596
11	6	0	4.655905	7.034493	3.785043
12	6	0	4.872949	7.288710	2.415631
13	6	0	2.969098	4.690764	7.599312
14	6	0	3.455984	4.974230	3.206116
15	6	0	2.992919	5.964907	8.203430
16	1	0	3.095127	6.835384	7.566968
17	6	0	2.843665	3.530764	8.409685
18	6	0	2.744721	3.711166	9.800950
19	1	0	2.662010	2.830389	10.430601
20	6	0	2.879574	6.113892	9.584126
21	1	0	2.888644	7.105302	10.024432
22	6	0	4.375479	6.350466	1.480362
23	6	0	5.150809	7.937802	4.864502
24	1	0	6.026303	8.521747	4.599659
25	1	0	5.297793	7.389700	5.789111
26	6	0	2.754592	4.977536	10.389322
27	1	0	2.669585	5.074309	11.467183
28	6	0	5.601923	8.502493	1.937305
29	1	0	6.171019	8.314512	1.031356
30	1	0	6.232817	8.959626	2.691646
31	6	0	2.835749	2.115198	7.873596
32	1	0	1.894699	1.882493	7.366364
33	1	0	3.629011	1.948020	7.138078
34	1	0	2.973268	1.403979	8.694354

Total energy E(UB3LYP) $=-2504.89884282$ Hartrees

3k

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	16	0	1.370122	7.298982	8.341416
2	17	0	6.727186	8.336599	7.304629
3	17	0	6.242303	11.449390	7.966973
4	17	0	3.278080	12.440631	8.818341
5	7	0	4.311272	6.665038	7.558817
6	7	0	2.084550	5.725254	7.899441
7	6	0	4.035315	7.970108	7.853082
8	6	0	3.402657	5.665142	7.588499
9	6	0	2.760294	8.467353	8.231808
10	6	0	3.894860	4.313922	7.236639
11	6	0	2.541692	9.812696	8.520188
12	1	0	1.560664	10.171316	8.807379
13	6	0	5.097708	8.923112	7.779897
14	6	0	5.250398	4.122269	6.894146
15	1	0	5.914324	4.977144	6.894920
16	6	0	4.888942	10.268119	8.065965
17	6	0	3.032432	3.204200	7.235769
18	1	0	1.991122	3.345173	7.497768
19	6	0	3.603021	10.705616	8.436646
20	6	0	5.723623	2.859983	6.562198
21	1	0	6.761343	2.696824	6.297075
22	6	0	3.499989	1.931966	6.903299
23	1	0	2.813135	1.094928	6.910830
24	6	0	4.850721	1.758721	6.565113
25	8	0	5.419802	0.543940	6.219692
26	6	0	4.586187	-0.646572	6.197131
27	1	0	5.253728	-1.454460	5.900911
28	1	0	4.167375	-0.855695	7.188124
29	1	0	3.775212	-0.548426	5.466457

Total energy E(UB3LYP) $=-2501.45226718$ Hartrees

31

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	16	0	2.833199	3.368964	3.827814
2	17	0	4.911921	6.340564	-0.300994
3	17	0	4.316766	9.720496	1.146933
4	17	0	3.631529	9.365722	5.050739
5	7	0	3.744510	5.789184	5.550402
6	7	0	2.629286	3.619794	5.582458
7	6	0	3.990499	5.884624	4.204133
8	6	0	3.103119	4.758068	6.144072
9	6	0	3.924323	5.045220	1.899536
10	1	0	3.657107	4.279699	1.181098
11	6	0	4.650746	7.073212	3.737386
12	6	0	4.927805	7.243477	2.365182
13	6	0	2.878383	4.861442	7.604679
14	6	0	3.644905	4.890498	3.255734
15	6	0	3.155344	6.065965	8.285134
16	1	0	3.522293	6.914571	7.722686
17	6	0	2.378708	3.771365	8.338035
18	1	0	2.159298	2.845282	7.821309
19	6	0	2.166081	3.867274	9.714020
20	1	0	1.784733	3.009343	10.253451
21	6	0	2.943635	6.171764	9.653296
22	1	0	3.145129	7.092804	10.186961
23	6	0	4.557774	6.204537	1.479501
24	6	0	5.027377	8.084746	4.767173
25	1	0	5.890275	8.690237	4.508584
26	1	0	5.144620	7.617899	5.739052
27	6	0	2.450410	5.071724	10.375056
28	6	0	5.590878	8.473098	1.834219
29	1	0	6.233049	8.263813	0.983364
30	1	0	6.130334	9.039161	2.585494
31	8	0	2.277219	5.277301	11.733855
32	6	0	1.755505	4.194937	12.551935
33	1	0	2.423756	3.326413	12.532942
34	1	0	1.706914	4.600738	13.561378
35	1	0	0.753386	3.897483	12.222711

Total energy E(UB3LYP) $=-2580.08115172$ Hartrees

10a

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	15	0	2.621030	9.059812	5.086442
2	15	0	5.562769	8.856809	4.273461
3	7	0	2.796312	7.359753	4.758920
4	7	0	5.167605	7.333644	4.901503
5	7	0	4.898422	11.350753	2.932466
6	7	0	3.990119	9.669526	4.195546
7	6	0	1.843280	6.770450	3.872048
8	6	0	4.046167	6.729353	4.944414
9	6	0	4.012643	5.279599	5.298442
10	6	0	0.478824	6.939585	4.106771
11	1	0	0.150664	7.478607	4.988147
12	6	0	4.906334	12.252836	1.850344
13	6	0	3.734157	10.400783	7.234111
14	1	0	3.784457	11.234868	6.540853
15	6	0	3.240330	8.085715	7.688513
16	1	0	2.885216	7.113981	7.364194
17	6	0	3.657078	8.260916	9.005810
18	1	0	3.625521	7.423933	9.693300
19	6	0	5.146040	4.499140	5.063323
20	1	0	6.012255	4.960881	4.605639
21	6	0	6.716175	10.933094	5.723892
22	1	0	6.467769	11.519449	4.845083
23	6	0	4.577316	11.859487	0.549219
24	1	0	4.268989	10.836200	0.367092
25	6	0	2.887766	4.697064	5.887763
26	1	0	2.001789	5.293153	6.073182
27	6	0	6.369507	9.579093	5.765189
28	6	0	3.855137	10.676817	3.237221
29	6	0	4.149820	10.573254	8.546649
30	1	0	4.513386	11.540228	8.873520
31	6	0	2.499633	10.860960	2.632480

32	6	0	1.853127	9.780032	2.031390
33	1	0	2.329684	8.804862	2.014321
34	6	0	3.292800	9.150170	6.790625
35	6	0	7.349008	11.524602	6.811549
36	1	0	7.604231	12.577652	6.778761
37	6	0	5.336447	13.562702	2.077914
38	1	0	5.612040	13.853866	3.085216
39	6	0	0.636477	12.283087	2.074976
40	1	0	0.160666	13.255906	2.097655
41	6	0	6.689321	8.819931	6.891702
42	1	0	6.412166	7.773232	6.928235
43	6	0	7.332337	9.414658	7.972449
44	1	0	7.566127	8.822211	8.849731
45	6	0	-0.447774	6.417309	3.212524
46	1	0	-1.505533	6.557740	3.399977
47	6	0	5.154529	3.154437	5.409671
48	1	0	6.035474	2.554381	5.215876
49	6	0	2.902179	3.353395	6.242086
50	1	0	2.028813	2.910810	6.705414
51	6	0	2.271512	6.064533	2.747197
52	1	0	3.333035	5.946469	2.557723
53	6	0	-0.024232	5.707745	2.092243
54	1	0	-0.749358	5.296254	1.400908
55	6	0	0.605338	9.954819	1.445150
56	1	0	0.110897	9.112942	0.974870
57	6	0	-0.005796	11.205455	1.471519
58	1	0	-0.982390	11.340490	1.021896
59	6	0	1.337162	5.528530	1.867907
60	1	0	1.677776	4.979885	0.997988
61	6	0	5.394643	14.473903	1.030383
62	1	0	5.717521	15.490424	1.223015
63	6	0	4.032930	2.578944	6.001015
64	1	0	4.039503	1.529703	6.271606
65	6	0	1.892024	12.114332	2.647795
66	1	0	2.403034	12.951816	3.109412
67	6	0	5.050202	14.084580	-0.261209
68	1	0	5.103289	14.793938	-1.078005
69	6	0	7.658557	10.766522	7.937721
70	1	0	8.152567	11.228841	8.784489
71	6	0	4.113243	9.501479	9.435461
72	1	0	4.443201	9.634107	10.459078
73	6	0	4.649061	12.772399	-0.495997
74	1	0	4.390352	12.455268	-1.499573

Total energy $E($ RM0 62X $)=-2367.57640426$ Hartrees

10r

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	15	0	2.643634	9.079340	5.142274
2	15	0	5.561939	8.850373	4.266123
3	7	0	2.779421	7.384827	4.770410
4	7	0	5.152522	7.314739	4.853628
5	7	0	4.892832	11.424142	3.032205
6	7	0	4.006731	9.689918	4.241897
7	6	0	1.778565	6.826367	3.912928
8	6	0	4.020611	6.729791	4.906627
9	6	0	3.973312	5.271079	5.224768
10	6	0	0.431088	7.013386	4.211080
11	1	0	0.136439	7.532927	5.114077
12	6	0	4.888074	12.353598	1.969701
13	6	0	3.818421	10.353470	7.297240
14	1	0	3.856815	11.203770	6.623063
15	6	0	3.319035	8.031352	7.704703
16	1	0	2.948509	7.070446	7.366000
17	6	0	3.771460	8.169914	9.014766
18	1	0	3.752343	7.315715	9.681266
19	6	0	5.084144	4.477573	4.932561
20	1	0	5.942722	4.935996	4.457561
21	6	0	6.806421	10.850830	5.743588
22	1	0	6.555790	11.466411	4.885662
23	6	0	4.629834	11.964048	0.653634
24	1	0	4.387093	10.932406	0.431247
25	6	0	2.858745	4.693827	5.838348
26	1	0	1.988834	5.300354	6.062126
27	6	0	6.418245	9.507579	5.759948
28	6	0	3.861916	10.721370	3.306438
29	6	0	4.267316	10.490599	8.602957
30	1	0	4.644330	11.446926	8.945361

31	6	0	2.511071	10.874562	2.683003
32	6	0	1.906363	9.770032	2.081734
33	1	0	2.414782	8.811390	2.076331
34	6	0	3.357197	9.117598	6.832480
35	6	0	7.485524	11.394532	6.828144
36	1	0	7.773792	12.439347	6.813925
37	6	0	5.224795	13.673889	2.262615
38	1	0	5.428144	13.919662	3.295782
39	6	0	0.605971	12.228326	2.100064
40	1	0	0.097052	13.184498	2.111918
41	6	0	6.743711	8.710306	6.858023
42	1	0	6.437391	7.671381	6.875429
43	6	0	7.433607	9.256813	7.935487
44	1	0	7.671523	8.634363	8.790502
45	6	0	-0.513741	6.523986	3.316571
46	1	0	-1.567284	6.674626	3.521838
47	6	0	5.080525	3.124693	5.247210
48	1	0	5.943683	2.514163	5.010968
49	6	0	2.861930	3.342388	6.162048
50	1	0	1.997076	2.903700	6.644653
51	6	0	2.172146	6.147946	2.763509
52	1	0	3.229828	6.056924	2.555614
53	6	0	-0.146372	5.836822	2.169394
54	1	0	-0.917798	5.472580	1.506279
55	6	0	0.657258	9.895911	1.486657
56	1	0	0.194610	9.031578	1.024225
57	6	0	0.003714	11.125264	1.500270
58	1	0	-0.974401	11.224453	1.045001
59	6	0	1.216526	5.608932	1.878979
60	6	0	5.286500	14.651937	1.252249
61	6	0	3.970169	2.554662	5.864580
62	1	0	3.967928	1.499742	6.111486
63	6	0	1.861165	12.107217	2.685410
64	1	0	2.338135	12.964484	3.146724
65	6	0	4.994282	14.250966	-0.068745
66	1	0	5.016391	14.965364	-0.879037
67	6	0	7.801535	10.598329	7.925971
68	1	0	8.333435	11.022284	8.769766
69	6	0	4.247099	9.395896	9.464437
70	1	0	4.603735	9.499789	10.482428
71	6	0	4.685840	12.926541	-0.346305
72	1	0	4.477956	12.642288	-1.371829
73	7	0	1.603756	4.894260	0.768481
74	6	0	3.007687	4.869312	0.401158
75	1	0	3.399297	5.870215	0.175430
76	1	0	3.609321	4.437863	1.204834
77	1	0	3.131425	4.241792	-0.478461
78	6	0	0.619409	4.605416	-0.259175
79	1	0	1.102631	4.059911	-1.066489
80	1	0	-0.181844	3.975719	0.134281
81	1	0	0.170224	5.517689	-0.672538
82	7	0	5.635850	15.957236	1.544555
83	6	0	5.660836	16.375032	2.934238
84	1	0	4.688846	16.243953	3.429113
85	1	0	6.408909	15.810969	3.495568
86	1	0	5.936917	17.426232	2.982148
87	6	0	5.405824	16.979033	0.538927
88	1	0	5.713157	17.942868	0.939054
89	1	0	6.004002	16.786572	-0.354268

| 90 | 1 | 0 | 4.351071 | 17.043032 |
| :---: | :---: | :---: | :---: | :---: | 0.239756

17a

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	X	Y	Z
1	15	0	14.327384	5.036075	6.255111
2	8	0	13.448385	1.628091	7.865936
3	7	0	12.229375	2.903927	6.459085
4	7	0	14.175037	3.769387	7.450628
5	6	0	11.713107	4.129439	6.027433
6	6	0	13.301106	2.693889	7.304050
7	6	0	10.360821	4.241512	5.700487
8	1	0	9.711696	3.378158	5.793874
9	6	0	15.159977	3.686696	8.488189
10	6	0	12.553544	5.241123	5.911412
11	6	0	9.857494	5.459619	5.264383
12	6	0	14.789164	4.034471	4.770033
13	6	0	12.025361	6.465602	5.504928
14	1	0	12.678372	7.329388	5.439505
15	6	0	14.766237	3.445559	9.804092
16	1	0	13.717387	3.295030	10.026451
17	6	0	14.598981	4.595517	3.504102
18	1	0	14.123575	5.566991	3.405842
19	6	0	15.399160	2.783930	4.878024
20	1	0	15.552415	2.328458	5.851385
21	6	0	10.681439	6.578604	5.169428
22	1	0	10.279334	7.528074	4.840136
23	6	0	15.718783	3.396566	10.811818
24	1	0	15.406651	3.207074	11.831729
25	6	0	16.506250	3.881407	8.191288
26	1	0	16.816752	4.057812	7.166795
27	6	0	15.605704	2.661144	2.476717
28	1	0	15.919153	2.127205	1.587789
29	6	0	17.066019	3.601784	10.520203
30	1	0	17.805004	3.569870	11.311288

31	6	0	15.001601	3.911171	2.363924
32	1	0	14.842466	4.352152	1.387120
33	6	0	15.802583	2.100386	3.733331
34	1	0	16.267672	1.126356	3.827672
35	6	0	17.455103	3.848075	9.209804
36	1	0	18.499521	4.006450	8.970483
37	1	0	11.613952	2.102748	6.420418
38	1	0	8.807728	5.536668	5.008403

Total energy -1259.03344593 Hartrees

17r

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	X	Y	Z
1	15	0	14.324963	5.046311	6.285195
2	8	0	13.460428	1.613039	7.852242
3	7	0	12.237769	2.910154	6.470076
4	7	0	14.192355	3.757775	7.465307
5	7	0	8.492211	5.552513	4.972694
6	6	0	11.714765	4.141483	6.057160
7	6	0	13.313492	2.689037	7.307243
8	6	0	10.364377	4.235615	5.744304
9	1	0	9.745030	3.355160	5.849962
10	6	0	15.188100	3.655299	8.488561
11	6	0	12.560127	5.252522	5.967363
12	6	0	9.812682	5.460470	5.313531
13	6	0	14.798551	4.056283	4.793552
14	6	0	12.000447	6.473777	5.590040
15	1	0	12.634549	7.353212	5.541248
16	6	0	14.814575	3.363364	9.800678
17	1	0	13.771462	3.186307	10.029593
18	6	0	14.590296	4.619475	3.531319
19	1	0	14.094916	5.581924	3.442678
20	6	0	15.430316	2.815347	4.889076
21	1	0	15.596080	2.356309	5.858755
22	6	0	10.663045	6.591604	5.260088
23	1	0	10.276883	7.556126	4.964831
24	6	0	15.779056	3.297400	10.795992

25	1	0	15.481273	3.068503	11.812177
26	6	0	16.528345	3.883246	8.185653
27	1	0	16.824815	4.100298	7.164929
28	6	0	15.623840	2.709032	2.485672
29	1	0	15.940465	2.185454	1.591652
30	6	0	17.119486	3.535290	10.497860
31	1	0	17.867743	3.489451	11.279515
32	6	0	14.997558	3.949211	2.384366
33	1	0	14.824174	4.392780	1.411048
34	6	0	15.837552	2.144631	3.737964
35	1	0	16.318819	1.177579	3.823678
36	6	0	17.489024	3.831883	9.192254
37	1	0	18.527820	4.016326	8.946905
38	6	0	7.621303	4.403665	5.138466
39	1	0	7.971800	3.556120	4.542654
40	1	0	6.622837	4.663883	4.796444
41	1	0	7.557158	4.086174	6.185852
42	6	0	7.916461	6.847913	4.658802
43	1	0	7.994000	7.544339	5.501377
44	1	0	6.864879	6.717006	4.416337
45	1	0	8.408977	7.298796	3.792813
46	1	0	11.624398	2.107915	6.425494

Total energy E(RM062X) = -1392.97929247 Hartrees

18a

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	z
1	15	0	2.569487	11.330882	4.741672
2	8	0	0.438281	9.544006	6.930008
3	7	0	2.517745	9.995897	5.892618
4	7	0	0.955890	11.319652	5.452165
5	6	0	-0.186660	12.103059	5.264551
6	6	0	1.175370	10.177715	6.220946
7	6	0	3.431083	9.000453	6.253199
8	6	0	-1.422369	11.727904	5.801595
9	1	0	-1.502001	10.812513	6.370901
10	6	0	3.403089	12.638459	5.708462

11	6	0	4.317035	13.447235	5.032483
12	1	0	4.505007	13.286045	3.975623
13	6	0	4.741714	14.662223	7.065235
14	1	0	5.261680	15.450025	7.597050
15	6	0	-0.075871	13.286803	4.529567
16	1	0	0.885567	13.584155	4.123056
17	6	0	-2.529347	12.541854	5.594485
18	1	0	-3.483888	12.246434	6.013708
19	6	0	4.988078	14.460818	5.713024
20	1	0	5.698025	15.088125	5.188348
21	6	0	3.158572	12.845220	7.069488
22	1	0	2.447108	12.217436	7.596363
23	6	0	3.827001	13.855355	7.744192
24	1	0	3.639433	14.018464	8.798417
25	6	0	4.765551	9.142257	5.862627
26	1	0	5.074268	10.016686	5.298591
27	6	0	5.694721	8.168105	6.202862
28	1	0	6.725632	8.286787	5.891801
29	6	0	-2.427449	13.718159	4.857711
30	1	0	-3.297546	14.343036	4.700621
31	6	0	3.035644	7.883056	6.995341
32	1	0	2.002955	7.780194	7.297669
33	6	0	5.309688	7.053544	6.941559
34	1	0	6.036774	6.297264	7.209155
35	6	0	3.981027	6.922610	7.334320
36	1	0	3.669261	6.059139	7.909974
37	6	0	-1.194711	14.083570	4.325910
38	1	0	-1.097443	14.997360	3.752206

Total energy E(RM062X) = -1259.01258097 Hartrees

18r

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	X	Y	Z
1	15	0	2.706747	11.314424	4.771462
2	8	0	0.614053	9.441986	6.924533

3	7	0	2.693715	9.991790	5.933797
4	7	0	1.076387	11.226579	5.439482
5	6	0	-0.109283	11.919101	5.179624
6	6	0	1.337281	10.105373	6.227112
7	6	0	3.671688	9.087913	6.367854
8	6	0	-1.337285	11.477762	5.683497
9	1	0	-1.376572	10.580174	6.284435
10	6	0	3.444846	12.672953	5.746920
11	6	0	4.279841	13.564255	5.072950
12	1	0	4.468231	13.433257	4.011972
13	6	0	4.628448	14.781795	7.118698
14	1	0	5.088313	15.602322	7.656386
15	6	0	-0.050965	13.081569	4.405536
16	1	0	0.903776	13.430661	4.025236
17	6	0	-2.488277	12.204354	5.403797
18	1	0	-3.436488	11.857665	5.797430
19	6	0	4.872017	14.621402	5.760532
20	1	0	5.519844	15.313495	5.236891
21	6	0	3.203278	12.838396	7.114045
22	1	0	2.556147	12.144056	7.640364
23	6	0	3.794676	13.890508	7.796371
24	1	0	3.610169	14.020748	8.855722
25	6	0	4.999663	9.323496	6.005180
26	1	0	5.267821	10.191937	5.414233
27	6	0	5.965185	8.417136	6.423093
28	1	0	6.999247	8.577195	6.140452
29	6	0	-2.437939	13.358429	4.627675
30	1	0	-3.341811	13.914947	4.414291
31	6	0	3.318302	7.984410	7.141630
32	1	0	2.277950	7.841248	7.386756
33	6	0	5.643619	7.311762	7.195747
34	1	0	6.428966	6.633135	7.494979
35	6	0	4.306060	7.083782	7.586272
36	6	0	-1.212484	13.790581	4.129843
37	1	0	-1.154931	14.688431	3.526330
38	7	0	3.968560	6.011647	8.382357
39	6	0	2.566252	5.692148	8.578242
40	1	0	2.054663	5.460823	7.634881
41	1	0	2.489681	4.829360	9.236055
42	1	0	2.042047	6.522825	9.056462
43	6	0	4.949856	4.965493	8.606523
44	1	0	4.507015	4.195422	9.234140
45	1	0	5.286647	4.502631	7.670042
46	1	0	5.825484	5.357315	9.129476

Total energy $\mathrm{E}(\mathrm{RM} 062 \mathrm{X})=-1392.95662557$ Hartrees

19a

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	15	0	2.959156	2.564956	9.983035
2	7	0	3.433355	1.713119	11.416808
3	1	0	3.692431	0.740585	11.341965
4	7	0	3.152612	3.480573	12.975605
5	6	0	4.468809	3.601249	9.699907
6	6	0	1.890874	3.757960	10.845705
7	6	0	5.578432	2.952111	9.146922
8	1	0	5.518735	1.895602	8.901110
9	6	0	6.758725	3.645308	8.908030
10	1	0	7.612717	3.130066	8.484611
11	6	0	2.144666	4.063170	12.197749
12	6	0	3.695962	2.349647	12.609988
13	6	0	0.315713	5.656301	12.142067
14	6	0	4.555350	4.963890	9.989108
15	1	0	3.704505	5.485976	10.412503
16	6	0	0.845414	4.390216	10.169430
17	1	0	0.655581	4.138732	9.130968
18	6	0	1.341463	5.025852	12.826872
19	1	0	1.548286	5.258051	13.864839
20	6	0	5.734326	5.661571	9.737143
21	1	0	5.791622	6.719114	9.966344
22	6	0	0.061200	5.341967	10.807046
23	1	0	-0.738855	5.836880	10.270717
24	6	0	4.651380	1.673629	13.533803
25	6	0	6.836654	5.004608	9.202001
26	1	0	7.753433	5.549399	9.010519
27	6	0	6.433532	0.437598	15.290252
28	1	0	7.123570	-0.043391	15.973091
29	6	0	6.571512	0.255903	13.918958
30	1	0	7.375190	-0.356947	13.529312
31	6	0	5.682485	0.869550	13.041636
32	1	0	5.815712	0.748459	11.972437
33	6	0	4.525730	1.862295	14.912228
34	1	0	3.727368	2.494321	15.279334
35	6	0	5.410068	1.243665	15.785235
36	1	0	5.301677	1.386985	16.853553

19r

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	15	0	2.942810	2.564857	9.975074
2	7	0	3.428227	1.706741	11.402949
3	1	0	3.700707	0.737850	11.326374
4	7	0	3.164392	3.463417	12.958669
5	7	0	-0.440982	6.618885	12.848897
6	6	0	4.463004	3.594159	9.703435
7	6	0	1.882453	3.739760	10.844978
8	6	0	5.607811	2.933736	9.243890
9	1	0	5.579086	1.861883	9.067956
10	6	0	6.784852	3.634240	9.010479
11	1	0	7.666621	3.110080	8.661178
12	6	0	2.152460	4.057431	12.190400
13	6	0	3.691148	2.345766	12.591298
14	6	0	0.323340	5.686821	12.189781
15	6	0	4.512379	4.973750	9.905220
16	1	0	3.633770	5.500775	10.261175
17	6	0	0.832102	4.393869	10.200297
18	1	0	0.616163	4.156499	9.163067
19	6	0	1.381701	5.024613	12.838004
20	1	0	1.634120	5.237873	13.867101
21	6	0	5.688783	5.678465	9.658994
22	1	0	5.717264	6.749587	9.821264
23	6	0	0.067274	5.353819	10.838323
24	1	0	-0.723652	5.844292	10.289419
25	6	0	4.646695	1.670999	13.512366
26	6	0	6.825444	5.011543	9.216113
27	1	0	7.740178	5.561419	9.029266
28	6	0	-0.021662	7.078649	14.160392
29	1	0	-0.002338	6.252234	14.875090
30	1	0	-0.735873	7.814784	14.521851
31	1	0	0.974728	7.537679	14.139348
32	6	0	-1.380702	7.428574	12.094636

33	1	0	-0.886115	8.021074	11.314713
34	1	0	-1.887427	8.107702	12.776289
35	1	0	-2.141593	6.803855	11.620477
36	6	0	6.433495	0.436556	15.264303
37	1	0	7.125574	-0.044014	15.945375
38	6	0	6.575925	0.265719	13.891668
39	1	0	7.385094	-0.338155	13.499420
40	6	0	5.684366	0.878332	13.017003
41	1	0	5.820200	0.765648	11.947159
42	6	0	4.516383	1.849387	14.891657
43	1	0	3.712677	2.473422	15.261004
44	6	0	5.402746	1.231339	15.762462
45	1	0	5.290572	1.366285	16.831486

Total energy $E(R M 062 X)=-1317.73063746$ Hartrees
$19 r-X^{+}$

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	X	Y	Z
1	15	0	3.219342	2.857512	9.746500
2	7	0	3.710102	1.798110	11.117337
3	7	0	3.220394	3.387068	12.725176
4	7	0	-0.593593	6.322891	12.810057
5	6	0	4.695009	3.960292	9.783842
6	6	0	2.004826	3.813561	10.670116
7	6	0	5.882533	3.432538	9.262650
8	1	0	5.896531	2.425733	8.855725
9	6	0	7.044585	4.193386	9.251761
10	1	0	7.960496	3.775358	8.852310
11	6	0	2.168849	4.036748	12.037704
12	6	0	3.832848	2.263134	12.348527
13	6	0	0.241796	5.502488	12.121542
14	6	0	4.678419	5.271937	10.260601
15	1	0	3.761265	5.702435	10.646921
16	6	0	0.913313	4.425756	10.045477
17	1	0	0.748726	4.261907	8.986083
18	6	0	1.318910	4.853336	12.765781
19	1	0	1.479185	4.964333	13.829628

20	6	0	5.840914	6.037660	10.232393
21	1	0	5.821212	7.056201	10.600698
22	6	0	0.054465	5.254074	10.736998
23	1	0	-0.765796	5.715487	10.207033
24	6	0	4.659963	1.586232	13.370021
25	6	0	7.023092	5.498860	9.736752
26	1	0	7.925626	6.097658	9.719080
27	6	0	-0.383191	6.551181	14.229381
28	1	0	-0.493143	5.626937	14.806396
29	1	0	-1.119809	7.265867	14.585833
30	1	0	0.611873	6.964545	14.419114
31	6	0	-1.728743	6.935117	12.138168
32	1	0	-1.403408	7.587978	11.322973
33	1	0	-2.280339	7.535624	12.856160
34	1	0	-2.405993	6.178777	11.730036
35	6	0	6.254290	0.399090	15.299529
36	1	0	6.877651	-0.066193	16.053069
37	6	0	4.933364	0.719349	15.596429
38	1	0	4.525573	0.498964	16.574608
39	6	0	4.132576	1.323707	14.635366
40	1	0	3.099377	1.565856	14.856600
41	6	0	5.983826	1.259313	13.066820
42	1	0	6.387823	1.485788	12.086300
43	6	0	6.780919	0.673495	14.039182
44	1	0	7.812250	0.432321	13.815733
45	6	0	4.081621	0.415329	10.765539
46	1	0	5.061428	0.387682	10.286930
47	1	0	4.089674	-0.209946	11.654317
48	1	0	3.334168	0.042474	10.067306
49	1	0	3.444654	3.725077	13.653082

Total energy $\mathrm{E}(\mathrm{RM} 062 \mathrm{X})=-1357.47208216$ Hartrees
$19 \mathrm{r}-\mathrm{Y}^{+}$

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	X	Y	Z
1	15	0	3.334376	2.920641	9.797204
2	7	0	3.725930	1.911573	11.206401
3	1	0	4.010075	0.949843	11.062429

4	7	0	3.290871	3.530523	12.800497
5	7	0	-0.705810	6.247696	12.716636
6	6	0	4.797546	4.041078	9.909879
7	6	0	2.081426	3.864507	10.682443
8	6	0	6.031037	3.509514	9.516723
9	1	0	6.094752	2.482257	9.169204
10	6	0	7.180260	4.288363	9.567977
11	1	0	8.132065	3.866673	9.268625
12	6	0	2.209349	4.109654	12.053836
13	6	0	3.854505	2.376914	12.442444
14	6	0	0.193273	5.472079	12.054966
15	6	0	4.725058	5.372180	10.322723
16	1	0	3.773650	5.804928	10.612068
17	6	0	0.981941	4.415634	10.019603
18	1	0	0.860605	4.228955	8.958165
19	6	0	1.288199	4.891465	12.735977
20	1	0	1.389832	5.035690	13.799698
21	6	0	5.876595	6.154652	10.359203
22	1	0	5.813093	7.187627	10.679377
23	6	0	0.059461	5.207471	10.670524
24	1	0	-0.765107	5.622169	10.109512
25	6	0	4.637799	1.574109	13.403064
26	6	0	7.102839	5.613621	9.989579
27	1	0	7.996799	6.224512	10.022112
28	6	0	-0.545081	6.504109	14.137551
29	1	0	-0.615423	5.582127	14.724452
30	1	0	-1.331569	7.177767	14.466257
31	1	0	0.418411	6.978542	14.347035
32	6	0	-1.856461	6.786905	12.009741
33	1	0	-1.549254	7.457194	11.201500
34	1	0	-2.465698	7.353006	12.708894
35	1	0	-2.472766	5.988664	11.585101
36	6	0	6.104344	-0.007068	15.142734
37	1	0	6.676998	-0.624099	15.824107
38	6	0	4.839634	0.444379	15.515409
39	1	0	4.426334	0.171594	16.477962
40	6	0	4.105509	1.243497	14.652031
41	1	0	3.117901	1.590077	14.932601
42	6	0	5.898003	1.110126	13.020929
43	1	0	6.305559	1.383932	12.054080
44	6	0	6.634732	0.327598	13.901191
45	1	0	7.619448	-0.020610	13.617079
46	6	0	3.730344	4.236528	14.019179
47	1	0	3.054458	4.050314	14.853052
48	1	0	4.730760	3.908064	14.280942
49	1	0	3.749593	5.300616	13.791453

Total energy $\mathrm{E}(\mathrm{RM} 062 \mathrm{X})=-1357.47074047$ Hartrees

22r. \mathbf{H}^{+}

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	15	0	2.102424	5.434590	3.319296
2	7	0	4.899460	4.653967	3.950039
3	7	0	3.371778	6.427316	3.660074
4	7	0	4.466037	-0.015026	2.914841
5	6	0	2.026389	2.709620	2.658423
6	1	0	0.999359	2.855173	2.338780
7	6	0	4.099856	3.589013	3.509838
8	6	0	4.551749	5.962348	3.951441
9	6	0	2.573689	1.452934	2.577467
10	1	0	1.969163	0.640947	2.201735
11	6	0	4.671184	2.327035	3.434751
12	1	0	5.707234	2.211612	3.721741
13	6	0	3.919927	1.223107	2.979236
14	6	0	1.319159	5.997251	1.802724
15	6	0	5.622879	6.922298	4.321422
16	6	0	2.764227	3.802867	3.137414
17	6	0	2.113131	6.600187	0.824538
18	1	0	3.167907	6.769025	1.009406
19	6	0	1.537209	6.997606	-0.374735
20	1	0	2.146770	7.473316	-1.132584
21	6	0	0.897495	5.518225	4.654045
22	1	0	1.411323	5.260383	5.580393
23	1	0	0.089238	4.805419	4.485187
24	1	0	0.496867	6.530584	4.716620
25	6	0	5.847869	-0.221854	3.317200
26	1	0	6.535356	0.356291	2.692040
27	1	0	6.093130	-1.274733	3.211934
28	1	0	6.001230	0.063303	4.362137
29	6	0	7.576882	8.772092	5.029543
30	1	0	8.337734	9.491327	5.307009
31	6	0	-0.044091	5.789807	1.582370
32	1	0	-0.669035	5.331017	2.339405
33	6	0	5.259134	8.124161	4.931557
34	1	0	4.212198	8.320754	5.123781

35	6	0	0.179057	6.787608	-0.598782
36	1	0	-0.266839	7.098688	-1.535567
37	6	0	6.236017	9.041347	5.291824
38	1	0	5.952258	9.967068	5.776579
39	6	0	6.967825	6.656834	4.051134
40	1	0	7.265073	5.752795	3.531589
41	6	0	3.683254	-1.136647	2.416910
42	1	0	2.795771	-1.304971	3.033168
43	1	0	4.295715	-2.033290	2.449400
44	1	0	3.366664	-0.973837	1.382692
45	6	0	-0.609948	6.185431	0.375777
46	1	0	-1.666739	6.027970	0.201227
47	6	0	7.940577	7.583944	4.403966
48	1	0	8.980575	7.381147	4.181613
49	1	0	5.823978	4.419051	4.284000

Total energy $\mathrm{E}(\mathrm{RM} 062 \mathrm{X})=-1357.48748194$ Hartrees
24a

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	15	0	4.119442	2.084693	5.492138
2	15	0	2.944122	3.866839	4.810328
3	7	0	5.112815	1.488639	4.369579
4	7	0	4.773483	2.822710	6.848123
5	7	0	3.812529	4.799700	6.031646
6	7	0	5.791382	3.674126	4.047854
7	6	0	0.470391	2.675222	5.081683
8	1	0	0.635069	2.400579	4.043639
9	6	0	3.623506	6.224614	6.040577
10	6	0	7.090664	5.692532	3.813436
11	1	0	7.526720	5.485435	4.784383
12	6	0	-0.675699	2.236318	5.732885

13	1	0	-1.395566	1.624832	5.202116
14	6	0	5.439448	4.863253	7.899257
15	6	0	6.544124	1.915210	2.474942
16	6	0	3.059697	0.742893	6.035264
17	6	0	5.475083	4.377613	9.205932
18	1	0	4.905257	3.490918	9.456370
19	6	0	2.715420	-0.263595	5.130797
20	1	0	3.170089	-0.277664	4.147469
21	6	0	6.202761	4.756008	3.267870
22	6	0	-0.901750	2.590651	7.060528
23	1	0	-1.798960	2.255211	7.566631
24	6	0	7.915443	0.916883	0.257211
25	1	0	8.447417	0.531107	-0.604349
26	6	0	3.167257	6.874447	7.185332
27	1	0	2.968265	6.308921	8.087527
28	6	0	1.582030	-0.209924	7.679637
29	1	0	1.142486	-0.191440	8.669472
30	6	0	5.989877	0.891205	1.705927
31	1	0	5.025759	0.487007	1.989326
32	6	0	5.801076	2.432138	3.668540
33	6	0	0.025010	3.379559	7.732788
34	1	0	-0.147763	3.661163	8.764811
35	6	0	6.235784	5.029901	10.168813
36	1	0	6.249089	4.658802	11.186257
37	6	0	2.497047	0.768639	7.312017
38	1	0	2.777258	1.548508	8.010078
39	6	0	1.418864	3.446816	5.760859
40	6	0	4.643766	4.114580	6.886282
41	6	0	5.637595	5.017520	2.011741
42	1	0	4.938313	4.302386	1.591999
43	6	0	6.666681	0.402919	0.593889
44	1	0	6.223640	-0.383642	-0.005310
45	6	0	6.986172	6.149446	9.822515
46	1	0	7.585190	6.653356	10.571402
47	6	0	3.890777	6.950594	4.880625
48	1	0	4.254062	6.436602	3.997251
49	6	0	7.798968	2.424978	2.134527
50	1	0	8.243536	3.206820	2.738343
51	6	0	6.973311	6.617577	8.511533
52	1	0	7.567177	7.480385	8.235977
53	6	0	6.834053	7.113542	1.877557
54	1	0	7.072849	8.025075	1.343569
55	6	0	5.951621	6.186647	1.327888
56	1	0	5.499320	6.376719	0.361166
57	6	0	8.483711	1.922408	1.034721
58	1	0	9.461835	2.315310	0.784526
59	6	0	3.005830	8.254980	7.175323
60	1	0	2.661834	8.757579	8.070912
61	6	0	7.405948	6.855318	3.121689
62	6	0	3.714823	8.329533	4.876113
63	6	0	1.185389	3.800093	7.089469
64	1	0	1.914562	4.387438	7.633769
65	6	0	1.231679	-1.210156	6.776852
66	1	0	0.515470	-1.970358	7.065217
67	6	0	1.801912	-1.241138	5.507165
68	1	0	1.534964	-2.025956	4.810101
69	6	0	3.277442	8.985609	6.022762
70	1	0	3.146721	10.060742	6.018019
71	6	0	6.194901	5.984321	7.550751

72	1	0	6.178725	6.357177	6.533432
73	1	0	8.097111	7.566936	3.558834
74	1	0	3.930975	8.889912	3.974555

Total energy E(RM062X) $=-2367.56110040$ Hartrees
$24 r$

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	15	0	4.061416	2.161728	5.456888
2	15	0	2.841603	3.949909	4.871947
3	7	0	5.031515	1.596799	4.303331
4	7	0	4.766544	2.865278	6.805014
5	7	0	3.742531	4.849645	6.094662
6	7	0	8.402000	7.743725	3.448756
7	7	0	5.663330	3.795400	3.911714
8	7	0	3.834036	9.203340	3.952380
9	6	0	0.368943	2.763686	5.162657
10	1	0	0.486886	2.566915	4.100909
11	6	0	3.513777	6.268881	6.180023
12	6	0	7.048710	5.737056	3.635784
13	1	0	7.338414	5.586321	4.667166
14	6	0	-0.755209	2.287934	5.826962
15	1	0	-1.503580	1.724102	5.283005
16	6	0	5.439372	4.886480	7.893440
17	6	0	6.513600	1.977945	2.451602
18	6	0	3.034138	0.792691	5.998491
19	6	0	5.551831	4.356816	9.178091
20	1	0	5.015973	3.448031	9.424165
21	6	0	2.655072	-0.181731	5.072823
22	1	0	3.057163	-0.149960	4.067221
23	6	0	6.162152	4.810020	3.082809

24	6	0	-0.923366	2.546723	7.184708
25	1	0	-1.803703	2.183950	7.701519
26	6	0	7.989839	0.890227	0.345009
27	1	0	8.562213	0.470681	-0.473868
28	6	0	2.995331	6.830892	7.342267
29	1	0	2.792965	6.222333	8.213331
30	6	0	1.661206	-0.250906	7.678396
31	1	0	1.276490	-0.280313	8.690568
32	6	0	5.979601	0.951279	1.672789
33	1	0	4.989101	0.578713	1.904169
34	6	0	5.712859	2.537242	3.591217
35	6	0	0.039790	3.275664	7.873996
36	1	0	-0.087044	3.481330	8.930368
37	6	0	6.344796	4.993561	10.125472
38	1	0	6.417668	4.587353	11.126867
39	6	0	2.541088	0.756941	7.303022
40	1	0	2.848831	1.511288	8.017384
41	6	0	1.352751	3.476162	5.855694
42	6	0	4.616070	4.153723	6.890756
43	6	0	5.739614	4.957176	1.755707
44	1	0	5.033400	4.251425	1.335176
45	6	0	6.708327	0.419506	0.614382
46	1	0	6.279597	-0.367652	0.005510
47	6	0	7.050861	6.142888	9.783986
48	1	0	7.675032	6.634588	10.520319
49	6	0	3.813406	7.042467	5.066528
50	1	0	4.245140	6.544211	4.208122
51	6	0	7.801169	2.444693	2.178845
52	1	0	8.226418	3.233971	2.787441
53	6	0	6.959866	6.657411	8.493515
54	1	0	7.516805	7.546189	8.222126
55	6	0	7.187162	6.890421	1.519679
56	1	0	7.577996	7.674033	0.886440
57	6	0	6.273609	5.987422	0.992049
58	1	0	5.974535	6.092538	-0.045175
59	6	0	8.537740	1.897191	1.135529
60	1	0	9.539996	2.258150	0.937790
61	6	0	2.788048	8.204273	7.362883
62	1	0	2.401483	8.671669	8.260795
63	6	0	7.571201	6.797173	2.873931
64	6	0	3.577131	8.431690	5.072157
65	6	0	1.177664	3.731197	7.215470
66	1	0	1.937456	4.267295	7.770104
67	6	0	1.275550	-1.218398	6.754854
68	1	0	0.586569	-2.001134	7.049206
69	6	0	3.759482	10.647532	4.090773
70	1	0	2.763336	10.951621	4.415178
71	1	0	3.942494	11.099433	3.117697
72	1	0	4.495716	11.042519	4.805185
73	6	0	1.775956	-1.187528	5.455911
74	1	0	1.481774	-1.946739	4.741630
75	6	0	3.065528	8.997144	6.258812
76	1	0	2.890679	10.060847	6.328731
77	6	0	6.149303	6.038731	7.550035
78	1	0	6.068765	6.447278	6.549395
79	6	0	8.969964	7.466167	4.755277
80	1	0	8.181372	7.363378	5.504612
81	1	0	9.599992	8.302043	5.052125
82	1	0	9.573091	6.548491	4.766290

83	6	0	4.838124	8.724889	3.010616
84	1	0	5.838494	8.685282	3.462350
85	1	0	4.864420	9.398017	2.154414
86	1	0	4.593556	7.731818	2.633490
87	6	0	9.127559	8.651016	2.577865
88	1	0	9.775919	8.122531	1.866524
89	1	0	9.743358	9.308619	3.187827
90	1	0	8.435339	9.277664	2.010588

Total energy $\mathrm{E}(\mathrm{RM} 062 \mathrm{X})=-2635.45192718$ Hartrees

25a.Br

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	35	0	12.056950	14.753654	5.634350
2	35	0	5.645432	14.016724	7.973267
3	15	0	6.163451	15.536486	6.367236
4	15	0	8.792554	14.091283	5.972650
5	15	0	10.177241	14.368085	4.246366
6	7	0	7.348360	16.454899	7.258498
7	7	0	8.856376	12.460488	6.075025
8	7	0	7.257342	14.582902	5.410716
9	7	0	10.324738	12.614841	4.249866
10	7	0	8.021604	13.895336	3.403152
11	7	0	9.062255	14.834773	7.375602
12	6	0	8.497368	15.927125	7.804382
13	6	0	9.615360	11.887338	5.174938
14	6	0	10.511300	16.600130	9.056781
15	1	0	11.095712	16.148056	8.264029
16	6	0	7.030187	17.861598	7.391580
17	6	0	5.793669	18.248826	7.896592
18	1	0	5.080505	17.504591	8.235211
19	6	0	9.117585	16.595719	8.965140
20	6	0	5.588451	14.248504	3.607453

21	6	0	11.424356	12.060578	3.495291
22	6	0	6.990340	14.232101	4.072658
23	6	0	9.675558	10.407923	5.157628
24	6	0	13.540613	10.935147	3.441283
25	1	0	14.369046	10.470032	3.960515
26	6	0	7.965130	18.804217	6.977911
27	1	0	8.917948	18.480434	6.575691
28	6	0	5.495162	19.603101	7.994435
29	1	0	4.535220	19.910293	8.389523
30	6	0	11.409083	12.141445	2.107201
31	1	0	10.565142	12.593568	1.598148
32	6	0	9.678367	9.689067	3.958814
33	1	0	9.664201	10.206481	3.007405
34	6	0	13.532866	11.000751	2.050611
35	1	0	14.355638	10.581039	1.485259
36	6	0	9.660666	9.735765	6.381167
37	1	0	9.638562	10.307374	7.300433
38	6	0	12.490268	11.476137	4.171553
39	1	0	12.486003	11.442940	5.254708
40	6	0	4.624412	13.540279	4.329492
41	1	0	4.907184	12.974805	5.210723
42	6	0	6.430529	20.555518	7.603398
43	1	0	6.197823	21.609349	7.690190
44	6	0	8.338303	17.147652	9.986193
45	1	0	7.257544	17.112999	9.929619
46	6	0	5.243774	14.942922	2.447166
47	1	0	5.999157	15.489123	1.895502
48	6	0	7.992208	13.335121	2.102036
49	6	0	11.124826	17.190823	10.152525
50	1	0	12.205197	17.213282	10.218410
51	6	0	7.664374	20.154874	7.098996
52	1	0	8.392808	20.893539	6.789300
53	6	0	2.957581	14.239081	2.739374
54	1	0	1.929087	14.238274	2.400160
55	6	0	9.686005	8.347891	6.405277
56	1	0	9.694189	7.826817	7.354265
57	6	0	3.921973	14.943237	2.022805
58	1	0	3.644546	15.491916	1.131816
59	6	0	8.959159	17.710611	11.090971
60	1	0	8.359515	18.123190	11.892272
61	6	0	10.349932	17.744465	11.167949
62	1	0	10.830118	18.198158	12.026434
63	6	0	3.308212	13.533216	3.886355
64	1	0	2.559707	12.975709	4.434701
65	6	0	8.459979	14.081572	1.022478
66	1	0	8.752120	15.114751	1.171206
67	6	0	9.675220	8.301713	3.992097
68	1	0	9.663060	7.743793	3.064332
69	6	0	9.691602	7.631101	5.212418
70	1	0	9.703017	6.548150	5.232621
71	6	0	7.628019	11.999360	1.943574
72	1	0	7.276920	11.435020	2.800999
73	6	0	8.551275	13.482767	-0.229453
74	1	0	8.909008	14.060555	-1.072643
75	6	0	12.472263	11.608754	1.386458
76	1	0	12.463461	11.661946	0.304938
77	6	0	8.195224	12.147257	-0.397347
78	1	0	8.277198	11.683050	-1.372038
79	6	0	7.731729	11.409652	0.688603

Total energy E(RM062X) = -8004.76011819 Hartrees

```

26a

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Center \\
Number
\end{tabular}} & \multirow[t]{2}{*}{Atomic Number} & \multirow[t]{2}{*}{Atomic Type} & \multicolumn{3}{|r|}{Coordinates (Angstroms)} \\
\hline & & & X & Y & Z \\
\hline 1 & 35 & 0 & 2.472162 & 6.549264 & 9.985362 \\
\hline 2 & 15 & 0 & 2.890691 & 6.537822 & 7.411750 \\
\hline 3 & 7 & 0 & 3.045525 & 3.454911 & 7.469835 \\
\hline 4 & 7 & 0 & 1.656299 & 5.316273 & 7.198883 \\
\hline 5 & 7 & 0 & 4.239621 & 5.455143 & 7.673218 \\
\hline 6 & 6 & 0 & 1.850670 & 4.018186 & 7.493439 \\
\hline 7 & 6 & 0 & 4.177606 & 4.134199 & 7.425436 \\
\hline 8 & 6 & 0 & 0.711528 & 3.146059 & 7.830945 \\
\hline 9 & 6 & 0 & 0.723541 & 1.816144 & 7.404635 \\
\hline 10 & 1 & 0 & 1.543980 & 1.462173 & 6.793403 \\
\hline 11 & 6 & 0 & 5.400011 & 3.370336 & 7.118332 \\
\hline 12 & 6 & 0 & 5.439002 & 6.103844 & 8.144623 \\
\hline 13 & 6 & 0 & 5.522816 & 2.062340 & 7.592285 \\
\hline 14 & 1 & 0 & 4.741461 & 1.648759 & 8.217190 \\
\hline 15 & 6 & 0 & 0.397845 & 5.824874 & 6.709786 \\
\hline 16 & 6 & 0 & -0.188695 & 6.927915 & 7.319734 \\
\hline 17 & 1 & 0 & 0.260099 & 7.368812 & 8.202998 \\
\hline 18 & 6 & 0 & -0.327543 & 3.623418 & 8.636342 \\
\hline 19 & 1 & 0 & -0.312004 & 4.645881 & 8.994287 \\
\hline 20 & 6 & 0 & 5.917197 & 7.235851 & 7.494614 \\
\hline 21 & 1 & 0 & 5.430933 & 7.597856 & 6.595437 \\
\hline 22 & 6 & 0 & 6.649879 & 1.319213 & 7.269400 \\
\hline 23 & 1 & 0 & 6.758246 & 0.311570 & 7.650291 \\
\hline 24 & 6 & 0 & -0.321921 & 0.973788 & 7.756772 \\
\hline 25 & 1 & 0 & -0.326127 & -0.052710 & 7.412589 \\
\hline 26 & 6 & 0 & -1.354281 & 2.767303 & 9.004745 \\
\hline 27 & 1 & 0 & -2.151102 & 3.127767 & 9.642805 \\
\hline 28 & 6 & 0 & 7.496540 & 3.162724 & 5.956276 \\
\hline 29 & 1 & 0 & 8.253903 & 3.579487 & 5.304583 \\
\hline 30 & 6 & 0 & 6.386576 & 3.921920 & 6.294679 \\
\hline 31 & 1 & 0 & 6.266872 & 4.923584 & 5.899560 \\
\hline 32 & 6 & 0 & -0.173407 & 5.225564 & 5.591421 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 33 & 1 & 0 & 0.323687 & 4.388282 & 5.116231 \\
\hline 34 & 6 & 0 & 7.052216 & 7.868701 & 7.992814 \\
\hline 35 & 1 & 0 & 7.434450 & 8.748240 & 7.490406 \\
\hline 36 & 6 & 0 & 7.634497 & 1.868087 & 6.452554 \\
\hline 37 & 1 & 0 & 8.509891 & 1.283762 & 6.196175 \\
\hline 38 & 6 & 0 & -1.358438 & 1.448221 & 8.555928 \\
\hline 39 & 1 & 0 & -2.169732 & 0.787093 & 8.835546 \\
\hline 40 & 6 & 0 & 6.061421 & 5.604925 & 9.284714 \\
\hline 41 & 1 & 0 & 5.646017 & 4.741322 & 9.790281 \\
\hline 42 & 6 & 0 & -1.369637 & 5.724385 & 5.096884 \\
\hline 43 & 1 & 0 & -1.822738 & 5.261716 & 4.229198 \\
\hline 44 & 6 & 0 & -1.380274 & 7.428136 & 6.803104 \\
\hline 45 & 1 & 0 & -1.846286 & 8.284182 & 7.274384 \\
\hline 46 & 6 & 0 & -1.973607 & 6.825603 & 5.700321 \\
\hline 47 & 1 & 0 & -2.903516 & 7.215500 & 5.305601 \\
\hline 48 & 6 & 0 & 7.697235 & 7.367813 & 9.117179 \\
\hline 49 & 1 & 0 & 8.583319 & 7.860758 & 9.497260 \\
\hline 50 & 6 & 0 & 7.201273 & 6.235919 & 9.760830 \\
\hline 51 & 1 & 0 & 7.693953 & 5.851970 & 10.645201 \\
\hline 52 & 35 & 0 & 3.311249 & 6.485515 & 4.841232 \\
\hline
\end{tabular}

Total energy \(E(\) RM0 62X \()=-6656.63823450\) Hartrees

\section*{27a.AICl3}

\begin{tabular}{|c|c|c|c|c|c|}
\hline Center & Atomic & Atomic & \multicolumn{3}{|r|}{Coordinates (Angstroms)} \\
\hline Number & Number & Type & X & Y & Z \\
\hline 1 & 17 & 0 & 6.939607 & 2.719913 & 12.122783 \\
\hline 2 & 15 & 0 & 11.306731 & 3.303786 & 7.983718 \\
\hline 3 & 15 & 0 & 9.608121 & 3.582307 & 9.419993 \\
\hline 4 & 17 & 0 & 9.606455 & 0.426442 & 12.453273 \\
\hline 5 & 17 & 0 & 9.649849 & 3.422464 & 14.228140 \\
\hline 6 & 13 & 0 & 9.057148 & 2.507157 & 12.380876 \\
\hline 7 & 7 & 0 & 10.007292 & 3.351830 & 10.988307 \\
\hline 8 & 7 & 0 & 11.379061 & 5.061706 & 7.930806 \\
\hline 9 & 7 & 0 & 9.331441 & 5.188377 & 9.069127 \\
\hline 10 & 6 & 0 & 8.209406 & 2.579989 & 8.962064 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 11 & 6 & 0 & 12.667827 & 5.649564 & 7.676692 \\
\hline 12 & 6 & 0 & 10.264947 & 7.247302 & 8.271869 \\
\hline 13 & 6 & 0 & 11.235291 & 4.029220 & 11.357430 \\
\hline 14 & 6 & 0 & 10.202311 & 2.963214 & 6.550918 \\
\hline 15 & 6 & 0 & 10.312654 & 5.775648 & 8.450059 \\
\hline 16 & 6 & 0 & 9.953254 & 1.615770 & 6.275032 \\
\hline 17 & 1 & 0 & 10.432721 & 0.838762 & 6.862588 \\
\hline 18 & 6 & 0 & 9.595754 & 3.952309 & 5.776577 \\
\hline 19 & 1 & 0 & 9.787832 & 5.001188 & 5.971217 \\
\hline 20 & 6 & 0 & 9.689821 & 8.017137 & 9.284452 \\
\hline 21 & 1 & 0 & 9.316772 & 7.525542 & 10.173943 \\
\hline 22 & 6 & 0 & 12.453646 & 3.358011 & 11.279822 \\
\hline 23 & 1 & 0 & 12.472216 & 2.330064 & 10.935753 \\
\hline 24 & 6 & 0 & 9.077916 & 1.263444 & 5.254614 \\
\hline 25 & 1 & 0 & 8.880157 & 0.217674 & 5.053522 \\
\hline 26 & 6 & 0 & 8.259277 & 1.202598 & 9.190697 \\
\hline 27 & 1 & 0 & 9.116126 & 0.751100 & 9.679087 \\
\hline 28 & 6 & 0 & 7.128129 & 3.163372 & 8.302773 \\
\hline 29 & 1 & 0 & 7.113756 & 4.231945 & 8.125137 \\
\hline 30 & 6 & 0 & 11.188428 & 5.347403 & 11.812524 \\
\hline 31 & 1 & 0 & 10.228099 & 5.844884 & 11.882905 \\
\hline 32 & 6 & 0 & 10.724386 & 7.860208 & 7.103026 \\
\hline 33 & 1 & 0 & 11.156424 & 7.268086 & 6.305787 \\
\hline 34 & 6 & 0 & 9.602912 & 9.395651 & 9.142457 \\
\hline 35 & 1 & 0 & 9.170062 & 9.992360 & 9.935562 \\
\hline 36 & 6 & 0 & 13.303058 & 6.387822 & 8.669078 \\
\hline 37 & 1 & 0 & 12.816799 & 6.526188 & 9.628055 \\
\hline 38 & 6 & 0 & 8.466439 & 2.252577 & 4.489983 \\
\hline 39 & 1 & 0 & 7.787100 & 1.978078 & 3.692246 \\
\hline 40 & 6 & 0 & 10.613468 & 9.236072 & 6.957019 \\
\hline 41 & 1 & 0 & 10.958427 & 9.708370 & 6.045832 \\
\hline 42 & 6 & 0 & 13.282260 & 5.424997 & 6.448736 \\
\hline 43 & 1 & 0 & 12.769675 & 4.844802 & 5.688497 \\
\hline 44 & 6 & 0 & 10.063870 & 10.005268 & 7.979358 \\
\hline 45 & 1 & 0 & 9.990146 & 11.080079 & 7.866170 \\
\hline 46 & 6 & 0 & 14.555971 & 6.932826 & 8.415138 \\
\hline 47 & 1 & 0 & 15.051970 & 7.512372 & 9.184187 \\
\hline 48 & 6 & 0 & 15.175960 & 6.722529 & 7.186634 \\
\hline 49 & 1 & 0 & 16.154811 & 7.144091 & 6.994557 \\
\hline 50 & 6 & 0 & 7.196491 & 0.409065 & 8.783240 \\
\hline 51 & 1 & 0 & 7.221508 & -0.657868 & 8.965324 \\
\hline 52 & 6 & 0 & 13.624702 & 4.006935 & 11.663651 \\
\hline 53 & 1 & 0 & 14.570289 & 3.482116 & 11.605734 \\
\hline 54 & 6 & 0 & 6.072430 & 2.357032 & 7.894970 \\
\hline 55 & 1 & 0 & 5.223058 & 2.799517 & 7.389890 \\
\hline 56 & 6 & 0 & 8.733753 & 3.593895 & 4.745624 \\
\hline 57 & 1 & 0 & 8.265790 & 4.365612 & 4.146669 \\
\hline 58 & 6 & 0 & 12.358894 & 5.984670 & 12.207045 \\
\hline 59 & 1 & 0 & 12.316895 & 7.002617 & 12.575636 \\
\hline 60 & 6 & 0 & 14.541411 & 5.963136 & 6.207912 \\
\hline 61 & 1 & 0 & 15.022655 & 5.792898 & 5.252879 \\
\hline 62 & 6 & 0 & 6.105589 & 0.986993 & 8.138568 \\
\hline 63 & 1 & 0 & 5.277665 & 0.364691 & 7.821188 \\
\hline 64 & 6 & 0 & 13.578695 & 5.315935 & 12.131062 \\
\hline 65 & 1 & 0 & 14.490294 & 5.814157 & 12.437888 \\
\hline
\end{tabular}

Total energy E(RM062X) = -3666.41433835 Hartrees

\section*{33a}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Center \\
Number
\end{tabular}} & \multirow[t]{2}{*}{Atomic Number} & \multirow[t]{2}{*}{Atomic Type} & \multicolumn{3}{|r|}{Coordinates (Angstroms)} \\
\hline & & & X & Y & Z \\
\hline 1 & 15 & 0 & 12.150100 & -1.765000 & 14.338600 \\
\hline 2 & 8 & 0 & 10.099100 & -3.746800 & 14.209600 \\
\hline 3 & 6 & 0 & 14.466000 & -0.589500 & 15.259100 \\
\hline 4 & 1 & 0 & 14.210300 & -0.896600 & 16.100400 \\
\hline 5 & 6 & 0 & 13.675500 & -0.851000 & 14.149400 \\
\hline 6 & 6 & 0 & 11.765200 & -1.912300 & 16.079300 \\
\hline 7 & 6 & 0 & 14.070100 & -0.399600 & 12.892200 \\
\hline 8 & 1 & 0 & 13.542400 & -0.575300 & 12.146700 \\
\hline 9 & 6 & 0 & 12.303000 & -3.379700 & 13.582100 \\
\hline 10 & 6 & 0 & 13.515500 & -3.759400 & 12.982300 \\
\hline 11 & 1 & 0 & 14.237300 & -3.172900 & 12.967000 \\
\hline 12 & 6 & 0 & 11.951400 & -3.117900 & 16.725200 \\
\hline 13 & 1 & 0 & 12.233300 & -3.866300 & 16.249900 \\
\hline 14 & 6 & 0 & 11.361100 & -0.774900 & 16.784600 \\
\hline 15 & 1 & 0 & 11.239600 & 0.038700 & 16.351500 \\
\hline 16 & 6 & 0 & 15.642100 & 0.134500 & 15.107700 \\
\hline 17 & 1 & 0 & 16.170700 & 0.321300 & 15.849300 \\
\hline 18 & 6 & 0 & 16.027200 & 0.577400 & 13.856200 \\
\hline 19 & 1 & 0 & 16.818300 & 1.060200 & 13.762300 \\
\hline 20 & 6 & 0 & 11.195200 & -4.231700 & 13.601300 \\
\hline 21 & 6 & 0 & 15.253600 & 0.312300 & 12.754200 \\
\hline 22 & 1 & 0 & 15.521100 & 0.609500 & 11.914800 \\
\hline 23 & 6 & 0 & 12.557700 & -5.855100 & 12.449500 \\
\hline 24 & 1 & 0 & 12.655300 & -6.700800 & 12.077700 \\
\hline 25 & 6 & 0 & 11.145800 & -0.891200 & 18.147200 \\
\hline 26 & 1 & 0 & 10.878900 & -0.146300 & 18.634000 \\
\hline 27 & 6 & 0 & 11.712300 & -3.203300 & 18.091600 \\
\hline 28 & 1 & 0 & 11.819600 & -4.014300 & 18.532400 \\
\hline 29 & 6 & 0 & 11.319700 & -5.509100 & 13.024400 \\
\hline 30 & 1 & 0 & 10.605700 & -6.105800 & 13.020600 \\
\hline 31 & 6 & 0 & 11.320000 & -2.090700 & 18.789200 \\
\hline 32 & 1 & 0 & 11.171300 & -2.149600 & 19.705300 \\
\hline 33 & 6 & 0 & 13.624500 & -4.999600 & 12.418800 \\
\hline 34 & 1 & 0 & 14.420000 & -5.261500 & 12.014500 \\
\hline 35 & 6 & 0 & 8.965000 & -4.618600 & 14.392800 \\
\hline
\end{tabular}
\begin{tabular}{llllll}
36 & 1 & 0 & 8.567300 & -4.809500 & 13.540000 \\
37 & 1 & 0 & 8.319300 & -4.188700 & 14.958200 \\
38 & 1 & 0 & 9.253300 & -5.437500 & 14.801000
\end{tabular}

Total energy \(\mathrm{E}(\mathrm{RM} 062 \mathrm{X})=-1150.67868467\) Hartrees
33b

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Center \\
Number
\end{tabular}} & \multirow[t]{2}{*}{Atomic Number} & \multirow[t]{2}{*}{Atomic Type} & \multicolumn{3}{|r|}{Coordinates (Angstroms)} \\
\hline & & & X & Y & Z \\
\hline 1 & 15 & 0 & -0.993027 & 4.441615 & 4.083804 \\
\hline 2 & 7 & 0 & 0.888099 & 2.261506 & 3.867163 \\
\hline 3 & 6 & 0 & -3.573367 & 5.521379 & 3.371243 \\
\hline 4 & 1 & 0 & -3.377605 & 5.235391 & 2.344620 \\
\hline 5 & 6 & 0 & -0.800932 & 3.964110 & -0.529589 \\
\hline 6 & 1 & 0 & -0.733363 & 3.856292 & -1.605806 \\
\hline 7 & 6 & 0 & -0.968637 & 4.232341 & 2.251019 \\
\hline 8 & 6 & 0 & -2.907751 & 5.651722 & 5.678598 \\
\hline 9 & 1 & 0 & -2.175605 & 5.469215 & 6.459969 \\
\hline 10 & 6 & 0 & -0.095650 & 5.032471 & 1.512628 \\
\hline 11 & 1 & 0 & 0.530659 & 5.755440 & 2.024624 \\
\hline 12 & 6 & 0 & -1.388024 & 2.706816 & 4.587293 \\
\hline 13 & 6 & 0 & -2.630913 & 5.251253 & 4.365404 \\
\hline 14 & 6 & 0 & -0.348854 & 1.781484 & 4.417059 \\
\hline 15 & 6 & 0 & -1.758433 & 3.293639 & 1.580251 \\
\hline 16 & 1 & 0 & -2.434495 & 2.657758 & 2.143385 \\
\hline 17 & 6 & 0 & -0.011673 & 4.900427 & 0.128839 \\
\hline 18 & 1 & 0 & 0.674061 & 5.524003 & -0.432661 \\
\hline 19 & 6 & 0 & -2.602245 & 2.276510 & 5.124410 \\
\hline 20 & 1 & 0 & -3.416781 & 2.979725 & 5.254811 \\
\hline 21 & 6 & 0 & -4.107064 & 6.277449 & 5.996326 \\
\hline 22 & 1 & 0 & -4.307329 & 6.572384 & 7.019776 \\
\hline 23 & 6 & 0 & -5.041652 & 6.537679 & 4.997059 \\
\hline 24 & 1 & 0 & -5.973187 & 7.035262 & 5.239167 \\
\hline 25 & 6 & 0 & -4.768780 & 6.164010 & 3.686166 \\
\hline 26 & 1 & 0 & -5.488629 & 6.369492 & 2.902290 \\
\hline 27 & 6 & 0 & 1.276872 & 1.588432 & 2.633225 \\
\hline 28 & 1 & 0 & 1.559828 & 0.535564 & 2.786802 \\
\hline
\end{tabular}
\begin{tabular}{lllrrr}
29 & 1 & 0 & 2.132774 & 2.112368 & 2.201438 \\
30 & 1 & 0 & 0.451459 & 1.633076 & 1.920603 \\
31 & 6 & 0 & -1.677321 & 3.162098 & 0.198169 \\
32 & 1 & 0 & -2.293764 & 2.430330 & -0.310874 \\
33 & 6 & 0 & 1.964814 & 2.267203 & 4.851941 \\
34 & 1 & 0 & 1.650132 & 2.830319 & 5.732354 \\
35 & 1 & 0 & 2.838943 & 2.758917 & 4.420030 \\
36 & 1 & 0 & 2.256285 & 1.253410 & 5.167792 \\
37 & 6 & 0 & -0.533440 & 0.449169 & 4.779420 \\
38 & 1 & 0 & 0.276065 & -0.260641 & 4.644439 \\
39 & 6 & 0 & -2.780417 & 0.943782 & 5.486508 \\
40 & 1 & 0 & -3.729411 & 0.620553 & 5.898006 \\
41 & 6 & 0 & -1.747631 & 0.028924 & 5.313581 \\
42 & 1 & 0 & -1.886309 & -1.008877 & 5.592620
\end{tabular}

Total energy \(\mathrm{E}(\mathrm{RM} 062 \mathrm{X})=-1170.10491447\) Hartrees

\section*{33c}

\begin{tabular}{|c|c|c|c|c|c|}
\hline Center & Atomic & Atomic & \multicolumn{3}{|r|}{Coordinates (Angstroms)} \\
\hline Number & Number & Type & X & Y & Z \\
\hline 1 & 15 & 0 & 4.862035 & 9.592297 & 3.329554 \\
\hline 2 & 7 & 0 & 7.148426 & 11.165806 & 2.567957 \\
\hline 3 & 6 & 0 & 4.185215 & 11.195420 & 2.675815 \\
\hline 4 & 6 & 0 & 2.876010 & 11.316396 & 2.202733 \\
\hline 5 & 1 & 0 & 2.226593 & 10.448156 & 2.191311 \\
\hline 6 & 6 & 0 & 2.384523 & 12.536224 & 1.744703 \\
\hline 7 & 1 & 0 & 1.367315 & 12.603017 & 1.377180 \\
\hline 8 & 6 & 0 & 3.201266 & 13.659060 & 1.758394 \\
\hline 9 & 1 & 0 & 2.829199 & 14.612263 & 1.401468 \\
\hline 10 & 6 & 0 & 4.506472 & 13.552075 & 2.228449 \\
\hline 11 & 1 & 0 & 5.150988 & 14.425041 & 2.234523 \\
\hline 12 & 6 & 0 & 5.008321 & 12.338383 & 2.691838 \\
\hline 13 & 6 & 0 & 6.428696 & 12.255505 & 3.204397 \\
\hline 14 & 1 & 0 & 6.932030 & 13.227800 & 3.066687 \\
\hline 15 & 1 & 0 & 6.406198 & 12.049003 & 4.280332 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 16 & 6 & 0 & 7.387287 & 11.398375 & 1.155294 \\
\hline 17 & 1 & 0 & 6.444324 & 11.619626 & 0.650996 \\
\hline 18 & 1 & 0 & 7.802906 & 10.491265 & 0.707726 \\
\hline 19 & 1 & 0 & 8.084709 & 12.235721 & 0.982062 \\
\hline 20 & 6 & 0 & 8.369521 & 10.822244 & 3.269587 \\
\hline 21 & 1 & 0 & 9.104038 & 11.645327 & 3.268681 \\
\hline 22 & 1 & 0 & 8.827673 & 9.953406 & 2.790646 \\
\hline 23 & 1 & 0 & 8.137141 & 10.562494 & 4.305152 \\
\hline 24 & 6 & 0 & 3.282396 & 8.655055 & 3.576511 \\
\hline 25 & 6 & 0 & 2.499400 & 9.014926 & 4.681427 \\
\hline 26 & 1 & 0 & 2.817067 & 9.835541 & 5.318402 \\
\hline 27 & 6 & 0 & 1.318615 & 8.343043 & 4.969029 \\
\hline 28 & 1 & 0 & 0.722041 & 8.641393 & 5.823379 \\
\hline 29 & 6 & 0 & 0.908253 & 7.279620 & 4.166946 \\
\hline 30 & 1 & 0 & -0.008661 & 6.748735 & 4.393718 \\
\hline 31 & 6 & 0 & 1.685783 & 6.900574 & 3.079655 \\
\hline 32 & 1 & 0 & 1.376919 & 6.070844 & 2.454249 \\
\hline 33 & 6 & 0 & 2.863823 & 7.584930 & 2.783645 \\
\hline 34 & 1 & 0 & 3.454676 & 7.280019 & 1.927930 \\
\hline 35 & 6 & 0 & 5.514797 & 8.797621 & 1.797875 \\
\hline 36 & 6 & 0 & 5.001151 & 9.042440 & 0.523359 \\
\hline 37 & 1 & 0 & 4.164235 & 9.721555 & 0.398826 \\
\hline 38 & 6 & 0 & 5.562863 & 8.430782 & -0.593887 \\
\hline 39 & 1 & 0 & 5.156846 & 8.631743 & -1.578689 \\
\hline 40 & 6 & 0 & 6.644041 & 7.566510 & -0.448905 \\
\hline 41 & 1 & 0 & 7.083093 & 7.093609 & -1.319452 \\
\hline 42 & & 0 & 7.160193 & 7.313552 & 0.818840 \\
\hline 43 & 1 & 0 & 8.001940 & 6.641421 & 0.938859 \\
\hline 44 & 6 & 0 & 6.599096 & 7.928366 & 1.934201 \\
\hline 45 & 1 & 0 & 7.014847 & 7.742618 & 2.919600 \\
\hline
\end{tabular}

Total energy \(\mathrm{E}(\mathrm{RM} 062 \mathrm{X})=-1209.41175349\) Hartrees
33d

\begin{tabular}{|c|c|c|c|c|c|}
\hline 2 & 8 & 0 & -4.053816 & 1.229113 & 8.181669 \\
\hline 3 & 8 & 0 & -2.723814 & 3.531984 & 4.018844 \\
\hline 4 & 6 & 0 & -2.691779 & 4.146557 & 5.228178 \\
\hline 5 & 6 & 0 & 0.887921 & 0.318577 & 3.642515 \\
\hline 6 & 1 & 0 & 1.092094 & -0.517116 & 2.983519 \\
\hline 7 & 6 & 0 & -0.345853 & 0.414127 & 4.280848 \\
\hline 8 & 1 & 0 & -1.100060 & -0.348204 & 4.113341 \\
\hline 9 & 6 & 0 & -2.873750 & 5.516132 & 5.406557 \\
\hline 10 & 1 & 0 & -3.062162 & 6.165711 & 4.562618 \\
\hline 11 & 6 & 0 & -2.443035 & 3.305108 & 6.328573 \\
\hline 12 & 6 & 0 & -0.624289 & 1.483161 & 5.134558 \\
\hline 13 & 6 & 0 & 1.851700 & 1.300846 & 3.843558 \\
\hline 14 & 1 & 0 & 2.810107 & 1.232337 & 3.342465 \\
\hline 15 & 6 & 0 & -2.571807 & 5.240516 & 7.786465 \\
\hline 16 & 1 & 0 & -2.520838 & 5.661086 & 8.783086 \\
\hline 17 & 6 & 0 & -2.853900 & 0.732035 & 8.574651 \\
\hline 18 & 6 & 0 & -2.934217 & 4.329916 & 2.866280 \\
\hline 19 & 1 & 0 & -3.906148 & 4.829329 & 2.906632 \\
\hline 20 & 1 & 0 & -2.911067 & 3.647069 & 2.020966 \\
\hline 21 & 1 & 0 & -2.141641 & 5.075161 & 2.756758 \\
\hline 22 & 6 & 0 & -2.816109 & 6.054613 & 6.690678 \\
\hline 23 & 1 & 0 & -2.961916 & 7.120175 & 6.823588 \\
\hline 24 & 6 & 0 & 0.351598 & 2.463413 & 5.333277 \\
\hline 25 & 1 & 0 & 0.148664 & 3.298634 & 5.995438 \\
\hline 26 & 6 & 0 & -2.618767 & 0.167666 & 9.826067 \\
\hline 27 & 1 & 0 & -3.410978 & 0.088974 & 10.558133 \\
\hline 28 & 6 & 0 & -0.314755 & -0.216206 & 9.212151 \\
\hline 29 & 1 & 0 & 0.674095 & -0.584891 & 9.454658 \\
\hline 30 & 6 & 0 & -2.384527 & 3.871587 & 7.597362 \\
\hline 31 & 1 & 0 & -2.180715 & 3.238745 & 8.453758 \\
\hline 32 & 6 & 0 & -1.344916 & -0.306245 & 10.135748 \\
\hline 33 & 1 & 0 & -1.169273 & -0.747613 & 11.109790 \\
\hline 34 & 6 & 0 & -0.557418 & 0.357929 & 7.964349 \\
\hline 35 & 1 & 0 & 0.250054 & 0.428512 & 7.244880 \\
\hline 36 & 6 & 0 & -5.124901 & 1.210283 & 9.110413 \\
\hline 37 & 1 & 0 & -4.874136 & 1.786656 & 10.005222 \\
\hline 38 & 1 & 0 & -5.383311 & 0.185876 & 9.391805 \\
\hline 39 & 1 & 0 & -5.968161 & 1.672642 & 8.603971 \\
\hline 40 & 6 & 0 & 1.580649 & 2.374205 & 4.688781 \\
\hline 41 & 1 & 0 & 2.329492 & 3.141675 & 4.847469 \\
\hline 42 & 6 & 0 & -1.818246 & 0.841029 & 7.626155 \\
\hline
\end{tabular}

Total energy E(RM062X) \(=-1265.19251002\) Hartrees
33e

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Center \\
Number
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Atomic \\
Number
\end{tabular}} & \multirow[t]{2}{*}{Atomic Type} & \multicolumn{3}{|r|}{Coordinates (Angstroms)} \\
\hline & & & X & Y & Z \\
\hline 1 & 6 & 0 & -12.798183 & -19.612287 & -19.457893 \\
\hline 2 & 6 & 0 & -12.876916 & -18.545693 & -20.361991 \\
\hline 3 & 6 & 0 & -13.478201 & -18.725539 & -21.607556 \\
\hline 4 & 1 & 0 & -13.532860 & -17.891517 & -22.299767 \\
\hline 5 & 6 & 0 & -14.003637 & -19.962843 & -21.961578 \\
\hline 6 & 1 & 0 & -14.467392 & -20.098211 & -22.931749 \\
\hline 7 & 6 & 0 & -13.927083 & -21.025709 & -21.066622 \\
\hline 8 & 1 & 0 & -14.327997 & -21.995336 & -21.338265 \\
\hline 9 & 6 & 0 & -13.326324 & -20.850836 & -19.823456 \\
\hline 10 & 1 & 0 & -13.256114 & -21.690885 & -19.141840 \\
\hline 11 & 6 & 0 & -11.898458 & -20.902405 & -17.065764 \\
\hline 12 & 6 & 0 & -13.112244 & -21.430766 & -16.583889 \\
\hline 13 & 6 & 0 & -13.134457 & -22.689557 & -15.985833 \\
\hline 14 & 1 & 0 & -14.073546 & -23.102054 & -15.635081 \\
\hline 15 & 6 & 0 & -11.958254 & -23.417296 & -15.825998 \\
\hline 16 & 1 & 0 & -11.988930 & -24.394530 & -15.358560 \\
\hline 17 & 6 & 0 & -10.751442 & -22.881810 & -16.254279 \\
\hline 18 & 1 & 0 & -9.829462 & -23.435665 & -16.123338 \\
\hline 19 & 6 & 0 & -10.725780 & -21.632887 & -16.871835 \\
\hline 20 & 1 & 0 & -9.779825 & -21.235750 & -17.219891 \\
\hline 21 & 6 & 0 & -10.238592 & -19.057319 & -18.498018 \\
\hline 22 & 6 & 0 & -9.723160 & -19.896560 & -19.490792 \\
\hline 23 & 1 & 0 & -10.331021 & -20.710558 & -19.873390 \\
\hline 24 & 6 & 0 & -8.444462 & -19.692854 & -19.996103 \\
\hline 25 & 1 & 0 & -8.056654 & -20.350685 & -20.765259 \\
\hline 26 & 6 & 0 & -7.665775 & -18.640250 & -19.519118 \\
\hline 27 & 1 & 0 & -6.671736 & -18.476475 & -19.918655 \\
\hline 28 & 6 & 0 & -8.168458 & -17.800333 & -18.531504 \\
\hline 29 & 1 & 0 & -7.568068 & -16.977941 & -18.160317 \\
\hline 30 & 6 & 0 & -9.449469 & -18.009936 & -18.024462 \\
\hline 31 & 1 & 0 & -9.846990 & -17.342100 & -17.267238 \\
\hline 32 & 6 & 0 & -13.351116 & -16.274067 & -19.736279 \\
\hline 33 & 1 & 0 & -13.874297 & -15.985555 & -20.661575 \\
\hline 34 & 1 & 0 & -12.888827 & -15.381597 & -19.309000 \\
\hline 35 & 1 & 0 & -14.085055 & -16.658716 & -19.025663 \\
\hline
\end{tabular}
\begin{tabular}{llllll}
36 & 6 & 0 & -11.263826 & -16.805958 & -20.842971 \\
37 & 1 & 0 & -10.508759 & -17.586118 & -20.958750 \\
38 & 1 & 0 & -10.789642 & -15.935492 & -20.383191 \\
39 & 1 & 0 & -11.630660 & -16.512269 & -21.838788 \\
40 & 6 & 0 & -14.500100 & -19.730326 & -15.612297 \\
41 & 1 & 0 & -14.772788 & -20.275052 & -14.695083 \\
42 & 1 & 0 & -15.304956 & -19.034215 & -15.858005 \\
43 & 1 & 0 & -13.592157 & -19.156864 & -15.425495 \\
44 & 6 & 0 & -15.507277 & -21.384864 & -17.039194 \\
45 & 1 & 0 & -15.319462 & -22.087570 & -17.852386 \\
46 & 1 & 0 & -16.276180 & -20.680278 & -17.363052 \\
47 & 1 & 0 & -15.901826 & -21.939926 & -16.174377 \\
48 & 7 & 0 & -12.322492 & -17.282643 & -19.961425 \\
49 & 7 & 0 & -14.293216 & -20.639591 & -16.739286 \\
50 & 15 & 0 & -11.962873 & -19.224413 & -17.851843
\end{tabular}

Total energy \(E(R M 062 X)=1304.04612753\) Hartrees

\section*{33g}

\begin{tabular}{|c|c|c|c|c|c|}
\hline Center & Atomic & Atomic & \multicolumn{3}{|r|}{Coordinates (Angstroms)} \\
\hline Number & Number & Type & X & Y & Z \\
\hline 1 & 15 & 0 & 4.883200 & 24.319300 & 6.014000 \\
\hline 2 & 6 & 0 & 4.297300 & 23.874000 & 7.658400 \\
\hline 3 & 6 & 0 & 1.192300 & 25.534500 & 3.595400 \\
\hline 4 & 1 & 0 & 0.436400 & 25.767800 & 3.108000 \\
\hline 5 & 6 & 0 & 3.461500 & 24.849200 & 5.039700 \\
\hline 6 & 6 & 0 & 3.338500 & 26.137400 & 4.506200 \\
\hline 7 & 1 & 0 & 4.012100 & 26.766400 & 4.627200 \\
\hline 8 & 6 & 0 & 5.650700 & 22.902600 & 5.215700 \\
\hline 9 & 6 & 0 & 5.477400 & 22.743000 & 3.845500 \\
\hline 10 & 1 & 0 & 4.983200 & 23.361300 & 3.358000 \\
\hline 11 & 6 & 0 & 2.194100 & 26.452700 & 3.792200 \\
\hline 12 & 1 & 0 & 2.100700 & 27.305900 & 3.437400 \\
\hline 13 & 6 & 0 & 6.051400 & 21.643500 & 3.209100 \\
\hline 14 & 1 & 0 & 5.956800 & 21.532500 & 2.290100 \\
\hline 15 & 6 & 0 & 2.440000 & 23.910700 & 4.858300 \\
\hline 16 & 1 & 0 & 2.521100 & 23.059100 & 5.228400 \\
\hline 17 & 6 & 0 & 6.395600 & 21.993500 & 5.954100 \\
\hline 18 & 1 & 0 & 6.519700 & 22.117900 & 6.866800 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 19 & 6 & 0 & 3.981400 & 24.910800 & 8.540400 \\
\hline 20 & 1 & 0 & 4.135100 & 25.794600 & 8.293000 \\
\hline 21 & 6 & 0 & 3.558600 & 22.274700 & 9.287800 \\
\hline 22 & 1 & 0 & 3.422100 & 21.394800 & 9.550500 \\
\hline 23 & 6 & 0 & 3.444200 & 24.623900 & 9.776100 \\
\hline 24 & 1 & 0 & 3.211900 & 25.316400 & 10.353900 \\
\hline 25 & 6 & 0 & 1.306700 & 24.245100 & 4.127100 \\
\hline 26 & 1 & 0 & 0.631800 & 23.617700 & 3.992600 \\
\hline 27 & 6 & 0 & 4.077300 & 22.546400 & 8.018600 \\
\hline 28 & 1 & 0 & 4.270300 & 21.853900 & 7.427300 \\
\hline 29 & 6 & 0 & 3.248800 & 23.303900 & 10.157100 \\
\hline 30 & 1 & 0 & 2.908300 & 23.108800 & 11.000200 \\
\hline 31 & 6 & 0 & 6.763100 & 20.713000 & 3.950200 \\
\hline 32 & 1 & 0 & 7.115900 & 19.960000 & 3.531300 \\
\hline 33 & 6 & 0 & 6.952400 & 20.897400 & 5.313200 \\
\hline 34 & 1 & 0 & 7.453900 & 20.281400 & 5.798000 \\
\hline
\end{tabular}

Total energy \(\mathrm{E}(\mathrm{RM0} 02 \mathrm{X})=-1036.164163\) Hartrees

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Center Number} & \multirow[t]{2}{*}{\begin{tabular}{l}
Atomic \\
Number
\end{tabular}} & \multirow[t]{2}{*}{Atomic Type} & \multicolumn{3}{|r|}{Coordinates (Angstroms)} \\
\hline & & & X & Y & Z \\
\hline 1 & 6 & 0 & -1.304669 & 0.064114 & -0.103172 \\
\hline 2 & 6 & 0 & 0.067646 & 0.095086 & 0.081428 \\
\hline 3 & 6 & 0 & 0.725078 & 1.317216 & 0.256963 \\
\hline 4 & 6 & 0 & -0.004988 & 2.505599 & 0.245400 \\
\hline 5 & 6 & 0 & -1.386780 & 2.457124 & 0.058260 \\
\hline 6 & 6 & 0 & -2.044057 & 1.247637 & -0.115972 \\
\hline 7 & 1 & 0 & -1.801550 & -0.889498 & -0.238320 \\
\hline 8 & 1 & 0 & 0.658671 & -0.812765 & 0.093706 \\
\hline 9 & 1 & 0 & 0.480808 & 3.462600 & 0.379013 \\
\hline 10 & 1 & 0 & -1.947266 & 3.384676 & 0.050530 \\
\hline 11 & 1 & 0 & -3.116769 & 1.222510 & -0.260484 \\
\hline 12 & 6 & 0 & 2.777517 & 2.458248 & 0.613972 \\
\hline 13 & 1 & 0 & 3.822174 & 2.181944 & 0.733007 \\
\hline 14 & 1 & 0 & 2.670575 & 3.112979 & -0.255737 \\
\hline 15 & 1 & 0 & 2.434996 & 2.982754 & 1.510682 \\
\hline 16 & 8 & 0 & 2.069624 & 1.244267 & 0.430497 \\
\hline
\end{tabular}

Total energy \(E(\) RM0 62X \()=-346.71090548\) Hartrees

\section*{DMA}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Center \\
Number
\end{tabular}} & \multirow[t]{2}{*}{Atomic Number} & \multirow[t]{2}{*}{Atomic Type} & \multicolumn{3}{|r|}{Coordinates (Angstroms)} \\
\hline & & & X & Y & Z \\
\hline 1 & 6 & 0 & -1.315828 & 0.054771 & -0.011471 \\
\hline 2 & 6 & 0 & 0.062945 & 0.062187 & 0.153588 \\
\hline 3 & 6 & 0 & 0.776751 & 1.276366 & 0.221608 \\
\hline 4 & 6 & 0 & 0.032938 & 2.472069 & 0.143898 \\
\hline 5 & 6 & 0 & -1.345542 & 2.443853 & -0.021105 \\
\hline 6 & 6 & 0 & -2.037939 & 1.240171 & -0.103956 \\
\hline 7 & 1 & 0 & -1.830255 & -0.898434 & -0.062907 \\
\hline 8 & 1 & 0 & 0.583294 & -0.882318 & 0.229460 \\
\hline 9 & 1 & 0 & 0.529433 & 3.429955 & 0.212495 \\
\hline 10 & 1 & 0 & -1.883334 & 3.383653 & -0.079633 \\
\hline 11 & 1 & 0 & -3.113051 & 1.226478 & -0.230451 \\
\hline 12 & 6 & 0 & 2.800713 & 2.544381 & 0.704137 \\
\hline 13 & 1 & 0 & 3.872319 & 2.376179 & 0.788054 \\
\hline 14 & 1 & 0 & 2.645000 & 3.295881 & -0.073092 \\
\hline 15 & 1 & 0 & 2.433619 & 2.952321 & 1.655679 \\
\hline 16 & 6 & 0 & 2.830376 & 0.061633 & 0.715142 \\
\hline 17 & 1 & 0 & 2.692632 & -0.700136 & -0.055502 \\
\hline 18 & 1 & 0 & 3.897693 & 0.255820 & 0.797723 \\
\hline 19 & 1 & 0 & 2.472493 & -0.346515 & 1.670095 \\
\hline 20 & 7 & 0 & 2.153819 & 1.293591 & 0.350775 \\
\hline
\end{tabular}

Total energy \(E(R M 062 X)=-366.14170390\) Hartrees
34a

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Center \\
Number
\end{tabular}} & \multirow[t]{2}{*}{Atomic Number} & \multirow[t]{2}{*}{Atomic Type} & \multicolumn{3}{|r|}{Coordinates (Angstroms)} \\
\hline & & & X & Y & Z \\
\hline 1 & 53 & 0 & 1.061263 & 3.390237 & 2.622900 \\
\hline 2 & 53 & 0 & -0.177193 & 0.503370 & 2.173621 \\
\hline 3 & 15 & 0 & 2.025932 & 5.644768 & 3.012977 \\
\hline 4 & 8 & 0 & -0.223891 & 6.380241 & 1.410729 \\
\hline 5 & 6 & 0 & 2.088372 & 6.627599 & 1.504203 \\
\hline 6 & 6 & 0 & 0.669843 & 7.840387 & 4.093155 \\
\hline 7 & 1 & 0 & 0.867008 & 8.350617 & 3.157390 \\
\hline 8 & 6 & 0 & 0.882256 & 6.868692 & 0.820239 \\
\hline 9 & 6 & 0 & 3.294089 & 7.102101 & 0.987668 \\
\hline 10 & 1 & 0 & 4.220725 & 6.911718 & 1.516003 \\
\hline 11 & 6 & 0 & 0.898772 & 7.584075 & -0.374887 \\
\hline 12 & 1 & 0 & -0.017879 & 7.779438 & -0.913968 \\
\hline 13 & 6 & 0 & 4.557075 & 4.492317 & 3.083364 \\
\hline 14 & 1 & 0 & 4.178693 & 3.796738 & 2.342604 \\
\hline 15 & 6 & 0 & 3.724630 & 5.478352 & 3.618772 \\
\hline 16 & 6 & 0 & 1.089398 & 6.524598 & 4.285014 \\
\hline 17 & 6 & 0 & -0.003190 & 8.497065 & 5.118086 \\
\hline 18 & 1 & 0 & -0.332096 & 9.518703 & 4.974333 \\
\hline 19 & 6 & 0 & -0.253077 & 7.844440 & 6.320739 \\
\hline 20 & 1 & 0 & -0.778383 & 8.360378 & 7.115397 \\
\hline 21 & 6 & 0 & 3.306541 & 7.817083 & -0.203394 \\
\hline 22 & 1 & 0 & 4.241836 & 8.187062 & -0.602319 \\
\hline 23 & 6 & 0 & 0.835877 & 5.864312 & 5.489734 \\
\hline 24 & 1 & 0 & 1.159462 & 4.838550 & 5.631908 \\
\hline 25 & 6 & 0 & 4.209108 & 6.369025 & 4.580026 \\
\hline 26 & 1 & 0 & 3.562555 & 7.130631 & 5.000282 \\
\hline 27 & 6 & 0 & 6.360224 & 5.288047 & 4.468864 \\
\hline 28 & 1 & 0 & 7.387125 & 5.210247 & 4.804656 \\
\hline 29 & 6 & 0 & 5.875572 & 4.402287 & 3.510139 \\
\hline 30 & 1 & 0 & 6.521455 & 3.636547 & 3.099342 \\
\hline 31 & 6 & 0 & 5.529851 & 6.268318 & 5.001783 \\
\hline 32 & 1 & 0 & 5.907101 & 6.954916 & 5.749373 \\
\hline 33 & 6 & 0 & 0.166556 & 6.529957 & 6.507518 \\
\hline 34 & 1 & 0 & -0.030610 & 6.021502 & 7.442864 \\
\hline 35 & 6 & 0 & -1.473780 & 6.526228 & 0.744193 \\
\hline 36 & 1 & 0 & -1.442699 & 6.048028 & -0.237143 \\
\hline 37 & 1 & 0 & -1.732436 & 7.582467 & 0.640721 \\
\hline 38 & 1 & 0 & -2.203638 & 6.027398 & 1.375164 \\
\hline 39 & 6 & 0 & 2.111521 & 8.049335 & -0.874443 \\
\hline 40 & 1 & 0 & 2.115137 & 8.604646 & -1.804598 \\
\hline
\end{tabular}

Total energy \(\mathrm{E}(\mathrm{RMO} 62 \mathrm{X})=-1745.99050605\) Hartrees

34b

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Center Number} & \multirow[t]{2}{*}{Atomic Number} & \multirow[t]{2}{*}{Atomic Type} & \multicolumn{3}{|r|}{Coordinates (Angstroms)} \\
\hline & & & X & Y & Z \\
\hline 1 & 53 & 0 & 7.721586 & 6.226784 & 2.663642 \\
\hline 2 & 53 & 0 & 9.552004 & 8.399984 & 1.303514 \\
\hline 3 & 15 & 0 & 6.287892 & 4.531337 & 3.779955 \\
\hline 4 & 7 & 0 & 4.350141 & 5.546788 & 1.893559 \\
\hline 5 & 6 & 0 & 5.494974 & 0.750374 & 1.309018 \\
\hline 6 & 1 & 0 & 5.286422 & -0.139243 & 0.727194 \\
\hline 7 & 6 & 0 & 6.704337 & 2.817116 & 1.597803 \\
\hline 8 & 1 & 0 & 7.430489 & 3.536785 & 1.238503 \\
\hline 9 & 6 & 0 & 5.072329 & 2.115968 & 3.247215 \\
\hline 10 & 1 & 0 & 4.530450 & 2.294625 & 4.170277 \\
\hline 11 & 6 & 0 & 6.435549 & 1.669864 & 0.857749 \\
\hline 12 & 1 & 0 & 6.960008 & 1.499464 & -0.074168 \\
\hline 13 & 6 & 0 & 6.019467 & 3.037982 & 2.790095 \\
\hline 14 & 6 & 0 & 4.817072 & 0.970099 & 2.505702 \\
\hline 15 & 1 & 0 & 4.084492 & 0.254762 & 2.858454 \\
\hline 16 & 6 & 0 & 4.641593 & 5.124295 & 4.261418 \\
\hline 17 & 6 & 0 & 3.808501 & 5.551153 & 3.219163 \\
\hline 18 & 6 & 0 & 4.183122 & 5.102173 & 5.579858 \\
\hline 19 & 1 & 0 & 4.824818 & 4.759344 & 6.382233 \\
\hline 20 & 6 & 0 & 8.467224 & 3.405891 & 7.665339 \\
\hline 21 & 1 & 0 & 8.984305 & 3.153712 & 8.583096 \\
\hline 22 & 6 & 0 & 7.482653 & 2.725363 & 5.571577 \\
\hline 23 & 1 & 0 & 7.242253 & 1.942387 & 4.862912 \\
\hline 24 & 6 & 0 & 7.141333 & 4.052116 & 5.308322 \\
\hline 25 & 6 & 0 & 8.146302 & 2.408174 & 6.753377 \\
\hline 26 & 1 & 0 & 8.412918 & 1.378206 & 6.955925 \\
\hline 27 & 6 & 0 & 4.400889 & 6.888976 & 1.310371 \\
\hline 28 & 1 & 0 & 3.401264 & 7.275319 & 1.065082 \\
\hline 29 & 1 & 0 & 4.995362 & 6.852244 & 0.395334 \\
\hline 30 & 1 & 0 & 4.883563 & 7.574660 & 2.007386 \\
\hline 31 & 6 & 0 & 3.672722 & 4.606526 & 0.998947 \\
\hline 32 & 1 & 0 & 3.648392 & 3.613910 & 1.450870 \\
\hline 33 & 1 & 0 & 4.238020 & 4.548239 & 0.066534 \\
\hline 34 & 1 & 0 & 2.644261 & 4.917801 & 0.765979 \\
\hline 35 & 6 & 0 & 8.134303 & 4.732314 & 7.397974 \\
\hline
\end{tabular}
\begin{tabular}{llllll}
36 & 1 & 0 & 8.391021 & 5.512726 & 8.103297 \\
37 & 6 & 0 & 2.885744 & 5.516361 & 5.857238 \\
38 & 1 & 0 & 2.524433 & 5.499850 & 6.877711 \\
39 & 6 & 0 & 2.511475 & 5.960744 & 3.513170 \\
40 & 1 & 0 & 1.860847 & 6.291619 & 2.711306 \\
41 & 6 & 0 & 7.479794 & 5.059306 & 6.219358 \\
42 & 6 & 0 & 7.234509 & 6.095276 & 6.008090 \\
43 & 1 & 0 & 2.054146 & 5.944224 & 4.826882 \\
44 & & 1.042839 & 6.264117 & 5.047350
\end{tabular}

Total energy E(RM062X) \(=-1765.41784395\) Hartrees

\section*{34c}

\begin{tabular}{|c|c|c|c|c|c|}
\hline Center & Atomic & Atomic & \multicolumn{3}{|r|}{Coordinates (Angstroms)} \\
\hline Number & Number & Type & X & Y & Z \\
\hline 1 & 53 & 0 & 5.934125 & 9.404592 & 5.356210 \\
\hline 2 & 15 & 0 & 4.725267 & 9.585552 & 3.185534 \\
\hline 3 & 7 & 0 & 7.143227 & 11.139790 & 2.552504 \\
\hline 4 & 6 & 0 & 4.194949 & 11.270373 & 2.710497 \\
\hline 5 & 6 & 0 & 2.872491 & 11.425033 & 2.277022 \\
\hline 6 & 1 & 0 & 2.209510 & 10.570674 & 2.226716 \\
\hline 7 & 6 & 0 & 2.389011 & 12.672815 & 1.903262 \\
\hline 8 & 1 & 0 & 1.365930 & 12.771126 & 1.563140 \\
\hline 9 & 6 & 0 & 3.222909 & 13.779691 & 1.970552 \\
\hline 10 & 1 & 0 & 2.856248 & 14.758443 & 1.686119 \\
\hline 11 & 6 & 0 & 4.540312 & 13.628460 & 2.388158 \\
\hline 12 & 1 & 0 & 5.196542 & 14.490974 & 2.417751 \\
\hline 13 & 6 & 0 & 5.051232 & 12.387886 & 2.759417 \\
\hline 14 & 6 & 0 & 6.501159 & 12.287664 & 3.173911 \\
\hline 15 & 1 & 0 & 7.011287 & 13.231235 & 2.921979 \\
\hline 16 & 1 & 0 & 6.564497 & 12.167694 & 4.260128 \\
\hline 17 & 6 & 0 & 7.248787 & 11.305808 & 1.106531 \\
\hline 18 & 1 & 0 & 6.262423 & 11.468031 & 0.667825 \\
\hline 19 & 1 & 0 & 7.670838 & 10.397529 & 0.669714 \\
\hline 20 & 1 & 0 & 7.893074 & 12.159688 & 0.844499 \\
\hline 21 & 6 & 0 & 8.463242 & 10.893457 & 3.120062 \\
\hline 22 & 1 & 0 & 9.161653 & 11.715355 & 2.897728 \\
\hline 23 & 1 & 0 & 8.869315 & 9.970886 & 2.698156 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 24 & 1 & 0 & 8.392878 & 10.778564 & 4.202290 \\
\hline 25 & 6 & 0 & 3.187906 & 8.658995 & 3.500921 \\
\hline 26 & 6 & 0 & 2.337186 & 9.107412 & 4.518412 \\
\hline 27 & 1 & 0 & 2.576810 & 10.008763 & 5.073536 \\
\hline 28 & 6 & 0 & 1.182639 & 8.400227 & 4.816202 \\
\hline 29 & 1 & 0 & 0.525157 & 8.751366 & 5.601669 \\
\hline 30 & 6 & 0 & 0.875345 & 7.237224 & 4.110950 \\
\hline 31 & 1 & 0 & -0.024618 & 6.683449 & 4.349257 \\
\hline 32 & 6 & 0 & 1.723736 & 6.785535 & 3.109043 \\
\hline 33 & 1 & 0 & 1.489641 & 5.879845 & 2.563399 \\
\hline 34 & 6 & 0 & 2.883493 & 7.492947 & 2.800053 \\
\hline 35 & 1 & 0 & 3.541958 & 7.130386 & 2.020571 \\
\hline 36 & 6 & 0 & 5.534672 & 8.754282 & 1.791298 \\
\hline 37 & 6 & 0 & 5.000023 & 8.924802 & 0.513215 \\
\hline 38 & 1 & 0 & 4.126990 & 9.550551 & 0.357504 \\
\hline 39 & 6 & 0 & 5.601635 & 8.295229 & -0.570994 \\
\hline 40 & 1 & 0 & 5.190507 & 8.429097 & -1.564022 \\
\hline 41 & 6 & 0 & 6.728983 & 7.502997 & -0.378846 \\
\hline 42 & 1 & 0 & 7.199470 & 7.017942 & -1.225503 \\
\hline 43 & 6 & 0 & 7.255146 & 7.332626 & 0.898914 \\
\hline 44 & 1 & 0 & 8.132925 & 6.716263 & 1.049086 \\
\hline 45 & 6 & 0 & 6.659733 & 7.957225 & 1.989104 \\
\hline 46 & 1 & 0 & 7.077617 & 7.835451 & 2.981910 \\
\hline 47 & 53 & 0 & 7.401256 & 9.129604 & 8.128523 \\
\hline
\end{tabular}

Total energy \(\mathrm{E}(\mathrm{RM} 062 \mathrm{X})=-1804.72433471\) Hartrees

\section*{34d}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Center Number} & \multirow[t]{2}{*}{Atomic Number} & \multirow[t]{2}{*}{Atomic Type} & \multicolumn{3}{|r|}{Coordinates (Angstroms)} \\
\hline & & & X & Y & Z \\
\hline 1 & 53 & 0 & 4.978642 & 4.733650 & 8.338412 \\
\hline 2 & 15 & 0 & 3.810074 & 6.914167 & 8.115167 \\
\hline 3 & 8 & 0 & 6.195893 & 7.787571 & 9.419355 \\
\hline 4 & 8 & 0 & 1.891539 & 5.401053 & 9.631158 \\
\hline 5 & 6 & 0 & 1.287324 & 5.841198 & 8.511904 \\
\hline 6 & 6 & 0 & -0.033800 & 5.569968 & 8.162959 \\
\hline 7 & 1 & 0 & -0.655571 & 4.950100 & 8.794238 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 8 & 6 & 0 & 3.878269 & 7.906809 & 9.618094 \\
\hline 9 & 6 & 0 & 2.079481 & 6.647365 & 7.672338 \\
\hline 10 & 6 & 0 & 4.550270 & 7.869761 & 6.765085 \\
\hline 11 & 6 & 0 & -0.554414 & 6.105991 & 6.989076 \\
\hline 12 & 1 & 0 & -1.582924 & 5.888877 & 6.726610 \\
\hline 13 & 6 & 0 & 1.538036 & 7.175944 & 6.500574 \\
\hline 14 & 1 & 0 & 2.149679 & 7.794774 & 5.854946 \\
\hline 15 & 6 & 0 & 4.950281 & 7.215201 & 5.598846 \\
\hline 16 & 1 & 0 & 4.872122 & 6.136478 & 5.519564 \\
\hline 17 & 6 & 0 & 1.189068 & 4.498212 & 10.478316 \\
\hline 18 & 1 & 0 & 0.904710 & 3.598923 & 9.927922 \\
\hline 19 & 1 & 0 & 0.303309 & 4.977119 & 10.901850 \\
\hline 20 & 1 & 0 & 1.883382 & 4.240137 & 11.272841 \\
\hline 21 & 6 & 0 & 0.218186 & 6.908719 & 6.158370 \\
\hline 22 & 1 & 0 & -0.198679 & 7.321318 & 5.249182 \\
\hline 23 & 6 & 0 & 2.725119 & 8.345324 & 10.266456 \\
\hline 24 & 1 & 0 & 1.751161 & 8.097523 & 9.861773 \\
\hline 25 & 6 & 0 & 5.145874 & 8.234858 & 10.132506 \\
\hline 26 & 6 & 0 & 5.241604 & 8.991709 & 11.298919 \\
\hline 27 & 1 & 0 & 6.206952 & 9.250572 & 11.711092 \\
\hline 28 & 6 & 0 & 7.509850 & 8.046884 & 9.900835 \\
\hline 29 & 1 & 0 & 8.181899 & 7.575344 & 9.189578 \\
\hline 30 & 1 & 0 & 7.650503 & 7.606795 & 10.890379 \\
\hline 31 & 1 & 0 & 7.701283 & 9.121791 & 9.935392 \\
\hline 32 & 6 & 0 & 5.562293 & 9.338294 & 4.638588 \\
\hline 33 & 1 & 0 & 5.959407 & 9.911184 & 3.809412 \\
\hline 34 & 6 & 0 & 5.453134 & 7.954587 & 4.535641 \\
\hline 35 & 1 & 0 & 5.763650 & 7.448053 & 3.630377 \\
\hline 36 & 6 & 0 & 4.657852 & 9.257191 & 6.871426 \\
\hline 37 & 1 & 0 & 4.348172 & 9.765098 & 7.777864 \\
\hline 38 & 6 & 0 & 2.823403 & 9.103848 & 11.425557 \\
\hline 39 & 1 & 0 & 1.927356 & 9.445414 & 11.926628 \\
\hline 40 & 6 & 0 & 4.079250 & 9.416332 & 11.933813 \\
\hline 41 & 1 & 0 & 4.162424 & 10.003663 & 12.840425 \\
\hline 42 & 6 & 0 & 5.167240 & 9.987425 & 5.804031 \\
\hline 43 & 1 & 0 & 5.255307 & 11.063840 & 5.884993 \\
\hline 44 & 53 & 0 & 6.462604 & 1.920059 & 8.605835 \\
\hline
\end{tabular}

Total energy \(E(R M 062 X)=-1860.50627712\) Hartrees

\section*{34e}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Center \\
Number
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Atomic \\
Number
\end{tabular}} & \multirow[t]{2}{*}{Atomic Type} & \multicolumn{3}{|r|}{Coordinates (Angstroms)} \\
\hline & & & X & Y & Z \\
\hline 1 & 53 & 0 & 5.471389 & 29.133660 & 6.956364 \\
\hline 2 & 53 & 0 & 7.383260 & 28.378502 & 9.467028 \\
\hline 3 & 15 & 0 & 3.983345 & 29.735234 & 5.083385 \\
\hline 4 & 7 & 0 & 2.579412 & 30.054800 & 2.484456 \\
\hline 5 & 7 & 0 & 6.357918 & 31.240791 & 4.347925 \\
\hline 6 & 6 & 0 & 3.670430 & 29.126967 & 2.402499 \\
\hline 7 & 6 & 0 & 2.349297 & 29.189373 & 5.637960 \\
\hline 8 & 6 & 0 & 4.424219 & 28.860376 & 3.555703 \\
\hline 9 & 6 & 0 & 0.567421 & 27.568939 & 5.583475 \\
\hline 10 & 1 & 0 & 0.120463 & 26.684140 & 5.147475 \\
\hline 11 & 6 & 0 & -0.053519 & 28.217357 & 6.644831 \\
\hline 12 & 1 & 0 & -0.990979 & 27.840536 & 7.035465 \\
\hline 13 & 6 & 0 & 4.018275 & 28.488590 & 1.212964 \\
\hline 14 & 1 & 0 & 3.444587 & 28.688907 & 0.314824 \\
\hline 15 & 6 & 0 & 0.535971 & 29.341209 & 7.218278 \\
\hline 16 & 1 & 0 & 0.063008 & 29.837310 & 8.056581 \\
\hline 17 & 6 & 0 & 2.829812 & 32.299409 & 4.862989 \\
\hline 18 & 1 & 0 & 1.873038 & 31.841896 & 5.082096 \\
\hline 19 & 6 & 0 & 1.741799 & 29.822976 & 6.726821 \\
\hline 20 & 1 & 0 & 2.209221 & 30.681491 & 7.197070 \\
\hline 21 & 6 & 0 & 1.771942 & 28.049111 & 5.080728 \\
\hline 22 & 1 & 0 & 2.263856 & 27.528711 & 4.267231 \\
\hline 23 & 6 & 0 & 5.216563 & 32.099163 & 4.450037 \\
\hline 24 & 6 & 0 & 3.989362 & 31.524261 & 4.799259 \\
\hline 25 & 6 & 0 & 5.833142 & 27.348696 & 2.320851 \\
\hline 26 & 1 & 0 & 6.670062 & 26.662710 & 2.289586 \\
\hline 27 & 6 & 0 & 5.502355 & 27.977307 & 3.514017 \\
\hline 28 & 1 & 0 & 6.085707 & 27.784626 & 4.406014 \\
\hline 29 & 6 & 0 & 5.090942 & 27.605424 & 1.172290 \\
\hline 30 & 1 & 0 & 5.349641 & 27.117325 & 0.240382 \\
\hline 31 & 6 & 0 & 1.305812 & 29.490597 & 2.031651 \\
\hline 32 & 1 & 0 & 1.273893 & 29.338604 & 0.943476 \\
\hline 33 & 1 & 0 & 0.505442 & 30.180995 & 2.305091 \\
\hline 34 & 1 & 0 & 1.120436 & 28.536957 & 2.523744 \\
\hline 35 & 6 & 0 & 5.273518 & 33.467752 & 4.190407 \\
\hline 36 & 1 & 0 & 6.220174 & 33.919870 & 3.916076 \\
\hline 37 & 6 & 0 & 2.862390 & 31.300296 & 1.764157 \\
\hline 38 & 1 & 0 & 3.793268 & 31.742193 & 2.122327 \\
\hline 39 & 1 & 0 & 2.052835 & 32.006685 & 1.957641 \\
\hline 40 & 1 & 0 & 2.938780 & 31.140841 & 0.679010 \\
\hline 41 & 6 & 0 & 2.903964 & 33.661189 & 4.605702 \\
\hline 42 & 1 & 0 & 2.006597 & 34.265456 & 4.652845 \\
\hline 43 & 6 & 0 & 4.124558 & 34.244326 & 4.273524 \\
\hline 44 & 1 & 0 & 4.177713 & 35.306855 & 4.069207 \\
\hline 45 & 6 & 0 & 6.820902 & 31.079924 & 2.967830 \\
\hline 46 & 1 & 0 & 6.002306 & 30.736982 & 2.332671 \\
\hline 47 & 1 & 0 & 7.605727 & 30.320772 & 2.951646 \\
\hline 48 & 1 & 0 & 7.226626 & 32.014062 & 2.553353 \\
\hline 49 & 6 & 0 & 7.457776 & 31.648215 & 5.224286 \\
\hline 50 & 1 & 0 & 7.956186 & 32.562837 & 4.873707 \\
\hline 51 & 1 & 0 & 8.193070 & 30.841793 & 5.257914 \\
\hline 52 & 1 & 0 & 7.082204 & 31.813719 & 6.233969 \\
\hline
\end{tabular}

Total energy \(E(\) RM062X \()=-1899.36160981\) Hartrees

34g

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Center \\
Number
\end{tabular}} & \multirow[t]{2}{*}{Atomic Number} & \multirow[t]{2}{*}{Atomic Type} & \multicolumn{3}{|r|}{Coordinates (Angstroms)} \\
\hline & & & X & Y & Z \\
\hline 1 & 53 & 0 & 6.831006 & 5.419004 & 3.173585 \\
\hline 2 & 53 & 0 & 9.702202 & 6.323791 & 2.288064 \\
\hline 3 & 15 & 0 & 4.550257 & 4.706713 & 3.865210 \\
\hline 4 & 6 & 0 & 3.752623 & 3.751338 & 2.552771 \\
\hline 5 & 6 & 0 & 2.426650 & 4.003682 & 2.196928 \\
\hline 6 & 6 & 0 & 1.820581 & 3.218861 & 1.221764 \\
\hline 7 & 6 & 0 & 2.531640 & 2.192319 & 0.610250 \\
\hline 8 & 6 & 0 & 3.855217 & 1.943982 & 0.966865 \\
\hline 9 & 6 & 0 & 4.471830 & 2.723282 & 1.935399 \\
\hline 10 & 6 & 0 & 3.510300 & 6.142210 & 4.224737 \\
\hline 11 & 6 & 0 & 3.484294 & 7.203933 & 3.315601 \\
\hline 12 & 6 & 0 & 2.642221 & 8.282486 & 3.547706 \\
\hline 13 & 6 & 0 & 1.836061 & 8.306278 & 4.683905 \\
\hline 14 & 6 & 0 & 1.869395 & 7.252482 & 5.589945 \\
\hline 15 & 6 & 0 & 2.705298 & 6.164024 & 5.365081 \\
\hline 16 & 6 & 0 & 4.608112 & 3.677862 & 5.352138 \\
\hline 17 & 6 & 0 & 5.410236 & 4.079518 & 6.424266 \\
\hline 18 & 6 & 0 & 5.402395 & 3.338984 & 7.598595 \\
\hline 19 & 6 & 0 & 4.605640 & 2.201084 & 7.700518 \\
\hline 20 & 6 & 0 & 3.815328 & 1.799170 & 6.629428 \\
\hline 21 & 6 & 0 & 3.811584 & 2.535595 & 5.449490 \\
\hline 22 & 1 & 0 & 1.870236 & 4.802393 & 2.673495 \\
\hline 23 & 1 & 0 & 0.792516 & 3.412508 & 0.942160 \\
\hline 24 & 1 & 0 & 2.055913 & 1.584847 & -0.149994 \\
\hline 25 & 1 & 0 & 4.408553 & 1.146938 & 0.486173 \\
\hline 26 & 1 & 0 & 5.504582 & 2.534158 & 2.208520 \\
\hline 27 & 1 & 0 & 4.116444 & 7.188153 & 2.434103 \\
\hline 28 & 1 & 0 & 2.618617 & 9.106120 & 2.845333 \\
\hline 29 & 1 & 0 & 1.182969 & 9.151570 & 4.863627 \\
\hline 30 & 1 & 0 & 1.244837 & 7.273224 & 6.474334 \\
\hline 31 & 1 & 0 & 2.727107 & 5.342407 & 6.071249 \\
\hline 32 & 1 & 0 & 6.034980 & 4.962840 & 6.344362 \\
\hline 33 & 1 & 0 & 6.021207 & 3.647349 & 8.431889 \\
\hline 34 & 1 & 0 & 4.604879 & 1.624291 & 8.617393 \\
\hline 35 & 1 & 0 & 3.199395 & 0.911984 & 6.707676 \\
\hline
\end{tabular}
Total energy E(RM062X) = -1631.47406409 Hartrees
```

$\mathbf{3 5 a}^{+}$

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	53	0	10.357613	-0.526286	13.258957
2	15	0	12.116649	-1.738491	14.348993
3	8	0	10.114503	-3.785451	14.224186
4	6	0	14.514954	-0.692342	15.225166
5	1	0	14.256995	-1.109129	16.191461
6	6	0	13.639268	-0.798652	14.141932
7	6	0	11.734848	-1.875589	16.101546
8	6	0	13.969700	-0.257085	12.896023
9	1	0	13.286598	-0.336146	12.057473
10	6	0	12.312598	-3.349958	13.594999
11	6	0	13.522017	-3.721441	13.002296
12	1	0	14.355978	-3.030417	12.988727
13	6	0	11.890895	-3.102906	16.746567
14	1	0	12.186451	-3.985918	16.191993
15	6	0	11.359262	-0.731176	16.809109
16	1	0	11.237383	0.219614	16.301748
17	6	0	15.729897	-0.038475	15.052957
18	1	0	16.411366	0.050622	15.889296
19	6	0	16.064046	0.498703	13.815549
20	1	0	17.011286	1.008126	13.687751
21	6	0	11.224253	-4.243936	13.623841
22	6	0	15.186534	0.390047	12.738759
23	1	0	15.447932	0.812925	11.777151
24	6	0	12.576298	-5.862353	12.472601
25	1	0	12.676033	-6.848416	12.035157
26	6	0	11.138400	-0.822284	18.175730
27	1	0	10.845753	0.059266	18.731738
28	6	0	11.665132	-3.180015	18.115850
29	1	0	11.781901	-4.128677	18.624106
30	6	0	11.365363	-5.509044	13.058136
31	1	0	10.545600	-6.213582	13.071210

32	6	0	11.289729	-2.044746	18.826166
33	1	0	11.111883	-2.111294	19.892451
34	6	0	13.653622	-4.982663	12.440440
35	1	0	14.589238	-5.276456	11.984196
36	6	0	8.984295	-4.649284	14.330154
37	1	0	8.624790	-4.933049	13.339300
38	1	0	8.223586	-4.073791	14.849042
39	1	0	9.238590	-5.538858	14.909884

Total energy $\mathrm{E}(\mathrm{RM} 062 \mathrm{X})=-1448.16017141$ Hartrees

35b ${ }^{+}$

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	53	0	0.546279	5.525988	5.054919
2	15	0	-1.219087	4.304904	3.997744
3	7	0	0.860642	2.281833	3.866544
4	6	0	-3.554255	5.656261	3.312216
5	1	0	-3.296788	5.453286	2.279969
6	6	0	-0.740540	3.974031	-0.535107
7	1	0	-0.642574	3.879832	-1.609674
8	6	0	-0.977685	4.207742	2.214230
9	6	0	-3.053767	5.516799	5.684684
10	1	0	-2.401375	5.204106	6.493180
11	6	0	-0.050473	4.995067	1.537236
12	1	0	0.581965	5.692083	2.072931
13	6	0	-1.400738	2.638107	4.660612
14	6	0	-2.725587	5.235689	4.353064
15	6	0	-0.322785	1.760612	4.478160
16	6	0	-1.792717	3.302844	1.525166
17	1	0	-2.508295	2.681168	2.053656
18	6	0	0.066733	4.869806	0.157758
19	1	0	0.792386	5.472606	-0.373168
20	6	0	-2.593876	2.212239	5.249243
21	1	0	-3.427316	2.892711	5.370575
22	6	0	-4.222899	6.205443	5.968348
23	1	0	-4.480368	6.423466	6.997104

24	6	0	-5.057037	6.620760	4.931549
25	1	0	-5.966884	7.162911	5.158022
26	6	0	-4.722756	6.350413	3.610721
27	1	0	-5.366897	6.680321	2.805620
28	6	0	1.165874	1.651543	2.578555
29	1	0	1.485706	0.606581	2.692173
30	1	0	1.972485	2.212133	2.102256
31	1	0	0.290481	1.684236	1.929978
32	6	0	-1.672109	3.195515	0.145915
33	1	0	-2.299649	2.497059	-0.392908
34	6	0	2.019837	2.226039	4.762026
35	1	0	1.763304	2.659224	5.728997
36	1	0	2.827649	2.812537	4.320195
37	1	0	2.375427	1.198452	4.917966
38	6	0	-0.454412	0.443335	4.904362
39	1	0	0.370067	-0.247969	4.772436
40	6	0	-2.704976	0.892621	5.667796
41	1	0	-3.625356	0.550756	6.123470
42	6	0	-1.638602	0.015239	5.496604
43	1	0	-1.730537	-1.012820	5.825192

Total energy $E(R M 062 X)=-1467.58674420$ Hartrees

35c ${ }^{+}$

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	X	Y	Z
1	53	0	5.853805	9.421713	5.234953
2	15	0	4.689311	9.584007	3.144625
3	7	0	7.126873	11.127567	2.535659
4	6	0	4.188823	11.284603	2.737512
5	6	0	2.853880	11.447720	2.341149
6	1	0	2.183803	10.599554	2.292485
7	6	0	2.369948	12.702519	1.995924
8	1	0	1.339835	12.809837	1.681924
9	6	0	3.211538	13.803344	2.059499
10	1	0	2.842794	14.787713	1.798627
11	6	0	4.538506	13.641723	2.441880
12	1	0	5.198524	14.501060	2.467244

13	6	0	5.055392	12.395702	2.780873
14	6	0	6.513338	12.288404	3.160240
15	1	0	7.023360	13.224502	2.885296
16	1	0	6.601070	12.183872	4.246451
17	6	0	7.224617	11.294880	1.087421
18	1	0	6.238611	11.478367	0.656356
19	1	0	7.626474	10.380043	0.645923
20	1	0	7.882844	12.136572	0.824897
21	6	0	8.449228	10.856792	3.088939
22	1	0	9.158880	11.666064	2.860577
23	1	0	8.834243	9.927762	2.661730
24	1	0	8.388373	10.744123	4.171740
25	6	0	3.171722	8.647378	3.481428
26	6	0	2.313064	9.093950	4.493400
27	1	0	2.542499	9.994894	5.053071
28	6	0	1.160201	8.380701	4.777080
29	1	0	0.493506	8.726136	5.556913
30	6	0	0.864126	7.220222	4.061874
31	1	0	-0.036560	6.663321	4.289300
32	6	0	1.720431	6.774828	3.064283
33	1	0	1.492297	5.872195	2.511765
34	6	0	2.881429	7.485059	2.768186
35	1	0	3.547111	7.128182	1.992421
36	6	0	5.556029	8.745716	1.800167
37	6	0	5.046543	8.930337	0.513034
38	1	0	4.191659	9.574153	0.334495
39	6	0	5.657917	8.287832	-0.557694
40	1	0	5.268334	8.429976	-1.557800
41	6	0	6.766735	7.476373	-0.343333
42	1	0	7.245053	6.983327	-1.180676
43	6	0	7.266082	7.296916	0.943952
44	1	0	8.129629	6.665452	1.110963
45	6	0	6.661438	7.928883	2.023763
46	1	0	7.059099	7.794961	3.022593

Total energy $E($ RM0 62X $)=-1506.89273656$ Hartrees

35d ${ }^{+}$

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	X	Y	Z
1	53	0	-3.836387	0.523731	4.967835
2	15	0	-2.056808	1.656235	6.117937
3	8	0	-3.982191	1.335650	8.243649
4	8	0	-2.621070	3.558013	4.058775
5	6	0	-2.683205	4.187533	5.243189
6	6	0	0.935566	0.244017	3.739121
7	1	0	1.163004	-0.660435	3.189390
8	6	0	-0.269563	0.348292	4.421564
9	1	0	-0.975753	-0.473514	4.400946
10	6	0	-2.943914	5.546199	5.411004
11	1	0	-3.130164	6.181027	4.556078
12	6	0	-2.447309	3.384656	6.375259
13	6	0	-0.557232	1.519352	5.123851
14	6	0	1.842254	1.299837	3.758396
15	1	0	2.778913	1.215152	3.221136
16	6	0	-2.718856	5.296087	7.814140
17	1	0	-2.727024	5.731698	8.804113
18	6	0	-2.834274	0.743263	8.613629
19	6	0	-2.813946	4.317136	2.867365
20	1	0	-3.810969	4.761705	2.852849
21	1	0	-2.713437	3.608781	2.050343
22	1	0	-2.051439	5.094067	2.782147
23	6	0	-2.961376	6.083725	6.692507
24	1	0	-3.164135	7.141089	6.812578
25	6	0	0.349057	2.581429	5.149126
26	1	0	0.123560	3.489473	5.696450
27	6	0	-2.628492	0.088520	9.825497
28	1	0	-3.422072	0.018814	10.556240
29	6	0	-0.345732	-0.412779	9.173917
30	1	0	0.613118	-0.861800	9.395219
31	6	0	-2.463505	3.942638	7.654915
32	1	0	-2.263633	3.322929	8.520280
33	6	0	-1.388351	-0.482087	10.091575
34	1	0	-1.239934	-0.989410	11.037100
35	6	0	-0.542182	0.239720	7.965273
36	1	0	0.264122	0.300326	7.244313
37	6	0	-5.084975	1.320386	9.147231
38	1	0	-4.828526	1.844001	10.070632
39	1	0	-5.388004	0.294564	9.365682
40	1	0	-5.888727	1.842742	8.636764
41	6	0	1.550522	2.464491	4.460973
42	1	0	2.255219	3.286210	4.473473
43	6	0	-1.779757	0.822645	7.682558

Total energy $\mathrm{E}(\mathrm{RM} 062 \mathrm{X})=-1562.67678917$ Hartrees
$35 e^{+}$

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	53	0	8.504766	6.318692	7.195341
2	15	0	7.305496	4.638657	8.439109
3	7	0	6.452628	2.557916	10.203364
4	7	0	8.794550	2.969786	6.569192
5	6	0	7.855322	2.807890	10.367122
6	6	0	6.531693	3.483962	7.287106
7	6	0	5.152673	3.261966	7.285290
8	1	0	4.504835	3.789955	7.973454
9	6	0	6.196331	1.245578	9.596662
10	1	0	6.733484	1.151232	8.652057
11	1	0	5.127232	1.159463	9.394566
12	1	0	6.497083	0.423035	10.259255
13	6	0	8.437526	3.809033	9.579235
14	6	0	9.799686	4.090089	9.657700
15	1	0	10.243652	4.853686	9.031406
16	6	0	5.690331	2.689186	11.449693
17	1	0	5.890933	1.866196	12.148669
18	1	0	4.626657	2.684345	11.204666
19	1	0	5.926921	3.631292	11.940515
20	6	0	7.385624	2.743081	6.461257
21	6	0	5.036838	6.233241	8.660587
22	1	0	4.895820	6.073935	7.597388
23	6	0	6.098133	5.629065	9.342172
24	6	0	4.619706	2.320265	6.417337
25	1	0	3.551860	2.143094	6.410081
26	6	0	5.456992	1.597313	5.570725
27	1	0	5.036714	0.861100	4.896389
28	6	0	6.315606	5.897819	10.693785
29	1	0	7.167028	5.471584	11.211921
30	6	0	8.662490	2.094281	11.249842
31	1	0	8.224971	1.316637	11.865458
32	6	0	10.589319	3.368598	10.542648
33	1	0	11.648759	3.580067	10.609830
34	6	0	4.359562	7.304191	10.710019

35	1	0	3.677459	7.953135	11.245339
36	6	0	10.021163	2.374622	11.335190
37	1	0	10.641856	1.811652	12.021503
38	6	0	5.438155	6.732964	11.375374
39	1	0	5.603833	6.938625	12.425427
40	6	0	6.830954	1.801157	5.596244
41	1	0	7.480963	1.220141	4.951783
42	6	0	4.163279	7.059766	9.353062
43	1	0	3.335529	7.521663	8.829991
44	6	0	9.404954	3.353416	5.293385
45	1	0	9.456354	2.515434	4.585271
46	1	0	10.419862	3.706881	5.485548
47	1	0	8.834433	4.163796	4.839887
48	6	0	9.501271	1.828562	7.159847
49	1	0	9.060578	1.568025	8.123552
50	1	0	10.541785	2.114231	7.326404
51	1	0	9.477781	0.944613	6.507983

Total energy $\mathrm{E}(\mathrm{RM} 062 \mathrm{X})=-1601.53278983$ Hartrees

$35 g^{+}$

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	X	Y	Z
1	53	0	6.681025	5.359043	3.214344
2	15	0	4.486750	4.681435	3.883592
3	6	0	3.737871	3.742835	2.546017
4	6	0	2.427420	4.033337	2.161495
5	6	0	1.825126	3.258462	1.176525
6	6	0	2.523726	2.210301	0.589327
7	6	0	3.831018	1.924334	0.979776
8	6	0	4.446410	2.689320	1.958361
9	6	0	3.504777	6.146687	4.232959
10	6	0	3.472226	7.195845	3.308975
11	6	0	2.642059	8.280604	3.546309
12	6	0	1.853565	8.317871	4.695419
13	6	0	1.890480	7.272441	5.610192
14	6	0	2.716576	6.176948	5.385412

15	6	0	4.607787	3.665226	5.361994
16	6	0	5.358271	4.116780	6.452429
17	6	0	5.361915	3.374669	7.623840
18	6	0	4.626849	2.192993	7.704063
19	6	0	3.887379	1.746736	6.615419
20	6	0	3.872222	2.480672	5.434169
21	1	0	1.881193	4.848689	2.620546
22	1	0	0.810458	3.478635	0.870376
23	1	0	2.050449	1.612221	-0.179670
24	1	0	4.371546	1.108148	0.517646
25	1	0	5.465229	2.469656	2.259127
26	1	0	4.087179	7.167039	2.416092
27	1	0	2.611459	9.098003	2.837345
28	1	0	1.209097	9.169159	4.877237
29	1	0	1.277798	7.304287	6.502071
30	1	0	2.741372	5.361249	6.097946
31	1	0	5.931734	5.035312	6.389692
32	1	0	5.939565	3.715714	8.473451
33	1	0	4.634122	1.617198	8.621377
34	1	0	3.319907	0.827137	6.679472
35	1	0	3.291026	2.135231	4.587561

Total energy $\mathrm{E}(\mathrm{RM} 062 \mathrm{X})=-1333.64242089$ Hartrees

A2.5 - References

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, G. A. Cheeseman, J. R. Scalmani, G.; Barone, V. Petersson, X. Nakatsuji, H.; Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F.; Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. Montgomery, J. A., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian 16, Revision B. 01 2016.
R. G. Parr and W. Yang, Density-functional theory of atoms and molecules, Oxford University Press, 1989.
R. Ditchfield, W. J. Hehre and J. A. Pople, J. Chem. Phys., 1971, 54, 724-728.
T. H. Dunning, J. Chem. Phys., 1989, 90, 1007-1023.
W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graph., 1996, 14, 33-38.
A. D. McLean and G. S. Chandler, J. Chem. Phys., 1980, 72, 5639-5648.
L. Noodleman, J. Chem. Phys., 1981, 74, 5737-5743.
L. Noodleman and E. R. Davidson, Chem. Phys., 1986, 109, 131-143.
Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215-241.
E. D. Glendening, A. E. Reed, J. E. Carpenter and F. Weinhold, .
A. J. Bridgeman, G. Cavigliasso, L. R. Ireland and J. Rothery, J. Chem. Soc., Dalt. Trans., 2001, 2095-2108.
O. V. Sizova, L. V. Skripnikov and A. Y. Sokolov, J. Mol. Struct. THEOCHEM, 2008, 870, 1-9.
T. Lu and F. Chen, J. Comput. Chem., 2012, 33, 580-592.
Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta and P. V. R. Schleyer, Chem. Rev., 2005, 105, 3842-3888.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian and J. V. Ort, Gaussian 09, Revision E.01.2016.
F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297-3305.

Appendix 3

Crystallographic Data Tables

Compound	1 a	1b	1c
Empirical formula	$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2}$	$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2}$	$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2}$
Formula weight	196.25	210.27	224.3
Temperature/K	100.0(4)	100.0(4)	100.0(6)
Crystal system	triclinic	triclinic	orthorhombic
Space group	P-1	P-1	Pcen
a/A	5.4339(2)	10.2688(3)	24.3256(3)
b/A	8.3854(4)	10.5908(4)	10.15010 (10)
c/Å	11.8797(6)	11.3233(4)	9.96740 (10)
$\alpha /{ }^{\circ}$	73.513(4)	96.798(3)	90
$\beta /{ }^{\circ}$	82.856(4)	103.414(3)	90
$\gamma /{ }^{\circ}$	87.377(4)	95.890(3)	90
Volume/ 3	514.99(4)	1178.61(7)	2461.02(5)
Z	2	4	8
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.266	1.185	1.211
μ / mm^{-1}	0.591	0.548	0.554
F(000)	208	448	960
Crystal size/mm ${ }^{3}$	$0.271 \times 0.163 \times 0.036$	$0.349 \times 0.185 \times 0.121$	$0.197 \times 0.178 \times 0.073$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$	$\mathrm{CuK} \alpha(\lambda=1.54184)$	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ}$	7.814 to 144.216	8.116 to 137.816	7.268 to 146.974
Index ranges	$-6 \leq \mathrm{h} \leq 6,-9 \leq \mathrm{k} \leq 10,-14 \leq \mathrm{l} \leq 14$	$-8 \leq \mathrm{h} \leq 12,-12 \leq \mathrm{k} \leq 12,-13 \leq \mathrm{l} \leq 13$	$-29 \leq \mathrm{h} \leq 30,-12 \leq \mathrm{k} \leq 10,-12 \leq \mathrm{l} \leq 12$
Reflections collected	8360	18270	37702
Independent reflections	2034 [$\left.\mathrm{R}_{\text {int }}=0.0281, \mathrm{R}_{\text {sigma }}=0.0218\right]$	$4382\left[\mathrm{R}_{\text {int }}=0.0265, \mathrm{R}_{\text {sigma }}=0.0198\right]$	$2488\left[\mathrm{R}_{\text {int }}=0.0397, \mathrm{R}_{\text {sigma }}=0.0115\right]$
Data/restraints/parameters	2034/0/144	4382/0/307	2488/0/164
Goodness-of-fit on F^{2}	1.076	1.049	1.057
Final R indexes [$\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0435, \mathrm{wR}_{2}=0.1154$	$\mathrm{R}_{1}=0.0364, \mathrm{wR}_{2}=0.0930$	$\mathrm{R}_{1}=0.0367, \mathrm{wR}_{2}=0.0965$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0467, \mathrm{wR}_{2}=0.1186$	$\mathrm{R}_{1}=0.0379, \mathrm{wR}_{2}=0.0948$	$\mathrm{R}_{1}=0.0381, \mathrm{wR}_{2}=0.0982$
Largest diff. peak/hole / e \AA^{-3}	0.50/-0.19	0.13/-0.25	0.23/-0.26

Compound	1d	1 e	1 f
Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2}$	$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2}$	$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$
Formula weight	224.3	224.3	226.27
Temperature/K	100.0(4)	100.0(5)	100.0(4)
Crystal system	monoclinic	orthorhombic	orthorhombic
Space group	$\mathrm{P} 21 / \mathrm{c}$	P2, $2_{1} 2_{1}$	$\mathrm{P} 2_{1} 2_{1} 2_{1}$
a/ \AA	10.0868(2)	9.53440 (10)	9.46225(6)
b/Å	14.2443(2)	10.67700(10)	10.61204(5)
c/Å	9.9091(2)	12.48050(10)	11.99338(5)
$\alpha /{ }^{\circ}$	90	90	90
$\beta /{ }^{\circ}$	118.647(3)	90	90
$\gamma /{ }^{\circ}$	90	90	90
Volume/ \AA^{3}	1249.45(5)	1270.50(2)	1204.302(10)
Z	4	4	4
$\rho_{\text {calk }} \mathrm{g} / \mathrm{cm}^{3}$	1.192	1.173	1.248
μ / mm^{-1}	0.546	0.537	0.637
F(000)	480	480	480
Crystal size/mm ${ }^{3}$	$0.314 \times 0.1 \times 0.05$	$0.356 \times 0.280 \times 0.180$	$0.369 \times 0.245 \times 0.132$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$	$\mathrm{CuK} \alpha(\lambda=1.54184)$	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ}$	9.992 to 135.786	10.906 to 144.194	11.132 to 138.564
Index ranges	$-12 \leq \mathrm{h} \leq 12,-14 \leq \mathrm{k} \leq 17,-11 \leq 1 \leq 8$	$-11 \leq \mathrm{h} \leq 11,-13 \leq \mathrm{k} \leq 13,-15 \leq 1 \leq 15$	$-10 \leq h \leq 11,-12 \leq k \leq 12,-14 \leq 1 \leq 14$
Reflections collected	13641	29924	35929
Independent reflections	$2263\left[\mathrm{R}_{\text {int }}=0.0342, \mathrm{R}_{\text {sigma }}=0.0180\right]$	$2511\left[\mathrm{R}_{\text {int }}=0.0271, \mathrm{R}_{\text {sigma }}=0.0099\right]$	$2267\left[\mathrm{R}_{\text {int }}=0.0309, \mathrm{R}_{\text {sigma }}=0.0100\right]$
Data/restraints/parameters	2263/0/186	2511/0/164	2267/0/163
Goodness-of-fit on F^{2}	1.041	1.072	1.123
Final R indexes [$\mathrm{I}>=2 \sigma$ (I]	$\mathrm{R}_{1}=0.0336, \mathrm{wR}_{2}=0.0900$	$\mathrm{R}_{1}=0.0267, \mathrm{wR}_{2}=0.0674$	$\mathrm{R}_{1}=0.0278, \mathrm{wR}_{2}=0.0711$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0351, \mathrm{wR}_{2}=0.0919$	$\mathrm{R}_{1}=0.0269, \mathrm{wR}_{2}=0.0676$	$\mathrm{R}_{1}=0.0278, \mathrm{wR}_{2}=0.0712$
Largest diff. peak/hole / e \AA^{-3}	0.15/-0.18	0.15/-0.16	0.15/-0.24
Flack Parameter		-0.07(8)	-0.02(4)

Compound	1 g	1h	1 i
Empirical formula	$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2}$	$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2}$	$\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{3}$
Formula weight	210.27	238.32	197.24
Temperature/K	100.0(5)	100.0(5)	100.0(3)
Crystal system	monoclinic	monoclinic	monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{c}$	$\mathrm{P} 2_{1} / \mathrm{n}$	$\mathrm{P}_{1} / \mathrm{c}$
a/Å	12.4627(3)	7.51140(10)	12.15110(10)
b/Å	8.37530 (10)	23.1222(2)	15.80570(10)
c/Å	11.9105(2)	7.68910 (10)	10.62300(10)
$\alpha /{ }^{\circ}$	90	90	90
$\beta /{ }^{\circ}$	113.892(2)	99.9360(10)	94.3090(10)
$\gamma /{ }^{\circ}$	90	90	90
Volume/ ${ }^{\text {3 }}$	1136.67(4)	1315.41(3)	2034.45(3)
Z	4	4	8
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.229	1.203	1.288
μ / mm^{-1}	0.568	0.546	0.631
F(000)	448	512	832
Crystal size/mm ${ }^{3}$	$0.278 \times 0.076 \times 0.030$	$0.345 \times 0.23 \times 0.154$	$0.279 \times 0.218 \times 0.161$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$	$\mathrm{CuK} \alpha(\lambda=1.54184)$	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ}$	7.758 to 136.476	7.646 to 140.148	7.296 to 137.542
Index ranges	$-15 \leq h \leq 15,-9 \leq k \leq 10,-14 \leq 1 \leq 11$	$-9 \leq h \leq 9,-28 \leq k \leq 27,-6 \leq 1 \leq 9$	$-14 \leq \mathrm{h} \leq 14,-19 \leq \mathrm{k} \leq 19,-12 \leq 1 \leq 11$
Reflections collected	16942	20606	30873
Independent reflections	$2076\left[\mathrm{R}_{\text {int }}=0.0347, \mathrm{R}_{\text {sigma }}=0.0156\right]$	$2496\left[\mathrm{R}_{\text {int }}=0.0227, \mathrm{R}_{\text {sigma }}=0.0105\right]$	$3757\left[\mathrm{R}_{\text {int }}=0.0267, \mathrm{R}_{\text {sigma }}=0.0141\right]$
Data/restraints/parameters	2076/0/154	2496/0/185	3757/0/287
Goodness-of-fit on F^{2}	1.076	1.056	1.064
Final R indexes [I>=2 ${ }^{\text {(}} \mathrm{I}$) $]$	$\mathrm{R}_{1}=0.0518, \mathrm{wR}_{2}=0.1348$	$\mathrm{R}_{1}=0.0365, \mathrm{wR}_{2}=0.1020$	$\mathrm{R}_{1}=0.0347, \mathrm{wR}_{2}=0.0859$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0534, \mathrm{wR}_{2}=0.1362$	$\mathrm{R}_{1}=0.0371, \mathrm{wR}_{2}=0.1025$	$\mathrm{R}_{1}=0.0356, \mathrm{wR}_{2}=0.0867$
Largest diff. peak/hole /e \AA^{-3}	0.55/-0.29	0.20/-0.19	0.17/-0.29

Compound
Empirical formula Formula weight Temperature/K Crystal system
Space group
a/Å
b/Å
c/Å
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
Volume/ \AA^{3}
Z
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size/mm ${ }^{3}$
Radiation
2Θ range for data collection/ ${ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
Flack Parameter

$$
\begin{gathered}
\mathbf{1 j} \\
\mathrm{C}_{56} \mathrm{H}_{60} \mathrm{~N}_{12} \\
901.16 \\
100.0(4) \\
\text { triclinic } \\
\mathrm{P}-1 \\
11.3101(4) \\
14.8285(5) \\
15.5662(5) \\
89.538(3) \\
89.587(3) \\
70.936(3) \\
2467.35(15) \\
2 \\
1.213 \\
0.58 \\
960 \\
0.255 \times 0.181 \times 0.055 \\
\mathrm{CuK} \alpha(\lambda=1.54184) \\
8.272 \text { to } 137.556 \\
-13 \leq \mathrm{h} \leq 13,-17 \leq \mathrm{k} \leq 17,-18 \leq 1 \leq 16 \\
28668 \\
9132\left[\mathrm{R}_{\text {int }}=0.0298, \mathrm{R}_{\text {sigma }}=0.0316\right] \\
9132 / 0 / 653 \\
1.05 \\
\mathrm{R}_{1}=0.0402, \mathrm{wR} \\
\mathrm{R}_{2}=0.0438, \mathrm{wR}_{2}=0.1039 \\
0.24 /-0.27
\end{gathered}
$$

```
        1k
```

 1k
 C}\mp@subsup{\textrm{C}}{4}{}\mp@subsup{\textrm{H}}{14}{4}\mp@subsup{\textrm{N}}{2}{}\textrm{O
 C}\mp@subsup{\textrm{C}}{4}{}\mp@subsup{\textrm{H}}{14}{4}\mp@subsup{\textrm{N}}{2}{}\textrm{O
 226.27
 226.27
 100.0(5)
 100.0(5)
 monoclinic
 monoclinic
 P2,/c
 P2,/c
 6.7241(2)
 6.7241(2)
 18.5287(4)
 18.5287(4)
 10.0457(2)
 10.0457(2)
 90
 90
 104.416(2)
 104.416(2)
 90
 90
 1212.17(5)
 1212.17(5)
 4
 4
 1.24
 1.24
 0.633
 0.633
 4 8 0
 4 8 0
 0.186 × 0.099 × 0.053
 0.186 × 0.099 × 0.053
 CuK\alpha (}\lambda=1.54184
 CuK\alpha (}\lambda=1.54184
 9.546 to 141.55 8.894 to 144.256
9.546 to 141.55 8.894 to 144.256
-6\leqh\leq8,-22\leqk\leq22,-12\leql\leq11 - -17\leqh\leq16,-16\leqk\leq17,-34\leql\leq34
-6\leqh\leq8,-22\leqk\leq22,-12\leql\leq11 - -17\leqh\leq16,-16\leqk\leq17,-34\leql\leq34
13704
13704
2326[R [int }=0.0320, R R Sigma = 0.0170]
2326[R [int }=0.0320, R R Sigma = 0.0170]
2326/0/163
2326/0/163
1.044
1.044
R
R
R
R
0.17/-0.24
0.17/-0.24
5456[\mp@subsup{R}{\mathrm{ int }}{=}=0.0257,\mp@subsup{R}{\mathrm{ sigma }}{=0.0146]}
5456[\mp@subsup{R}{\mathrm{ int }}{=}=0.0257,\mp@subsup{R}{\mathrm{ sigma }}{=0.0146]}
R
R
R
R
0.23/-0.19

```
                            0.23/-0.19
```

Compound	1m	1n	10
Empirical formula	$\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{4}$	$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2}$	$\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2}$
Formula weight	420.54	224.3	272.34
Temperature/K	100.0(4)	100.0(3)	100.00(10)
Crystal system	triclinic	triclinic	triclinic
Space group	P-1	P-1	P-1
a/A	9.8107(3)	9.9907(3)	5.3943(2)
b/Å	10.0969(3)	11.4856(5)	11.6235(4)
c/Å	12.1839(4)	12.9769(5)	12.5219(4)
$\alpha /{ }^{\circ}$	84.082(3)	71.156(4)	111.639(3)
$\beta /{ }^{\circ}$	81.768(3)	69.266(3)	96.098(2)
$\gamma /{ }^{\circ}$	80.108(3)	71.367(3)	95.440(2)
Volume/ ${ }^{3}$	1172.89(6)	1282.11(9)	718.01(5)
Z	2	4	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.191	1.162	1.26
μ / mm^{-1}	0.55	0.532	0.575
F(000)	448	480	288
Crystal size/mm ${ }^{3}$	$0.299 \times 0.178 \times 0.105$	$0.408 \times 0.191 \times 0.103$	$0.786 \times 0.185 \times 0.057$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$	$\mathrm{CuK} \alpha(\lambda=1.54184)$	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ}$	7.356 to 140.096	7.498 to 140.926	7.686 to 147.01
Index ranges	$-11 \leq \mathrm{h} \leq 11,-12 \leq \mathrm{k} \leq 12,-14 \leq \mathrm{l} \leq 14$	$-12 \leq \mathrm{h} \leq 12,-13 \leq \mathrm{k} \leq 14,-10 \leq \mathrm{l} \leq 15$	$-6 \leq h \leq 6,-14 \leq \mathrm{k} \leq 14,-15 \leq \mathrm{l} \leq 15$
Reflections collected	13788	15235	11549
Independent reflections	4454 [$\left.\mathrm{R}_{\mathrm{int}}=0.0255, \mathrm{R}_{\text {sigma }}=0.0261\right]$	4895 [$\left.\mathrm{R}_{\mathrm{int}}=0.0245, \mathrm{R}_{\text {sigma }}=0.0241\right]$	$2902\left[\mathrm{R}_{\text {int }}=0.0345, \mathrm{R}_{\text {sigma }}=0.0229\right]$
Data/restraints/parameters	4454/0/329	4895/0/327	2902/0/254
Goodness-of-fit on F^{2}	1.032	1.043	1.036
Final R indexes [$\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0372, \mathrm{wR}_{2}=0.0985$	$\mathrm{R}_{1}=0.0401, \mathrm{wR}_{2}=0.1052$	$\mathrm{R}_{1}=0.0413, \mathrm{wR}_{2}=0.1118$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0398, \mathrm{wR}_{2}=0.1011$	$\mathrm{R}_{1}=0.0421, \mathrm{wR}_{2}=0.1073$	$\mathrm{R}_{1}=0.0430, \mathrm{wR}_{2}=0.1144$
Largest diff. peak/hole / e \AA^{-3}	0.23/-0.26	0.25/-0.26	0.19/-0.28

Compound	1p	1 r	1t
Empirical formula	$\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{2}$	$\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{~N}_{6}$	$\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2}$
Formula weight	176.26	478.63	280.4
Temperature/K	100.0(5)	100.0(6)	100.0(4)
Crystal system	orthorhombic	monoclinic	monoclinic
Space group	Fdd2	Pc	P2 ${ }_{1} / \mathrm{c}$
a/A	21.8833(2)	9.2938(2)	11.2586(2)
b/Å	18.8771(2)	11.06410(10)	14.6602(2)
c/Å	10.08110 (10)	12.6836(2)	10.14080 (10)
$\alpha /{ }^{\circ}$	90	90	90
$\beta /{ }^{\circ}$	90	93.3930 (10)	92.5580(10)
$\gamma /{ }^{\circ}$	90	90	90
Volume/A ${ }^{3}$	4164.43(7)	1301.94(4)	1672.11(4)
Z	16	2	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.125	1.221	1.114
μ / mm^{-1}	0.517	0.577	0.495
F(000)	1536	512	608
Crystal size/mm ${ }^{3}$	$0.326 \times 0.113 \times 0.057$	$0.314 \times 0.091 \times 0.051$	$0.22 \times 0.134 \times 0.077$
Radiation	$\mathrm{Cu} \mathrm{K} \mathrm{\alpha}(\lambda=1.54184)$	$\mathrm{CuK} \alpha(\lambda=1.54184)$	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ}$	10.738 to 151.896	7.99 to 144.194	7.86 to 144.25
Index ranges	$-27 \leq h \leq 27,-23 \leq \mathrm{k} \leq 23,-12 \leq \mathrm{l} \leq 12$	$-11 \leq h \leq 11,-13 \leq \mathrm{k} \leq 13,-15 \leq \mathrm{l} \leq 15$	$-13 \leq h \leq 13,-16 \leq \mathrm{k} \leq 18,-12 \leq \mathrm{l} \leq 12$
Reflections collected	25379	48861	26315
Independent reflections	$2176{\left[\mathrm{R}_{\text {int }}=0.0409, \mathrm{R}_{\text {sigma }}=0.0150\right]}^{\text {a }}$	4967 [$\left.\mathrm{R}_{\text {int }}=0.0533, \mathrm{R}_{\text {sigma }}=0.0200\right]$	3290 [$\left.\mathrm{R}_{\text {int }}=0.0487, \mathrm{R}_{\text {sigma }}=0.0234\right]$
Data/restraints/parameters	2176/1/129	4967/2/344	3290/0/202
Goodness-of-fit on F^{2}	1.062	1.103	1.022
Final R indexes [$\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0264, \mathrm{wR}_{2}=0.0718$	$\mathrm{R}_{1}=0.0519, \mathrm{wR}_{2}=0.1594$	$\mathrm{R}_{1}=0.0383, \mathrm{wR}_{2}=0.0984$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0266, \mathrm{wR}_{2}=0.0721$	$\mathrm{R}_{1}=0.0521, \mathrm{wR}_{2}=0.1596$	$\mathrm{R}_{1}=0.0397, \mathrm{wR}_{2}=0.1000$
Largest diff. peak/hole / e \AA^{-3}	0.14/-0.15	0.34/-0.27	0.27/-0.20
Flack parameter	0.07(12)	0.25(15)	

Compound	1u	1'a	2 a
Empirical formula	$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{ClN}_{2}$	$\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{Si}_{2}$	$\mathrm{C}_{13} \mathrm{H}_{5.85} \mathrm{Cl}_{4.12} \mathrm{~N}_{2} \mathrm{~S}$
Formula weight	230.69	340.61	368.33
Temperature/K	100.0(4)	293(2)	99.9(5)
Crystal system	triclinic	orthorhombic	monoclinic
Space group	P-1	Pna2 ${ }_{1}$	P2/n
a/Å	5.43260(10)	14.72318(7)	8.23610 (10)
b/Å	8.2909(2)	21.27110(10)	13.77720(10)
c/A	13.3920(5)	6.25058(4)	12.41470 (10)
$\alpha /{ }^{\circ}$	73.704(3)	90	90
$\beta /{ }^{\circ}$	84.285(2)	90	97.4330(10)
$\gamma /{ }^{\circ}$	86.871(2)	90	90
Volume/ \AA^{3}	575.86(3)	1957.546(17)	1396.86(2)
Z	2	4	4
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.33	1.156	1.751
μ / mm^{-1}	2.696	1.637	9.229
F(000)	240	736	736
Crystal size/mm ${ }^{3}$	$0.391 \times 0.314 \times 0.040$	$0.512 \times 0.087 \times 0.073$	$0.276 \times 0.22 \times 0.051$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$	$\mathrm{CuK} \alpha(\lambda=1.54184)$	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ}$	6.904 to 144.248	7.302 to 139.728	9.634 to 136.156
Index ranges	$-6 \leq h \leq 6,-10 \leq k \leq 10,-15 \leq 1 \leq 16$	$-17 \leq h \leq 17,-25 \leq k \leq 25,-7 \leq 1 \leq 7$	$-9 \leq h \leq 9,-16 \leq k \leq 16,-14 \leq 1 \leq 14$
Reflections collected	9330	71873	21051
Independent reflections	2274 [$\left.\mathrm{R}_{\text {int }}=0.0293, \mathrm{R}_{\text {sigma }}=0.0197\right]$	$3637\left[\mathrm{R}_{\text {int }}=0.0555, \mathrm{R}_{\text {sigma }}=0.0151\right]$	$2548\left[\mathrm{R}_{\text {int }}=0.0334, \mathrm{R}_{\text {sigma }}=0.0150\right]$
Data/restraints/parameters	2274/0/153	3637/1/214	2548/0/192
Goodness-of-fit on F^{2}	1.066	1.078	1.084
Final R indexes [I>=2 σ (I] $]$	$\mathrm{R}_{1}=0.0299, \mathrm{wR}_{2}=0.0817$	$\mathrm{R}_{1}=0.0439, \mathrm{wR}_{2}=0.1113$	$\mathrm{R}_{1}=0.0288, \mathrm{wR}_{2}=0.0730$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0308, \mathrm{wR}_{2}=0.0827$	$\mathrm{R}_{1}=0.0440, \mathrm{wR}_{2}=0.1114$	$\mathrm{R}_{1}=0.0289, \mathrm{wR}_{2}=0.0730$
Largest diff. peak/hole / e \AA^{-3}	0.32/-0.24	0.17/-0.19	0.72/-0.66
Flack parameter		0.05(3)	
	2b	2c	2d

Compound
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
$c / \AA ̊$
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
Volume/ \AA^{3}
Z
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size $/ \mathrm{mm}^{3}$
Radiation
2Θ range for data collection/ ${ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[I>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole /e \AA^{-3}
Flack parameter

```
        C
```

 C
 378.08
 378.08
 150.00(10)
 150.00(10)
 triclinic
 triclinic
 P-1
 P-1
 8.9856(5)
 8.9856(5)
 9.2182(3)
 9.2182(3)
 9.3740(6)
 9.3740(6)
 103.868(4)
 103.868(4)
 94.530(5)
 94.530(5)
 95.061(4)
 95.061(4)
 746.84(7)
 746.84(7)
 2
 2
 1.681
 1.681
 8.456
 8.456
 380
 380
 0.239 < 0.125 < 0.119
0.239 < 0.125 < 0.119
CuK\alpha (}\lambda=1.54184
CuK\alpha (}\lambda=1.54184
9.772 to 130.764
9.772 to 130.764
-10\leqh\leq9,-10\leqk\leq10,-11\leql\leq10
-10\leqh\leq9,-10\leqk\leq10,-11\leql\leq10
7792
7792
2562[R Rint }=0.0194,\mp@subsup{R}{\mathrm{ sigma }}{}=0.0186
2562[R Rint }=0.0194,\mp@subsup{R}{\mathrm{ sigma }}{}=0.0186
2562/0/190
2562/0/190
1.066
1.066
R
R
R}=0.0275,\mp@subsup{\textrm{wR}}{2}{}=0.073
R}=0.0275,\mp@subsup{\textrm{wR}}{2}{}=0.073
0.38/-0.34

```
    0.38/-0.34
```

$\mathrm{C}_{15} \mathrm{H}_{9.97} \mathrm{Cl}_{4.03} \mathrm{~N}_{2} \mathrm{~S}$
393.31
100.0(5)
triclinic
P-1
7.3043(3)
9.0923(3)
12.6109(5)
80.349(3)
86.679(3)
72.338(3)
786.73(5)

2
1.66
8.097

397
$0.267 \times 0.168 \times 0.053$
$\operatorname{CuK\alpha }(\lambda=1.54184)$
7.11 to 137.166
$-8 \leq h \leq 8,-10 \leq k \leq 10,-15 \leq 1 \leq 15$

$$
15042
$$

$2891\left[\mathrm{R}_{\text {int }}=0.0370, \mathrm{R}_{\text {sigma }}=0.0213\right]$
2891/0/212
1.028
$\mathrm{R}_{1}=0.0360, \mathrm{wR}_{2}=0.0943$
$\mathrm{R}_{1}=0.0368, \mathrm{wR}_{2}=0.0950$
1.29/-0.49
$\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{~S}$
392.11
$100.0(5)$
monoclinic
$\mathrm{P} 2_{1 /} \mathrm{c}$
$7.38990(10)$
$10.5325(2)$
$20.5855(4)$
90
$96.598(2)$
90
$1591.64(5)$
4
1.636
7.949
792
$0.377 \times 0.042 \times 0.038$
CuK $\alpha(\lambda=1.54184)$ 8.648 to 146.978
$-9 \leq h \leq 6,-13 \leq k \leq 13,-25 \leq 1 \leq 25$ 19045
$3201\left[\mathrm{R}_{\text {int }}=0.0386, \mathrm{R}_{\text {sigma }}=0.0244\right]$
3201/0/200
1.057
$\mathrm{R}_{1}=0.0456, \mathrm{wR}_{2}=0.1183$
$\mathrm{R}_{1}=0.0475, \mathrm{wR}_{2}=0.1198$
1.26/-0.51

Compound	2 f	2 g	2h
Empirical formula	$\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{OS}$	$\mathrm{C}_{28} \mathrm{H}_{16} \mathrm{Cl}_{8} \mathrm{~N}_{4} \mathrm{~S}_{2}$	$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{~S}$
Formula weight	394.08	756.17	406.14
Temperature/K	100.00(10)	100.0(6)	100.00(10)
Crystal system	triclinic	monoclinic	orthorhombic
Space group	P-1	P2 ${ }_{1}$	Pbca
a/Å	7.10603(16)	9.0246(3)	14.2979(4)
b/Å	$7.22142(17)$	13.7857(5)	14.0607(3)
c/Å	15.6955(4)	12.0756(4)	16.3174(4)
$\alpha /{ }^{\circ}$	83.2406(19)	90	90
$\beta /{ }^{\circ}$	78.4301(19)	98.513(3)	90
$\gamma /{ }^{\circ}$	71.106(2)	90	90
Volume/ \AA^{3}	745.33(3)	1485.78(9)	3280.41(15)
Z	2	2	8
$\rho_{\text {calg }} / \mathrm{cm}^{3}$	1.756	1.69	1.645
μ / mm^{-1}	8.544	8.491	7.736
F(000)	396	760	1648
Crystal size/mm ${ }^{3}$	$0.367 \times 0.197 \times 0.115$	$0.216 \times 0.077 \times 0.048$	$0.424 \times 0.235 \times 0.177$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$	$\mathrm{CuK} \alpha(\lambda=1.54184)$	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ}$	5.756 to 142.51	7.402 to 142.134	10.356 to 142.54
Index ranges	$-8 \leq h \leq 8,-8 \leq k \leq 8,-19 \leq 1 \leq 19$	$-11 \leq h \leq 11,-15 \leq k \leq 16,-14 \leq 1 \leq 14$	$-17 \leq h \leq 17,-13 \leq \mathrm{k} \leq 17,-20 \leq 1 \leq 20$
Reflections collected	14538	54843	63211
Independent reflections	$2893\left[\mathrm{R}_{\text {int }}=0.0297, \mathrm{R}_{\text {sigma }}=0.0191\right]$	$5617\left[\mathrm{R}_{\text {int }}=0.0805, \mathrm{R}_{\mathrm{sigma}}=0.0293\right]$	$3183\left[\mathrm{R}_{\text {int }}=0.0724, \mathrm{R}_{\text {sigma }}=0.0183\right]$
Data/restraints/parameters	2893/0/230	5617/1/381	3183/0/237
Goodness-of-fit on F^{2}	1.055	1.093	1.108
Final R indexes [$\mathrm{I}>=2 \sigma$ (I]	$\mathrm{R}_{1}=0.0269, \mathrm{wR}_{2}=0.0769$	$\mathrm{R}_{1}=0.0766, \mathrm{wR}_{2}=0.2049$	$\mathrm{R}_{1}=0.0399, \mathrm{wR}_{2}=0.0977$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0277, \mathrm{wR}_{2}=0.0778$	$\mathrm{R}_{1}=0.0769, \mathrm{wR}_{2}=0.2058$	$\mathrm{R}_{1}=0.0400, \mathrm{wR}_{2}=0.0977$
Largest diff. peak/hole / e \AA^{-3}	0.36/-0.33	1.10/-0.69	1.00/-0.47
Flack parameter		0.06(3)	

Compound	2j.H[HCl ${ }_{2}$]	2k	21
Empirical formula	$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{Cl}_{6} \mathrm{~N}_{3} \mathrm{~S}$	$\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{OS}$	$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{OS}$
Formula weight	466.02	394.08	422.14
Temperature/K	100.0(5)	100.0(5)	99.9(6)
Crystal system	triclinic	triclinic	triclinic
Space group	P-1	P-1	P-1
a/Å	8.1354(2)	7.0073(5)	7.4264(7)
b/Å	9.2414(2)	9.6628(6)	11.9574(11)
c/Å	12.9459(6)	12.0172(7)	11.9660 (9)
$\alpha /{ }^{\circ}$	90.608(3)	95.257(5)	115.075(9)
$\beta /{ }^{\circ}$	101.838(3)	106.738(6)	91.228(8)
$\gamma /{ }^{\circ}$	105.699(2)	101.231(6)	95.201(8)
Volume/ ${ }^{3}$	914.81(5)	754.78(9)	956.37(16)
Z	2	2	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.692	1.734	1.466
μ / mm^{-1}	9.662	8.438	6.697
F(000)	468	396	428
Crystal size/ mm^{3}	$0.393 \times 0.097 \times 0.043$	$0.222 \times 0.040 \times 0.035$	$0.415 \times 0.042 \times 0.028$
Radiation	CuK $\alpha(\lambda=1.54184)$	$\mathrm{CuK} \alpha(\lambda=1.54184)$	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ}$	6.994 to 139.01	7.78 to 144.244	8.176 to 134.15
Index ranges	$-9 \leq \mathrm{h} \leq 8,-11 \leq \mathrm{k} \leq 11,-15 \leq \mathrm{l} \leq 15$	$-8 \leq h \leq 7,-11 \leq \mathrm{k} \leq 10,-14 \leq \mathrm{l} \leq 14$	$-6 \leq \mathrm{h} \leq 8,-14 \leq \mathrm{k} \leq 13,-14 \leq \mathrm{l} \leq 14$
Reflections collected	17679	11718	6147
Independent reflections	$3432\left[\mathrm{R}_{\text {int }}=0.0586, \mathrm{R}_{\text {sigma }}=0.0322\right]$	$2964\left[\mathrm{R}_{\text {int }}=0.0508, \mathrm{R}_{\text {sigma }}=0.0319\right]$	$3403\left[\mathrm{R}_{\text {int }}=0.0440, \mathrm{R}_{\text {sigma }}=0.0492\right]$
Data/restraints/parameters	3432/0/221	2964/0/200	3403/0/218
Goodness-of-fit on F^{2}	1.209	1.028	1.056
Final R indexes [$\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.1019, \mathrm{wR}_{2}=0.2915$	$\mathrm{R}_{1}=0.0387, \mathrm{wR}_{2}=0.1048$	$\mathrm{R}_{1}=0.0546, \mathrm{wR}_{2}=0.1486$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1028, \mathrm{wR}_{2}=0.2917$	$\mathrm{R}_{1}=0.0408, \mathrm{wR}_{2}=0.1073$	$\mathrm{R}_{1}=0.0611, \mathrm{wR}_{2}=0.1565$
Largest diff. peak/hole / e \AA^{-3}	1.33/-0.97	0.64/-0.39	0.81/-0.84

Compound	2s	2 t	3 a
Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{10.42} \mathrm{Cl}_{5.58} \mathrm{~N}_{2} \mathrm{OS}$	$\mathrm{C}_{15} \mathrm{H}_{9.88} \mathrm{Cl}_{4.12} \mathrm{~N}_{2} \mathrm{~S}$	$\mathrm{C}_{13.5} \mathrm{H}_{7} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{~S}$
Formula weight	476.64	396.33	371.07
Temperature/K	100.00(13)	100.0(6)	100.0(7)
Crystal system	monoclinic	monoclinic	orthorhombic
Space group	$\mathrm{P} 2_{1} / \mathrm{n}$	P2/n	Pben
a/Å	6.5698(7)	7.8074(3)	16.7712(3)
b/Å	16.562(2)	15.8724(4)	13.1359(2)
c/Å	16.941(3)	13.5003(4)	13.0495(2)
$\alpha /{ }^{\circ}$	90	90	90
$\beta /{ }^{\circ}$	93.510(12)	105.795(3)	90
$\gamma /{ }^{\circ}$	90	90	90
Volume/ \AA^{3}	1839.8(5)	1609.82(9)	2874.87(8)
Z	4	4	8
$\rho_{\text {calg }} / \mathrm{cm}^{3}$	1.721	1.635	1.715
μ / mm^{-1}	9.11	8.049	8.764
F(000)	957	800	1488
Crystal size/mm ${ }^{3}$	$0.056 \times 0.028 \times 0.018$	$0.315 \times 0.066 \times 0.03$	$0.257 \times 0.084 \times 0.08$
Radiation	$\operatorname{CuK} \alpha(\lambda=1.54184)$	$\mathrm{CuK} \alpha$ ($\lambda=1.54184)$	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ}$	7.472 to 136.154	8.796 to 135.814	8.55 to 142.028
Index ranges	$-4 \leq h \leq 7,-19 \leq k \leq 19,-20 \leq 1 \leq 19$	$-9 \leq h \leq 9,-19 \leq k \leq 19,-16 \leq 1 \leq 16$	$-20 \leq h \leq 20,-16 \leq \mathrm{k} \leq 16,-16 \leq 1 \leq 12$
Reflections collected	6606	22798	72177
Independent reflections	$3350\left[\mathrm{R}_{\text {int }}=0.0626, \mathrm{R}_{\text {sigma }}=0.0882\right]$	$2931\left[\mathrm{R}_{\text {int }}=0.0463, \mathrm{R}_{\text {sigma }}=0.0202\right]$	$2779\left[\mathrm{R}_{\text {int }}=0.0861, \mathrm{R}_{\text {sigma }}=0.0305\right]$
Data/restraints/parameters	3350/0/241	2931/0/210	2779/0/186
Goodness-of-fit on F^{2}	1.145	1.318	1.237
Final R indexes [I>=2 ${ }^{\text {(}}$)]	$\mathrm{R}_{1}=0.1055, \mathrm{wR}_{2}=0.2644$	$\mathrm{R}_{1}=0.0744, \mathrm{wR}_{2}=0.1732$	$\mathrm{R}_{1}=0.0615, \mathrm{wR}_{2}=0.1453$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1319, \mathrm{wR}_{2}=0.2818$	$\mathrm{R}_{1}=0.0748, \mathrm{wR}_{2}=0.1733$	$\mathrm{R}_{1}=0.0638, \mathrm{wR}_{2}=0.1454$
Largest diff. peak/hole / e \AA^{-3}	0.77/-0.96	1.16/-0.73	1.15/-0.68

Compound	3 c	3 e	[4a] GaCl_{4}
Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{~S}$	$\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{Cl}_{6} \mathrm{~N}_{4} \mathrm{~S}_{2}$	$\mathrm{C}_{13} \mathrm{H}_{6} \mathrm{Cl}_{7} \mathrm{GaN}_{2} \mathrm{~S}$
Formula weight	356.66	713.32	540.13
Temperature/K	149.99(10)	100.00(10)	100.0(4)
Crystal system	monoclinic	triclinic	monoclinic
Space group	$\mathrm{P} 2_{1 / \mathrm{n}}$	P-1	P2 ${ }_{1}$ /
a/Å	11.5111(15)	9.9369(4)	9.5753(4)
b/Å	7.7055(8)	12.2664(4)	9.8718(4)
c/Å	16.9368(18)	13.3652(5)	20.0990(7)
$\alpha /{ }^{\circ}$	90	91.036(3)	90
$\beta /{ }^{\circ}$	104.127(12)	107.068(4)	94.444(3)
$\gamma /{ }^{\circ}$	90	109.355(3)	90
Volume/ \AA^{3}	1456.8(3)	1457.25(10)	1894.16(13)
Z	4	2	4
$\rho_{\text {calg }} / \mathrm{cm}^{3}$	1.626	1.626	1.894
μ / mm^{-1}	6.972	6.97	12.113
F(000)	724	724	1056
Crystal size/mm ${ }^{3}$	$0.132 \times 0.041 \times 0.028$	$0.273 \times 0.17 \times 0.048$	$0.209 \times 0.197 \times 0.061$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$	$\mathrm{CuK} \alpha(\lambda=1.54184)$	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ}$	8.42 to 131.946	6.976 to 142.122	8.826 to 142.102
Index ranges	$-13 \leq h \leq 13,-9 \leq k \leq 8,-20 \leq 1 \leq 14$	$-12 \leq h \leq 12,-14 \leq k \leq 15,-16 \leq 1 \leq 16$	$-11 \leq h \leq 11,-12 \leq k \leq 12,-24 \leq 1 \leq 23$
Reflections collected	7614	29597	36088
Independent reflections	$2532\left[\mathrm{R}_{\text {int }}=0.0574, \mathrm{R}_{\text {sigma }}=0.0513\right]$	$5631\left[\mathrm{R}_{\text {int }}=0.0638, \mathrm{R}_{\text {sigma }}=0.0358\right]$	3657 [$\left.\mathrm{R}_{\text {int }}=0.1269, \mathrm{R}_{\text {sigma }}=0.0384\right]$
Data/restraints/parameters	2532/0/190	5631/0/381	3657/0/217
Goodness-of-fit on F^{2}	1.053	1.08	1.135
Final R indexes [$\mathrm{I}>=2 \sigma(\mathrm{I})$]	$\mathrm{R}_{1}=0.0388, \mathrm{wR}_{2}=0.1031$	$\mathrm{R}_{1}=0.0679, \mathrm{wR}_{2}=0.1871$	$\mathrm{R}_{1}=0.0617, \mathrm{wR}_{2}=0.1632$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0454, \mathrm{wR}_{2}=0.1076$	$\mathrm{R}_{1}=0.0708, \mathrm{wR}_{2}=0.1907$	$\mathrm{R}_{1}=0.0617, \mathrm{wR}_{2}=0.1632$
Largest diff. peak/hole / e \AA^{-3}	0.38/-0.58	2.23/-0.49	0.92/-0.94

Compound	6m	6n	[7n]0Tf
Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{~S}$	$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{~S}$	$\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$
Formula weight	316.41	330.43	494.54
Temperature/K	100.00(10)	100.00(10)	100.0(5)
Crystal system	monoclinic	monoclinic	triclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{n}$	$\mathrm{P}_{1} / \mathrm{n}$	P-1
a/Å	12.6700(8)	10.4506(4)	8.2719(3)
b/Å	9.6039(6)	10.9276(3)	10.7320(5)
c/Å	12.9384(8)	14.7334(5)	12.5047(5)
$\alpha /{ }^{\circ}$	90	90	97.115(4)
$\beta /{ }^{\circ}$	90.555(5)	99.672(3)	91.616(3)
$\gamma /{ }^{\circ}$	90	90	95.184(4)
Volume $/ \AA^{3}$	1574.29(17)	1658.64(10)	1096.17(8)
Z	4	4	2
$\rho_{\text {calc }} / \mathrm{cm}^{3}$	1.335	1.323	1.498
μ / mm^{-1}	1.81	1.74	2.695
F(000)	664	696	512
Crystal size/ mm^{3}	$0.394 \times 0.241 \times 0.135$	$0.286 \times 0.156 \times 0.112$	$0.301 \times 0.251 \times 0.085$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$	$\mathrm{CuK} \alpha(\lambda=1.54184)$	$\operatorname{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ}$	9.724 to 137.554	9.656 to 143.368	7.13 to 141.73
Index ranges	$-15 \leq h \leq 15,-9 \leq \mathrm{k} \leq 11,-15 \leq 1 \leq 15$	$-12 \leq h \leq 12,-13 \leq \mathrm{k} \leq 13,-18 \leq 1 \leq 17$	$-9 \leq h \leq 10,-13 \leq k \leq 13,-15 \leq 1 \leq 15$
Reflections collected	11768	31825	24880
Independent reflections	$2913\left[\mathrm{R}_{\text {int }}=0.0437, \mathrm{R}_{\text {sigma }}=0.0263\right]$	$3247\left[\mathrm{R}_{\text {int }}=0.0734, \mathrm{R}_{\text {sigma }}=0.0242\right]$	$4217\left[\mathrm{R}_{\text {int }}=0.0466, \mathrm{R}_{\text {sigma }}=0.0168\right]$
Data/restraints/parameters	2913/0/209	3247/0/219	4217/0/302
Goodness-of-fit on F^{2}	1.086	1.05	1.05
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0405, \mathrm{wR}_{2}=0.1091$	$\mathrm{R}_{1}=0.0431, \mathrm{wR}_{2}=0.1125$	$\mathrm{R}_{1}=0.0320, \mathrm{wR}_{2}=0.0849$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0426, \mathrm{wR}_{2}=0.1099$	$\mathrm{R}_{1}=0.0432, \mathrm{wR}_{2}=0.1126$	$\mathrm{R}_{1}=0.0321, \mathrm{wR}_{2}=0.0850$
Largest diff. peak/hole / e \AA^{-3}	0.27/-0.40	0.44/-0.36	0.45/-0.40

Compound	8 a	10a	10s
Empirical formula	$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{OP}$	$\mathrm{C}_{38} \mathrm{H}_{3} \mathrm{~N}_{4} \mathrm{P}_{2}$	$\mathrm{C}_{34} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{P}_{2}$
Formula weight	314.12	604.6	564.62
Temperature/K	150.00(10)	100.0(5)	100.0(6)
Crystal system	monoclinic	triclinic	monoclinic
Space group	P2/c	P-1	P2/n
a/Å	7.36505(7)	8.4411(7)	10.45250(10)
b/Å	18.01340(16)	10.7922(7)	9.46390 (10)
c/Å	10.53806(11)	17.6347(11)	30.2669(4)
$\alpha /{ }^{\circ}$	90	77.262(6)	90
$\beta /{ }^{\circ}$	95.7027(9)	81.816(6)	94.9550(10)
$\gamma /{ }^{\circ}$	90	85.402(6)	90
Volume/ \AA^{3}	1391.16(2)	1549.01(19)	2982.86(6)
Z	4	2	4
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.5	1.296	1.257
μ / mm^{-1}	5.229	1.535	1.547
F(000)	644	632	1200
Crystal size/mm ${ }^{3}$	$0.3 \times 0.08 \times 0.06$	$0.072 \times 0.061 \times 0.023$	$0.225 \times 0.158 \times 0.094$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$	$\mathrm{CuK} \alpha(\lambda=1.54184)$	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ}$	9.76 to 147.402	8.41 to 127.09	8.742 to 143.786
Index ranges	$-9 \leq h \leq 9,-22 \leq k \leq 22,-13 \leq 1 \leq 12$	$-7 \leq h \leq 9,-12 \leq k \leq 12,-20 \leq 1 \leq 20$	$-12 \leq h \leq 12,-9 \leq k \leq 11,-37 \leq 1 \leq 37$
Reflections collected	21295	9601	58446
Independent reflections	$2786\left[\mathrm{R}_{\text {int }}=0.0276, \mathrm{R}_{\text {sigma }}=0.0120\right]$	$5092\left[\mathrm{R}_{\text {int }}=0.0537, \mathrm{R}_{\text {sigma }}=0.0521\right]$	$5860\left[\mathrm{R}_{\text {int }}=0.0405, \mathrm{R}_{\text {sigma }}=0.0149\right]$
Data/restraints/parameters	2786/0/172	5092/0/397	5860/0/367
Goodness-of-fit on F^{2}	1.05	1.066	1.074
Final R indexes [I>=2 ${ }^{\text {(}}$)]	$\mathrm{R}_{1}=0.0345, \mathrm{wR}_{2}=0.0894$	$\mathrm{R}_{1}=0.0473, \mathrm{wR}_{2}=0.1331$	$\mathrm{R}_{1}=0.0317, \mathrm{wR}_{2}=0.0836$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0356, \mathrm{wR}_{2}=0.0903$	$\mathrm{R}_{1}=0.0536, \mathrm{wR}_{2}=0.1400$	$\mathrm{R}_{1}=0.0322, \mathrm{wR}_{2}=0.0840$
Largest diff. peak/hole / e \AA^{-3}	0.46/-0.78	0.48/-0.43	0.33/-0.28

Compound
Empirical formula Formula weight
Temperature/K
Crystal system
Space group
a/ \AA
b/ \AA
c/Å
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
Volume/ \AA^{3}
Z
$\rho_{\text {calg }} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size/mm ${ }^{3}$
Radiation
2Θ range for data
collection/ ${ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole /e \AA^{-3}
Flack parameter

$$
\begin{gathered}
10 u \\
\mathrm{C}_{39} \mathrm{H}_{30} \mathrm{Cl}_{4} \mathrm{~N}_{4} \mathrm{P}_{2} \\
758.41 \\
100.0(5) \\
\text { triclinic } \\
\mathrm{P}-1 \\
9.0948(9) \\
10.8689(9) \\
18.3916(9) \\
93.444(5) \\
92.634(6) \\
98.721(7) \\
1791.0(2) \\
2 \\
1.406 \\
4.125 \\
780 \\
0.124 \times 0.103 \times 0.055 \\
\mathrm{CuK} \alpha(\lambda=1.54184) \\
8.25 \text { to } 133.198 \\
\\
-10 \leq \mathrm{h} \leq 8,-12 \leq \mathrm{k} \leq 12,-16 \leq 1 \leq 21 \\
11270 \\
6319\left[\mathrm{R}_{\text {int }}=0.3774, \mathrm{R}_{\text {sigma }}=0.0641\right] \\
6319 / 0 / 442 \\
1.026 \\
\mathrm{R}_{1}=0.0844, \mathrm{wR}_{2}=0.2220 \\
\mathrm{R}_{1}=0.0889, \mathrm{wR}_{2}=0.2288 \\
0.78 /-1.03
\end{gathered}
$$

```
11a
```

11a
C
C
210.27
210.27
100.0(6)
100.0(6)
triclinic
triclinic
P-1
P-1
8.7163(3)
8.7163(3)
11.5669(3)
11.5669(3)
11.7044(4)
11.7044(4)
101.996(2)
101.996(2)
95.478(3)
95.478(3)
93.621(2)
93.621(2)
1144.82(6)
1144.82(6)
4
4
1.22
1.22
0.564
0.564
0.342 × 0.053 > 0.049
0.342 × 0.053 > 0.049
CuK\alpha (}\lambda=1.54184
CuK\alpha (}\lambda=1.54184
7.77 to 137.522
7.77 to 137.522
-10\leqh\leq10, -8\leqk\leq13,-14\leq1\leq12
-10\leqh\leq10, -8\leqk\leq13,-14\leq1\leq12
7818
7818
4237[\mp@subsup{R}{\mathrm{ int }}{}=0.0248, R (sigma }=0.0361
4237[\mp@subsup{R}{\mathrm{ int }}{}=0.0248, R (sigma }=0.0361
4237/0/299
4237/0/299
1.029
1.029
R
R
R
R
0.22/-0.29

```
            0.22/-0.29
```

12a
$\mathrm{C}_{38} \mathrm{H}_{32} \mathrm{~N}_{4}$
544.67
100.0(4)
monoclinic
P2 $1 / \mathrm{c}$ 9.43090(10) 10.15630(10)
30.8417(5)

90
92.4380(10)

90
2951.44(6)

4
1.226
0.56

1152
$0.259 \times 0.184 \times 0.085$ $\operatorname{CuK} \alpha(\lambda=1.54184)$
9.168 to 136.496

```
-11\leqh\leq11,-11\leqk\leq12,-37\leq1\leq
```

-11\leqh\leq11,-11\leqk\leq12,-37\leq1\leq
37
37
4 2 8 7 2
4 2 8 7 2
5417[R Rint = 0.0290, Rsigma }=0.0124
5417[R Rint = 0.0290, Rsigma }=0.0124
5417/0/477
5417/0/477
1 . 0 5
1 . 0 5
R
R
R1}=0.0381,\mp@subsup{wR}{2}{2}=0.090
R1}=0.0381,\mp@subsup{wR}{2}{2}=0.090
0.26/-0.20

```
        0.26/-0.20
```

Compound	13a	17r	18a
Empirical formula	$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2}$	$\mathrm{C}_{42} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{P}_{2}$	$\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{OP}$
Formula weight	210.27	722.74	318.3
Temperature/K	99.9(4)	100.0(5)	100.0(5)
Crystal system	orthorhombic	triclinic	monoclinic
Space group	Pna21	P-1	$\mathrm{P} 2_{1} / \mathrm{c}$
a / \AA	7.15983(6)	10.94660 (10)	9.7440 (5)
b/Å	25.70244(15)	11.6579(2)	15.8752(6)
c/A	6.20436(4)	14.9699(2)	10.8405(5)
$\alpha /{ }^{\circ}$	90	78.9240(10)	90
$\beta /{ }^{\circ}$	90	83.2090(10)	111.228(6)
$\gamma /{ }^{\circ}$	90	78.1640(10)	90
Volume/ ${ }^{3}$	1141.758(14)	1828.74(4)	1563.11(14)
Z	4	2	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.223	1.313	1.353
μ / mm^{-1}	0.565	1.444	1.599
F(000)	448	760	664
Crystal size/mm ${ }^{3}$	$0.361 \times 0.130 \times 0.107$	$0.219 \times 0.199 \times 0.153$	$0.115 \times 0.104 \times 0.037$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$	$\mathrm{CuK} \alpha(\lambda=1.54184)$	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ}$	6.878 to 138.634	7.866 to 140.152	9.738 to 138.25
Index ranges	$-8 \leq \mathrm{h} \leq 7,-31 \leq \mathrm{k} \leq 31,-7 \leq \mathrm{l} \leq 7$	$\begin{gathered} -12 \leq \mathrm{h} \leq 13,-14 \leq \mathrm{k} \leq 14,-18 \leq \mathrm{l} \leq \\ 18 \end{gathered}$	$-11 \leq \mathrm{h} \leq 10,-19 \leq \mathrm{k} \leq 19,-13 \leq \mathrm{l} \leq 13$
Reflections collected	40502	27767	32385
Independent reflections	$\begin{gathered} 2150\left[\mathrm{R}_{\text {int }}=0.0423, \mathrm{R}_{\text {sigma }}=\right. \\ 0.0118] \end{gathered}$	$6955\left[\mathrm{R}_{\text {int }}=0.0240, \mathrm{R}_{\text {sigma }}=0.0181\right]$	2920 [$\left.\mathrm{R}_{\text {int }}=0.0868, \mathrm{R}_{\text {sigma }}=0.0254\right]$
Data/restraints/parameters	2150/1/150	6955/0/481	2920/0/208
Goodness-of-fit on F^{2}	1.068	1.025	1.043
Final R indexes [I>=2 σ (I)]	$\mathrm{R}_{1}=0.0261, \mathrm{wR}_{2}=0.0675$	$\mathrm{R}_{1}=0.0299, \mathrm{wR}_{2}=0.0775$	$\mathrm{R}_{1}=0.0401, \mathrm{wR}_{2}=0.0977$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0263, \mathrm{wR}_{2}=0.0677$	$\mathrm{R}_{1}=0.0310, \mathrm{wR}_{2}=0.0784$	$\mathrm{R}_{1}=0.0417, \mathrm{wR}_{2}=0.0990$
Largest diff. peak/hole / e \AA^{-3}	0.09/-0.14	0.39/-0.30	0.34/-0.38
Flack parameter	0.04(13)		

Compound	18r*	19r.HCl	19r
Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{OP}$	$\mathrm{C}_{44} \mathrm{H}_{46} \mathrm{Cl}_{6} \mathrm{~N}_{6} \mathrm{P}_{2}$	$\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{P}$
Formula weight	384.45	933.51	345.36
Temperature/K	100.1(4)	100.0(6)	100.0(6)
Crystal system	monoclinic	monoclinic	monoclinic
Space group	P2/ $/ \mathrm{c}$	P21	$\mathrm{P} 21 / \mathrm{n}$
a/A	18.6695(3)	10.6475(6)	9.9776(2)
b/A	7.47220 (10)	21.3060(7)	$5.31450(10)$
c/A	14.6885(3)	11.2027(5)	32.2901(8)
$\alpha /{ }^{\circ}$	90	90	90
$\beta /{ }^{\circ}$	94.948(2)	115.235(6)	92.492(2)
$\gamma /{ }^{\circ}$	90	90	90
Volume/ ${ }^{3}$	2041.44(6)	2298.9(2)	1710.59(6)
Z	4	2	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.251	1.349	1.341
μ / mm^{-1}	1.329	4.369	1.473
F(000)	824	968	728
Crystal size/mm ${ }^{3}$	$0.17 \times 0.083 \times 0.075$	$0.135 \times 0.038 \times 0.033$	$0.24 \times 0.153 \times 0.034$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$	$\mathrm{CuK} \alpha(\lambda=1.54184)$	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ}$	9.51 to 139.36	8.3 to 131.652	9.172 to 141.608
Index ranges	$-22 \leq h \leq 21,-9 \leq \mathrm{k} \leq 8,-17 \leq \mathrm{l} \leq 17$	$\begin{gathered} -11 \leq \mathrm{h} \leq 12,-25 \leq \mathrm{k} \leq 25,-13 \leq \mathrm{l} \leq \\ 13 \end{gathered}$	$-12 \leq \mathrm{h} \leq 10,-6 \leq \mathrm{k} \leq 4,-37 \leq \mathrm{l} \leq 39$
Reflections collected	22426	38035	18495
Independent reflections	$3832\left[\mathrm{R}_{\text {int }}=0.0283, \mathrm{R}_{\text {sigma }}=0.0172\right]$	7987 [$\left.\mathrm{R}_{\text {int }}=0.0591, \mathrm{R}_{\text {sigma }}=0.0412\right]$	$3301\left[\mathrm{R}_{\text {int }}=0.0337, \mathrm{R}_{\text {sigma }}=0.0214\right]$
Data/restraints/parameters	3832/0/250	7987/1/535	3301/61/244
Goodness-of-fit on F^{2}	1.038	1.021	1.174
Final R indexes [$\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0308, \mathrm{wR}_{2}=0.0804$	$\mathrm{R}_{1}=0.0580, \mathrm{wR}_{2}=0.1487$	$\mathrm{R}_{1}=0.0482, \mathrm{wR}_{2}=0.1028$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0318, \mathrm{wR}_{2}=0.0813$	$\mathrm{R}_{1}=0.0631, \mathrm{wR}_{2}=0.1524$	$\mathrm{R}_{1}=0.0494, \mathrm{wR}_{2}=0.1033$
Largest diff. peak/hole / e \AA^{-3}	0.27/-0.29	1.04/-0.48	0.35/-0.34
Flack parameter		0.504(8)	

Compound	20r	22r.HI	23r.HCl
Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{P}$	$\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{P}$	$\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{ClN}_{3} \mathrm{P}_{2}$
Formula weight	447.69	487.3	565.99
Temperature/K	100.0(5)	100.0(6)	100
Crystal system	monoclinic	triclinic	100.0(2)
Space group	$\mathrm{P} 2_{1} / \mathrm{n}$	P-1	P2 ${ }_{1} / \mathrm{n}$
a/A	10.91660 (10)	10.42550(10)	14.24910 (10)
b/Å	10.53500(10)	11.0267(2)	11.10540 (10)
c/Å	17.4257(2)	12.5024(2)	$18.20100(10)$
$\alpha /{ }^{\circ}$	90	93.0190(10)	90
$\beta /{ }^{\circ}$	95.8620(10)	$111.6160(10)$	106.2620(10)
$\gamma /{ }^{\circ}$	90	111.4290 (10)	90
Volume/ \AA^{3}	1993.59(4)	1214.35(3)	2764.93(4)
Z	4	2	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.492	1.333	1.36
μ / mm^{-1}	5.02	11.05	2.532
F(000)	916	488	1184
Crystal size/ mm^{3}	$0.186 \times 0.163 \times 0.094$	$0.3 \times 0.223 \times 0.15$	$0.242 \times 0.109 \times 0.058$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$	CuK $\alpha(\lambda=1.54184)$	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ}$	9.158 to 137.888	7.79 to 134.106	7.004 to 136.494
Index ranges	$-10 \leq h \leq 13,-12 \leq \mathrm{k} \leq 12,-21 \leq \mathrm{l} \leq 21$	$-11 \leq \mathrm{h} \leq 12,-13 \leq \mathrm{k} \leq 13,-14 \leq \mathrm{l} \leq 14$	$-17 \leq h \leq 17,-11 \leq \mathrm{k} \leq 13,-21 \leq \mathrm{l} \leq 21$
Reflections collected	29454	40946	52498
Independent reflections	$3705\left[\mathrm{R}_{\text {int }}=0.0333, \mathrm{R}_{\text {sigma }}=0.0147\right]$	$4333\left[\mathrm{R}_{\text {int }}=0.0462, \mathrm{R}_{\text {sigma }}=0.0168\right]$	$5069\left[\mathrm{R}_{\text {int }}=0.0403, \mathrm{R}_{\text {sigma }}=0.0153\right]$
Data/restraints/parameters	3705/0/265	4333/0/251	5069/0/354
Goodness-of-fit on F^{2}	4.046	1.082	1.038
Final R indexes [$\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.1137, \mathrm{wR}_{2}=0.4065$	$\mathrm{R}_{1}=0.0234, \mathrm{wR}_{2}=0.0619$	$\mathrm{R}_{1}=0.0298, \mathrm{wR}_{2}=0.0773$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1145, \mathrm{wR}_{2}=0.4087$	$\mathrm{R}_{1}=0.0234, \mathrm{wR}_{2}=0.0619$	$\mathrm{R}_{1}=0.0304, \mathrm{wR}_{2}=0.0777$
Largest diff. peak/hole / e \AA^{-3}	1.64/-2.28	0.49/-0.85	0.44/-0.31

Compound	24r	25a.Br	26 a
Empirical formula	$\mathrm{C}_{42} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{P}_{2}$	$\mathrm{C}_{40} \mathrm{H}_{32} \mathrm{Br}_{3} \mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{P}_{3}$	$\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{~N}_{3} \mathrm{P}$
Formula weight	690.74	1000.25	553.23
Temperature/K	100.0(4)	100.0(5)	100.0(6)
Crystal system	triclinic	monoclinic	monoclinic
Space group	P-1	P2 ${ }_{1}$ /n	$\mathrm{P} 2_{1 / \mathrm{n}}$
a/A	$9.5430(15)$	12.54552(5)	11.6715(4)
b/Å	11.929(2)	24.25088(10)	17.1446(4)
c/Å	19.357(6)	13.42377(6)	12.5316(4)
$\alpha /{ }^{\circ}$	73.14(2)	90	90
$\beta /{ }^{\circ}$	80.968(18)	92.0778(4)	110.292(4)
$\gamma /{ }^{\circ}$	68.526(15)	90	90
Volume/ \AA^{3}	1959.3(8)	4081.36(3)	2351.98(14)
Z	2	4	4
$\rho_{\text {calg }} / \mathrm{cm}^{3}$	1.171	1.628	1.562
μ / mm^{-1}	1.286	6.29	5.146
F(000)	728	1992	1104
Crystal size/mm ${ }^{3}$		$0.309 \times 0.242 \times 0.195$	$0.218 \times 0.085 \times 0.025$
Radiation	$\operatorname{CuK} \alpha(\lambda=1.54184)$	$\mathrm{CuK} \alpha(\lambda=1.54184)$	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ}$	18.2 to 101.43	7.29 to 148.994	8.928 to 140.142
Index ranges	$-6 \leq h \leq 9,-5 \leq k \leq 10,-15 \leq 1 \leq 19$	$-13 \leq h \leq 15,-30 \leq k \leq 30,-16 \leq 1 \leq 16$	$-14 \leq h \leq 14,-20 \leq k \leq 16,-15 \leq 1 \leq 15$
Reflections collected	3357	83677	25839
Independent reflections	$2741\left[\mathrm{R}_{\text {int }}=0.0551, \mathrm{R}_{\text {sigma }}=0.1180\right]$	$8363\left[\mathrm{R}_{\text {int }}=0.0364, \mathrm{R}_{\text {sigma }}=0.0143\right]$	$4456\left[\mathrm{R}_{\text {itt }}=0.0361, \mathrm{R}_{\text {sigma }}=0.0208\right]$
Data/restraints/parameters	2741/0/205	8363/0/487	4456/0/289
Goodness-of-fit on F^{2}	2.723	1.079	1.059
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.3012, \mathrm{wR}_{2}=0.6396$	$\mathrm{R}_{1}=0.0327, \mathrm{wR}_{2}=0.0875$	$\mathrm{R}_{1}=0.0508, \mathrm{wR}_{2}=0.1339$
Final R indexes [all data]	$\mathrm{R}_{1}=0.3628, \mathrm{wR}_{2}=0.6829$	$\mathrm{R}_{1}=0.0329, \mathrm{wR}_{2}=0.0877$	$\mathrm{R}_{1}=0.0538, \mathrm{wR}_{2}=0.1376$
Largest diff. peak/hole / e \AA^{-3}	6.14/-1.53	1.82/-1.27	3.99/-0.45

Compound			
Empirical formula	$\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{I}_{2} \mathrm{OP}$	$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{I}_{2} \mathrm{NP}$	$\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{I}_{2} \mathrm{NP}$
Formula weight	546.09	559.14	573.16
Temperature/K	100.01(10)	100.00(10)	100.00(10)
Crystal system	triclinic	triclinic	monoclinic
Space group	P-1	P-1	P2 1_{1} c
a/A	8.7185(3)	9.2731(3)	9.0359(3)
b/A	9.8085(3)	10.0341(3)	25.5171(7)
c/Å	11.5663(3)	11.6573(3)	9.4963(3)
$\alpha /{ }^{\circ}$	94.431(2)	67.852(3)	90
$\beta /{ }^{\circ}$	95.603(2)	88.456(2)	106.832(3)
$\gamma /{ }^{\circ}$	104.837(2)	84.209(2)	90
Volume/ ${ }^{3}$	946.17(5)	999.43(5)	2095.75(11)
Z	2	2	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.917	1.858	1.817
μ / mm^{-1}	3.41	3.228	3.081
F(000)	520	536	1104
Crystal size/mm ${ }^{3}$	$0.162 \times 0.09 \times 0.078$	$0.15 \times 0.113 \times 0.083$	$0.076 \times 0.044 \times 0.035$
Radiation	$\mathrm{MoK} \alpha(\lambda=0.71073)$	$\mathrm{MoK} \alpha(\lambda=0.71073)$	$\mathrm{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	5.298 to 52.732	4.596 to 52.742	4.974 to 52.744
Index ranges	$-10 \leq h \leq 10,-12 \leq \mathrm{k} \leq 12,-14 \leq \mathrm{l} \leq 14$	$-11 \leq \mathrm{h} \leq 11,-12 \leq \mathrm{k} \leq 12,-14 \leq \mathrm{l} \leq 14$	$-11 \leq \mathrm{h} \leq 11,-31 \leq \mathrm{k} \leq 31,-11 \leq \mathrm{l} \leq 11$
Reflections collected	14803	15557	33543
Independent reflections	3870 [$\left.\mathrm{R}_{\text {int }}=0.0383, \mathrm{R}_{\text {sigma }}=0.0328\right]$	$4094\left[\mathrm{R}_{\text {int }}=0.0202, \mathrm{R}_{\text {sigma }}=0.0181\right]$	4281 [$\left.\mathrm{R}_{\text {int }}=0.0402, \mathrm{R}_{\text {sigma }}=0.0237\right]$
Data/restraints/parameters	3870/0/209	4094/0/219	4281/0/228
Goodness-of-fit on F^{2}	1.05	1.075	1.037
Final R indexes [$\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0210, \mathrm{wR}_{2}=0.0407$	$\mathrm{R}_{1}=0.0153, \mathrm{wR}_{2}=0.0336$	$\mathrm{R}_{1}=0.0233, \mathrm{wR}_{2}=0.0414$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0249, \mathrm{wR}_{2}=0.0424$	$\mathrm{R}_{1}=0.0165, \mathrm{wR}_{2}=0.0341$	$\mathrm{R}_{1}=0.0319, \mathrm{wR}_{2}=0.0437$
Largest diff. peak/hole / e \AA^{-3}	0.58/-0.5	0.42/-0.36	0.57/-0.38

Compound	34d	34e	34g
Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{I}_{2} \mathrm{O}_{2} \mathrm{P}$	$\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{P}$	$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{I}_{2} \mathrm{P}$
Formula weight	576.12	602.21	516.07
Temperature/K	100.00(10)	100.01(10)	100.00(10)
Crystal system	triclinic	monoclinic	orthorhombic
Space group	P-1	P2/c	P2, $2_{1} 2_{1}$
a/Å	8.76192(19)	8.94007(14)	10.33101(9)
b/Å	10.48116(19)	42.9758(6)	12.83882(12)
c/Å	11.4220(3)	12.85504(19)	13.61886(13)
$\alpha /{ }^{\circ}$	90.3592(17)	90	90
$\beta /{ }^{\circ}$	94.2694(18)	108.5752(17)	90
$\gamma /{ }^{\circ}$	95.4542(16)	90	90
Volume/ \AA^{3}	1041.20(4)	4681.70(13)	1806.38(3)
Z	2	8	4
$\rho_{\text {calg }} \mathrm{g} / \mathrm{cm}^{3}$	1.838	1.709	1.898
μ / mm^{-1}	3.09	2.764	3.555
F(000)	552	2336	976
Crystal size/mm ${ }^{3}$	$0.319 \times 0.195 \times 0.08$	$0.082 \times 0.057 \times 0.032$	$0.785 \times 0.23 \times 0.142$
Radiation	MoKa ($\lambda=0.71073$)	MoKa ($\lambda=0.71073$)	MoKa ($\lambda=0.71073$)
2Θ range for data collection/ ${ }^{\circ}$	4.684 to 52.732	4.388 to 52.744	4.36 to 58.158
Index ranges	$-10 \leq h \leq 10,-13 \leq k \leq 13,-14 \leq 1 \leq 14$	$-11 \leq \mathrm{h} \leq 11,-53 \leq \mathrm{k} \leq 53,-16 \leq 1 \leq 16$	$-14 \leq h \leq 13,-17 \leq k \leq 17,-18 \leq 1 \leq 18$
Reflections collected	42519	74293	84204
Independent reflections	$4254\left[\mathrm{R}_{\text {int }}=0.0376, \mathrm{R}_{\text {sigma }}=0.0163\right]$	$9569\left[\mathrm{R}_{\text {int }}=0.0489, \mathrm{R}_{\text {sigma }}=0.0293\right]$	$4839\left[\mathrm{R}_{\text {int }}=0.0700, \mathrm{R}_{\text {sigma }}=0.0203\right]$
Data/restraints/parameters	4254/0/228	9569/0/495	4839/0/190
Goodness-of-fit on F^{2}	1.071	1.029	1.123
Final R indexes [I>=2 σ (I]	$\mathrm{R}_{1}=0.0172, \mathrm{wR}_{2}=0.0397$	$\mathrm{R}_{1}=0.0246, \mathrm{wR}_{2}=0.0495$	$\mathrm{R}_{1}=0.0162, \mathrm{wR}_{2}=0.0368$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0180, \mathrm{wR}_{2}=0.0401$	$\mathrm{R}_{1}=0.0323, \mathrm{wR}_{2}=0.0523$	$\mathrm{R}_{1}=0.0163, \mathrm{wR}_{2}=0.0369$
Largest diff. peak/hole / e \AA^{-3}	1.28/-0.78	0.82/-0.71	0.36/-0.65
Flack parameter			-0.027(7)

Appendix 4

Miscellaneous Supplementary Data

A4.1-Cyclic Voltammograms

2a

2c

2e

2g

2b

2d

2f

2h

2k

A4.2-Buried Volume Maps

34a

34c

34b

34d

$34 e$

$34 a^{C}$

$34 \mathbf{c}^{\mathrm{C}}$

34g

34b ${ }^{\text {c }}$

$34 d^{C}$

$34 e^{C}$

$35 a^{c}$

$35 c^{c}$

$\mathbf{3 4 g}{ }^{\text {C }}$

35b ${ }^{\text {c }}$

35d ${ }^{\text {c }}$

$35 e^{\mathrm{C}}$

$35 g^{\text {c }}$

[^0]: Total energy E(UB3LYP) = -2465.59278462 Hartrees

