

Kent Academic Repository

Tollington, Simon, Ewen, John, Newton, Jason, McGill, Rona, Smith, Donal, Henshaw, Aurélie, Fogell, Deborah Jean, Tatayah, Vikash, Greenwood, Andrew, Jones, Carl and and others (2019) *Individual consumption of supplemental food as a predictor of reproductive performance and viral infection intensity*. Journal of Applied Ecology, 56 (3). pp. 594-603. ISSN 0021-8901.

Downloaded from <u>https://kar.kent.ac.uk/69742/</u> The University of Kent's Academic Repository KAR

The version of record is available from https://doi.org/10.1111/1365-2664.13303

This document version Author's Accepted Manuscript

DOI for this version

Licence for this version UNSPECIFIED

Additional information

Versions of research works

Versions of Record

If this version is the version of record, it is the same as the published version available on the publisher's web site. Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in *Title of Journal*, Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact <u>ResearchSupport@kent.ac.uk</u>. Please include the URL of the record in KAR. If you believe that your, or a third party's rights have been compromised through this document please see our <u>Take Down policy</u> (available from <u>https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies</u>).

Journal of Applied Ecology

Characterising individual consumption of supplemental food by Mauritius parakeets as a predictor of reproductive performance and viral infection intensity

Journal:	Journal of Applied Ecology
Manuscript ID	JAPPL-2018-00567.R1
Manuscript Type:	Research Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Tollington, Simon; University of Kent, Durrell Institute of Conservation and Ecology; North of England Zoological Society, Ewen, John; Zoological Society of London, Institute of Zoology Newton, Jason; University of Glasgow, SUERC McGill, Rona; University of Glasgow, SUERC Smith, Donal; Zoological Society of London, Institute of Zoology Henshaw, Aurélie; Mauritian Wildlife Foundation Fogell, Deborah; University of Kent, Durrell Institute of Conservation and Ecology Tatayah, Vikash; Mauritian Wildlife Foundation Greenwood, Andrew; International Zoo Veterinary Group Jones, Carl; Durrell Wildlife Conservation Trust UK, Conservation Science; Mauritian Wildlife Foundation Groombridge, Jim; University of Kent, Durrell Institute of Conservation and Ecology
Key-words:	BFDV, diet, Mauritius, parrot, qPCR, reproductive fitness, stable isotope analysis, supplemental feeding

- 1 Characterising individual consumption of supplemental food by Mauritius
- 2 parakeets as a predictor of reproductive performance and viral infection intensity
- 3 Simon Tollington^{1,2*}, John G. Ewen³, Jason Newton⁴, Rona A. R. McGill⁴, Donal Smith^{3,5}, Aurélie
- 4 Henshaw⁶, Deborah J. Fogell^{1,3}, Vikash Tatayah⁶, Andrew Greenwood⁷, Carl G. Jones^{5,8} and Jim J.
- 5 Groombridge¹
- 6 ¹ Durrell Institute of Conservation and Ecology, University of Kent, Canterbury CT2 7NZ, UK.
- 7 ²North of England Zoological Society. Chester Zoo. Chester, CH2 1LH
- 8 ³Institute of Zoology. Zoological Society of London, London. UK
- 9 ⁴ NERC Life Sciences Mass Spectrometry Facility, SUERC, East Kilbride, G75 0QF, UK
- 10 ⁵ School of Environment and Life Sciences, University of Salford, Salford, UK
- ⁶ Mauritian Wildlife Foundation, Grannum Road, Vacoas, Mauritius.
- ⁷ International Zoo Veterinary Group, Station House, Parkwood Street, Keighley, West Yorkshire, BD21
 4NQ, UK.
- ⁸ Durrell Wildlife Conservation Trust, Trinity, Jersey. JE3 5BP, UK.
- 15 *Corresponding author's current address:
- 16 North of England Zoological Society, Chester Zoo. Chester, CH2 1LH
- 17 Simon.Tollington@gmail.com

19 Abstract

- Supplemental food is often provided to threatened species in order to maintain or enhance
 reproductive fitness and thus population growth, but it is rarely evaluated for its impact on
 individual reproductive fitness and has been associated with both positive and negative
 consequences.
- We used stable isotope analyses to characterise the relative proportional consumption of
 supplemental food and quantitative PCR to assess beak and feather disease viral infection
 intensity among parakeets. Life-history and nest-site data from a long-term monitoring effort was
 incorporated.
- 3. Older females benefitted the most from supplemental feeding, demonstrated by a greater
 reproductive uplift than younger females and there were no strong predictors of viral infection
 levels among nestlings.
- 4. Reproductive fitness, measured by the number of fledglings produced per brood, was positively
 associated with proportional dietary content of supplemental food among adult parakeets and
 breeding pairs that nested closer to feeding stations consumed more supplemental food than those
 nesting further away.
- 35 Synthesis and applications

Our study demonstrates that providing supplemental food can lead to an overall increase in 36 37 population growth but by characterising individual consumption we reveal subtle patterns of use and 38 differential benefits on reproductive fitness within a population. Manipulating the delivery of supplemental food may fulfil objectives associated with reducing demand on finite resources or 39 targeting the proportion of the population that derive the most benefit, but is associated with trade-40 offs in population growth. This knowledge can be incorporated into adaptive management strategies 41 42 that aim to fulfil specific objectives associated with species recovery and long-term viability but the 43 relative importance of each objective must be considered.

- 44 Keywords: BFDV, diet, Mauritius, parrot, qPCR, reproductive fitness, stable isotope analysis,
- 45 supplemental feeding

46 Introduction

47 The provision of supplemental food to threatened species is a widely used method intended to manipulate 48 elements of population dynamics, usually with the intention of aiding population recovery. The benefits of this practice are well documented and it has been implicated in the success of high-profile avian 49 conservation programmes including that of the kakapo (Strigops habroptilus) (Clout and Craig, 1995) and 50 51 California condor (*Gymnogyps californianus*) (Walters et al., 2010). Supplemental feeding is however, 52 often implemented as a default management action under the assumption that it will benefit population 53 recovery, but the precise costs and benefits have rarely been evaluated (Ewen et al., 2015). For example, the provision of supplemental food (hereafter "SF") has been associated with negative consequences such 54 55 as increased dependence upon it, genetic adaptation, poor nutrition, disease transmission and a tendency 56 for maintaining less productive individuals (Boutin, 1990, Blanco et al., 2011, Crates et al., 2016). 57 Furthermore, providing food *ad-libitum* to a growing population places a high demand on finite resources leading to questions over long-term sustainability (Chauvenet et al., 2012) and provisioning is often not 58 targeted towards those individuals in a population that are most likely to benefit from it (Ewen et al., 59 60 2015).

Providing food at communal feeders is therefore often accompanied by the simplistic assumptions that the 61 62 access to, consumption, and resulting benefits of it are equally shared among individuals. Newey et al., 63 (2009) however, discovered that only 50% of a target population of mountain hares (Lepus timidus) used 64 SF and that substantial variation occurred among individuals in the number of visits to, and time spent at 65 feeders. More recently, Crates et al., (2016) estimated individual consumption of SF in great tits (Parus major) and blue tits (Cvanistes caeruleus) revealing that younger individuals consumed more SF than 66 adults. To fully understand how SF affects populations it is therefore essential to characterise individual 67 68 use and understand how that variation predicts reproductive fitness (Robb et al., 2008).

69 Where local population densities increase as a result of SF use, viral transmission also becomes an 70 important component of fitness as natural host-pathogen dynamics become altered, and the risks of

Journal of Applied Ecology

71 density-dependent and frequency-dependent pathogen transmission increase (Adelman et al., 2015). For 72 example, in a recent review of supplemental feeding studies, Murray et al. (2016) noted that in 95% of 73 115 cases, pathogen transmission risk increased due to elevated contact rates, 77% of the studies 74 promoted pathogen accumulation around feeders and in 80% of cases SF was considered an 75 immunosuppressive contaminant. However, Wilcoxen et al., (2015) demonstrated that while prevalence 76 of disease may be higher at feeders, many individuals using them revealed a greater propensity to tolerate infection due to increased immunocompetence as a result of high quality SF. In order to achieve the long-77 78 term objective of species recovery, it is therefore important to consider the implications of supplemental 79 feeding on individual health and population viability.

80 Quantifying individual consumption of SF in free-living populations presents a considerable challenge for 81 biologists. Where multiple feeding stations are employed, direct observations of individual birds are 82 labour intensive and rely on the extrapolation of results over unobserved time and space (Robb et al., 2011). Furthermore, observations are often made from distance at feeding stations where individuals 83 congregate and need to be identified simultaneously from individual tags such as leg rings. Alternatively 84 85 the evaluation of blood and tissue samples using stable isotope analysis (SIA) can provide detailed, individual-level dietary information (Hobson and Clark 1992, Parnell et al., 2013) but requires the a-86 priori identification of potential dietary sources and relies on the existence of sufficient variation between 87 those sources and the resulting post-assimilation ratios in body tissues (Hobson and Clark 1992, Inger and 88 89 Bearhop, 2008). Used with care, SIA can effectively partition and quantify dietary sources thus providing 90 valuable insight on individual-level patterns of SF use and the immediate and long-term population-level implications. 91

The Mauritius 'echo' parakeet (*Psittacula echo*) is an intensively studied, island-endemic species and the subject of a successful, long-term conservation recovery programme (Jones and Merton 2012; Raisin et al, 2012; Tollington et al., 2015). Supplemental food is offered *ad-libitum* and year round to this population and whilst evidence demonstrates that it increases fledging success (Tollington et al., 2013)

Journal of Applied Ecology

96 little is known regarding levels of individual consumption and how this relates to reproductive output. Individuals breed for the first time in their second or third year, forming monogamous pairs that may last 97 98 more than 10 years. Each pair produces a single clutch of between one and four eggs and can fledge up to 99 four young. An outbreak of beak and feather disease virus (BFDV) in 2005 (Kundu et al., 2012) led to a 100 decrease in reproductive fitness in this population characterised by a marked decline in hatch success that 101 was short-lived and only apparent among breeding pairs that used SF (Tollington et al., 2015). BFDV 102 prevalence was however, not higher among individuals that used SF when compared to those that did not, 103 indicating that perhaps individual infection intensity may be an important factor.

Here, we use SIA to quantify (relative) individual consumption of SF among nestlings in a free-living population of endangered parakeets. Further, we use these values to estimate the combined diet of each breeding pair and identify the factors that predict variation in SF use. We then investigate how variation between breeding pairs predicts reproductive output and test whether the benefits of this resource are equally distributed. Finally, we use quantitative PCR (qPCR) to characterise individual nestling infection load in order to investigate relationships between parental SF use and BFDV infection.

110

More precisely, we address the following hypotheses:

- The variation in SF consumption between breeding pairs will be explained by nest-site and life history variables.
- 113 2. The number of fledglings produced per nesting attempt will be positively predicted by the114 proportion of SF consumption derived from SIA of feather samples.
- 115 3. Nestling viral load will be positively associated with parental SF use and negatively associated116 with nest-site distance from feeding stations.

118 Methods

119 Stable Isotope Analysis

Vegetation (leaf) samples from 37 plant and tree species, including all of those known to be important food species for the Mauritius parakeet (Jones et al., 2013), were collected from across their range within the Black River Gorges National Park, Mauritius. Ten independent samples of SF ('KayteeExact Parrot Pellets'; Kaytee Products Inc.) were also collected. This commercially produced parrot food consists of maize (*Zea spp.*) as the main ingredient and we therefore expect, owing to the variation in carbon fixation strategies between the two food groups (C₄ for *Zea* and C₃ for upland tropical vegetation), that δ^{13} C isotope analyses will reveal distinct signatures.

During the 2014/2015 breeding season, as part of the ongoing monitoring procedures, a small (5mm²) sample of primary feather was taken from each nestling at ~45 days old. A total of 194 individuals from 85 different broods were sampled. Additionally, 20 feather samples were collected from captive individuals as a control measure. The diet of the captive individuals was closely monitored and comprised almost exclusively of the maize-based food; captive birds do not have access to natural vegetation but their diet is supplemented periodically with fruit and browse. All samples of these potential food items and feathers were subjected to stable isotope analyses as detailed in Appendix S1.

134 *Quantification of viral load*

To quantify individual BFDV infection intensity we designed a TaqMan probe-based, qPCR assay (*c.f.* Eastwood et al., 2015). We used a published sequence of the replicase gene (HQ641502.1, Kundu et al 2012), derived from this host population, and the software Beacon Designer to design primers and a fluorescent probe that amplified a 120 bp fragment of the viral genome (full details can be found in Appendix S1). Genomic host (and thus viral) DNA was extracted from whole blood samples taken from nestlings using an ammonium acetate precipitation method (Nichols et al., 2000) and qPCR to determine individual viral load was performed according to details in Appendix S1.

142 *Measures of reproductive fitness and nest-site variables*

Individual life-history and nest-site data were collected as part of the routine monitoring procedures 143 144 undertaken by the Mauritian Wildlife Foundation. During the breeding season (2014/2015) a total of 113 breeding attempts were identified. After discounting breeding attempts that were either a) 'recycle' 145 attempts (where initial broods had failed), b) broods that failed at egg stage, or c) inaccessible, our final 146 dataset consisted of 85 breeding attempts. Blood and feather samples were collected from a total of 194 147 148 nestlings from these breeding attempts. Pair reproductive fitness was characterised by the number of 149 fledglings per breeding attempt. This was determined by accessing each nest box ~ 10 days after the 150 predicted date of fledging and we therefore assume that any chicks that were not found deceased had 151 indeed successfully fledged.

Nest-site and individual life-history variables included in the dataset were: a unique identifier for each nest-site, the estimated lay-date of the first egg (number of days after September 1st, determined by accessing each nest to candle eggs and confirm hatch success and age of chicks), the hatch order of each chick in each brood, the age and studbook identification of each female parent and the Euclidian distance of each nest-site to the nearest SF station (in km). Given the lack of anthropogenic obstacles and small distances involved in our study we assume that individuals do not deviate from a Euclidian path to feeders.

160 Statistical procedure

161 *Stable isotope analyses*

162 All statistical procedures were performed using R version 3.4.3 (R core development team 2017). Initially, we used simple MANOVAs to investigate the isotopic variation between the two dietary sources 163 164 by pooling values derived from SF and vegetation in order to verify that they were isotopically distinct. 165 Raw isotopic ratios from all feather samples were then similarly analysed to confirm variation between captive and wild individuals. We used a Bayesian approach to source partitioning within a two-source 166 stable isotope mixing model (SIMM) implemented in the R package SIAR (Parnell et al., 2008) to 167 estimate the relative proportional contribution of different food sources to feather samples (see 168 169 Supplementary Methods for details).

170 Brood-level variation in dietary composition and viral load

We used intraclass correlation tests on dietary proportions and viral load values to establish the within and 171 among-brood variation in order to satisfy the assumption that siblings would reveal similar values. 172 173 Nestlings were fed exclusively by their parents and therefore isotopic signatures from their feathers can be used to directly infer the combined parental diet. If intraclass correlations reveal higher within-brood 174 175 than among-brood variation then this inference would not be possible. Values of individual viral load 176 determined by qPCR were log-transformed to improve residual normality and also subjected to intraclass correlation tests to determine the within and between-brood variation. Since one of our hypotheses 177 178 predicts that nestling infection load will be associated with parental SF use, we expect both of these 179 variables to correlate highly among siblings.

180 Predictors of SF consumption, reproductive success and viral load

181 In order to address our first hypothesis, predictors of proportional SF consumption were analysed at the 182 brood-level by using 'Nest-site ID' as a random effect in a GLMM (Generalised Linear Mixed Model) to 183 account for the pseudoreplication of siblings. The response variable was individual dietary proportion

Journal of Applied Ecology

attributable to SF derived by SIMM and was arc-sin square-root transformed (Crawley 2012). The main explanatory predictors included were: female age (incorporating the quadratic term (Møller 2006)) and distance from nest-site to nearest feeding station. We also included as fixed covariates, the estimated laydate of the first egg in order to reveal any relationships between supplemental feeding and breeding phenology (Arcese and Smith 1988), and subpopulation (north or south) based on previous research that supports the existence of spatially independent subpopulations (Raisin et al., 2012, Tollington et al., 2013).

We used the number of birds fledged per breeding attempt as our measure of reproductive success in a simple GLM (McDonald and White 2010) to determine the exact reproductive benefit of SF and to examine any differential effects associated with our other fixed covariates. Our main predictor variable therefore, was proportional dietary contribution of SF, averaged across nest-mates and included as a firstorder interaction term with our other predictors: female age, distance to feeding station, lay date and subpopulation. We also included a brood-level value of viral load by taking the mean value of siblings.

GLMMs were used to investigate the predictors of nestling viral load using 'Nest-site ID' as a random effect. We used our previously described value of individual viral load as the response variable. The proportional consumption of SF derived from SIA, distance from each nest-site to the nearest feeding station and subpopulation were included as our main explanatory variables. We also included the following fixed covariates to account for demonstrable predictors of immunocompetence and disease susceptibility in birds: female age (Møller 2006), estimated lay date of first egg, (Hasselquist, et al. 2001) and hatch order (Saino et al. 2001).

Prior to analyses we performed extensive data exploration and derived Variance Inflation Factors (VIFs) following the protocols of Zuur et al., (2009). We standardised our predictors to avoid any biases associated with multicollinearity according to Cade (2015), and then used an information-theoretic approach to model selection (Burnham and Anderson 2002; Whittingham et al. 2006) to examine the fit of each candidate model. The R packages Ime4 (Bates et al., 2010) and MuMIn (Bartoń 2016) were used

209	to perform GLMMs and model averaging respectively. Candidate models were evaluated using AIC_c and
210	final model sets were restricted to $\Delta AIC_c < 7$ before model averaging (Bolker et al., 2009, Burnham,
211	Anderson and Huyvaert 2011). Furthermore, goodness-of-fit was assessed by calculating marginal R-
212	squared values for each of our candidate models (Johnson 2014). We derived the relative importance of
213	our model covariates by calculating the AIC _c -weighted absolute t-statistic values of each model-averaged
214	coefficient (Cade 2015, Robinson et al., 2016).

216 **Results**

217 Stable isotope values

Mean values of δ^{13} C and δ^{15} N varied significantly between the two dietary sources confirming the existence of distinct isotopic signatures (MANOVA; Pillai, F_{2,40} = 16.03, P < 0.001). Supplemental pellets revealed significantly higher values of both δ^{13} C and δ^{15} N when compared to vegetation (Figure 1 and Table 1). Values derived from feathers revealed significant separation between captive and wild collected samples and substantial variation among wild individuals (MANOVA; Pillai, F_{2,211} = 73.17, P < 0.001). Values from captive individuals for both δ^{13} C and δ^{15} N were significantly greater than those for wild individuals (Figure 1 and Table 1).

The SIMM revealed that the relative dietary contribution of SF in feathers collected from captive individuals ranged from 76% to 91% and from 29% to 91% among wild-collected samples. As expected, the mean individual dietary contribution of supplemental pellets from the captive population was significantly higher than that among samples collected from the wild (captive mean = $82\% \pm 5$, wild mean = $67\% \pm 15$; Welch's T = 9.08, d.f. = 72.6, P < 0.001).

230 Brood-level variation in dietary composition and viral load

Intraclass correlations on proportional contribution of supplemental pellets demonstrated a high correlation coefficient among wild siblings and low within-brood variation (ICC = 0.97 (0.95 - 0.98), variance within = 0.001, variance among = 0.02) indicating as expected, that the diets of siblings were indistinguishable. Intraclass correlation coefficients for nestling viral load revealed surprising results suggesting that it was not associated with brood. The coefficient was effectively zero; the within-brood variance was considerably higher than the between-brood variance (ICC = 0.016 (-0.16 - 0.20), variance within = 1.77, variance among = 0.03).

Tests for multicollinearity between our model predictors revealed no correlation greater than 0.7, VIFs
were < 3 for all of our variables indicating no reason to remove any of our covariates (Zuur et al., 2009).

Journal of Applied Ecology

240

241

1. The variation in SF consumption between breeding pairs will be explained by nest-site and lifehistory variables.

242 Our initial SIA results revealed substantial variation in dietary proportion of SF among breeding pairs (Figure 1). Model selection to identify the important predictors of this variation revealed that the top 243 performing model by > 6 Δ AICc, with an R² of 0.36, contained distance to feeding station as the single 244 explanatory covariate (Table S1). Model averaged coefficients confirmed that nest-site distance to feeding 245 246 station was a strong predictor of individual SF consumption (t-statistic = 6.22) demonstrating that nestlings' dietary contribution of SF increased with proximity to the nearest feeding station (Figure 2 and 247 Table 2). There was a small but noteworthy difference in SF consumption between the two 248 249 subpopulations and the R^2 for the model containing both of these covariates was 0.40 (Tables S1 and 2). 250 No other variables appeared in our model selection table (Table S1).

251 2. The number of fledglings produced per nesting attempt will be positively predicted by the
252 proportion of SF consumption derived from SIA of feather samples.

Twenty-six models remained after model selection but these did not feature a clear 'best model'. The R-253 254 squared values ranged from 0.29 to 0.38 (Table S2). Model averaged coefficients revealed that the 255 number of fledglings per breeding attempt was positively associated with proportional consumption of SF (t-statistic = 3.78). Female age also positively predicted the number of fledglings (t-statistic = 3.78). 256 Moreover, the interaction between female age and proportion SF consumption was a significant predictor 257 of fledgling productivity representing the third most important predictor (t-statistic = 2.87). The positive 258 relationship between SF consumption and fledgling number was more pronounced as female age 259 260 increased, indicating that supplemental feeding is disproportionately beneficial to older females (Figure 3). Lay-date was negatively associated with the number of fledglings; females that laid earlier clutches 261 262 raised more fledglings (t-statistic = 1.62). Distance to feeding hoppers and subpopulation were not strong 263 predictors of reproductive output. Full model averaged coefficients can be found in Table 3.

264 3. Nestling viral load is positively associated with parental SF use and negatively associated with
265 nest-site distance from feeding stations.

Viral load among nestlings was not predicted by any of our predictors. In the final candidate model set, Rsquared values ranged from zero (for the null model) to 0.07 reflecting the equally poor fit of all 64 candidates (Table S3). Model averaging demonstrated a lack of clear predictors of individual viral infection intensity; model averaged coefficients were small, all had confidence intervals that included zero and the model averaged t-statistics for all covariates were < 1.4 (Table 4). Of all the predictors, subpopulation and lay date were the strongest, indicating that viral load tended to be higher in the northern population and higher among broods produced earlier in the breeding season.

274 Discussion

275 Supplemental feeding increases productivity

276 Female age and relative proportional consumption of SF per breeding pair were both strong, positive predictors of the number of fledglings produced per breeding attempt. Importantly however, we found no 277 278 relationship between SF consumption and female age suggesting that older females were able to maintain 279 increased reproductive fitness over younger females without the need to increase their consumption of SF. Age-dependent effects on reproductive success in birds have been well-studied and have largely been 280 associated with increased experience of older individuals in securing sufficient high quality nest sites, 281 mates and food (Newton 1989, Oro et al., 2014). Presumably, this result reflects an element of greater 282 283 experience among older females in brood provisioning, regardless of food availability.

This general result however, concealed a subtle but nonetheless significant pattern in SF use that revealed 284 285 a disproportionate benefit to some individuals. The reproductive uplift provided by SF consumption was more pronounced with increasing female age; females of all ages demonstrated increased productivity 286 with increased SF consumption but older females revealed the greatest benefit. This result perhaps 287 suggests that food availability is less of a limiting factor for reproductive fitness among younger females 288 289 than it is among older females. Providing SF to this population has clearly increased reproductive output, 290 contributing to the recovery of this species and the ultimate objective of population growth. The 291 implications of this strategy on long-term population viability are however, less clear. For example, some evidence suggests that offspring of older parents reveal reduced survival and recruitment (Torres et al., 292 293 2011) whilst others have shown that enlarged broods can lead to reduced individual survival (Naguib et 294 al., 2004), increased levels of stress (Salleh Hudin et al., 2017) and that SF may in fact increase reproductive success without resulting in viable populations recovery (Peach et al., 2015). Our results are 295 limited to data from a single breeding season and therefore an ongoing assessment of juvenile quality and 296 297 long-term survival is required in this system in order to evaluate the implications of individual 298 supplemental feeding on population-level fitness.

300 Nest-site distance to feeding stations predicts SF consumption

301 Relative dietary proportion of SF increased with proximity of nest-site to feeding stations; birds that nested closer to the feeding stations consumed more SF than those nesting further away. No other 302 303 variables explained considerable variation in SF consumption and we found no indicators of distance 304 associated with female age, or that food provisioning advances egg laying dates as in other studies (e.g. Harrison et al., 2010). Perhaps counterintuitively, in the model to describe reproductive output, nest-site 305 306 distance to feeders was not a strong predictor (Table 3). We were initially concerned that we had 307 introduced an element of collinearity in this model by including both the 'distance' and 'proportion SF' 308 variables. However, we were reassured by our extensive efforts that the level of collinearity between 309 these two variables was low enough to avoid misinterpretation in our model. To provide further reassurance we repeated the model, omitted 'proportion SF', and 'distance' remained unimportant (Table 310 S4). This highlights unavoidable complexity in such studies: SF consumption positively predicted 311 312 reproductive output; distance to feeders strongly predicted SF consumption but pairs nesting closer to 313 feeders did not produce more fledglings. This initially confusing result suggests that, even though distance to feeders was identified as the strongest predictor of SF consumption in our study, there are 314 315 likely to be numerous other, unmeasured and unknown factors that contribute to levels of supplemental 316 feeding and reproductive output including pairs' home ranges, habitat quality, seasonal variation and 317 competition at feeding stations. Furthermore, our measure of relative SF consumption was derived from 318 feather samples of nestlings and therefore describes the combined parental diet. It is therefore possible that within a breeding pair there exists variation in feeding strategy (and chick provisioning) between the 319 320 male and female that we were unable to explain in this study.

321 Parental consumption of SF does not predict viral load among nestlings

BFDV infection intensity among nestlings was not associated with parental consumption of SF nor was it
 strongly related to any of our nest-site or life-history variables. Our results suggested that viral load may

Journal of Applied Ecology

be weakly associated with subpopulation and lay date, relationships that may strengthen if a larger, multi-season dataset is considered.

326 Our approach to characterising consumption cannot precisely predict frequency of visitation to feeders or contact rates with other individuals, but one can reasonably expect individuals that consume high levels of 327 SF to also spend more time at the feeders; especially since those that do so also occupy nest-sites that are 328 329 closer to the feeders. Ideally, a range of methods should be employed in supplementary feeding studies 330 that directly characterise the variables of interest. However, characterising both consumption and 331 visitation or contact frequency simultaneously in a free-living bird population is accompanied by 332 logistical constraints (such as the deployment of individual PIT tags) that often prevent comprehensive 333 studies.

334 The lack of a strong relationship between supplemental feeding and pathogen infection may be explained 335 by the results we observed for within and between-brood variation in infection intensity. These results suggest that infection intensity is not brood-related and is not associated with hatch order, perhaps 336 indicating that infection intensity of nestlings is more closely aligned with individual life-history variables 337 338 such as immunogenetic condition. Alternatively, perhaps a single assessment of viral load at a specific moment in time reflects the transient nature of BFDV infection and does not infer a current clinical 339 340 infection associated with disease. Regnard et al., (2015) demonstrated that infection intensity was 341 associated with clinical signs in Cape parrots (*Poicephalus robustus*); none of the nestlings in our study displayed signs of clinical infection and observational accounts of condition post-fledging were not 342 343 recorded. Infection loads of individuals at the nestling stage may well predict post-fledging survival and future reproductive abilities but investigating this is not within the scope of this study. 344

345 *Conclusion*

346 In our study, the success of breeding pairs in terms of numbers of fledged offspring was predicted by their 347 relative proportional consumption of supplemental food. Supplemental feeding was introduced to counter 348 low productivity of parakeets as a result of diminished natural resources (Jones and Merton 2012) and has fulfilled its main objective having played a significant role in preventing the extinction of this species(Butchart et al., 2006).

351 When food provisioning was initially introduced in this system however, there was little consideration of any indirect effects and therefore feeders were placed close to release aviaries for monitoring purposes. 352 Our approach to quantifying variation in SF consumption among individuals has revealed that individual 353 354 parakeets do not use this resource equally and do not derive equal benefit from it. Our study therefore, 355 supports a growing recognition that the provisioning of food requires a more detailed evaluation of 356 benefits and consequences in order that it can be applied in a more strategic manner (Ewen et al., 2015). 357 These evaluations are difficult to implement in free-living populations owing to a variety of logistical 358 constraints but our study has provided evidence to inform them. Reducing the overall volume of SF 359 provided would reduce the demand on finite resources, whilst targeting supplementary feeding toward a specific portion of the population might be an appropriate management consideration if the long-term 360 objective is to maintain population viability without the use of SF. Ultimately, any manipulation in food 361 provisioning is associated with important trade-offs and a reduction in food provisioning will likely lead 362 363 to a reduction in fecundity. It is therefore vital that the relative importance of the different objectives are 364 considered and the conservation implications of each evaluated accordingly.

365 Our single-season analysis provides a snapshot of the factors that predict levels of SF use and the 366 implications on productivity and viral infection in this population. It is therefore difficult to reach conclusions on long-term impacts of supplemental feeding in our system given these patterns because a 367 368 much more comprehensive approach is needed that incorporates multiple seasons and an assessment of habitat quality. Nonetheless we have shown here that our methods, if incorporated into a multi-season 369 370 study, could make valuable contributions to informing long-term strategies for recovering populations 371 where SF is provided. By analysing stable isotopes of feathers we characterised the relative proportional 372 consumption of SF by Mauritius parakeets to a level of detail previously unobtainable. This analysis has

- enabled us to reveal subtle patterns in the parental use of this resource, identify the potential impacts of
- 374 providing SF and to offer recommendations for future research.

377 Acknowledgements

- 378 This work was funded by a NERC PhD studentship (NE/F01290X/1) awarded to JG and by grants
- awarded to ST from the Rufford Small Grants for Nature Conservation (14122-B) and the British
- Ecological Society (5163-6205). We are grateful to the staff and volunteers of the Mauritian Wildlife
- 381 Foundation and also to the National Parks and Conservation Services of the Government of Mauritius.
- 382 We thank two reviewers for their very helpful comments. The authors declare no conflict of interest.

383 Author Contributions

- 384 ST and JG conceived the idea.
- 385 ST, CJ, AG and VT designed the methodology
- 386 ST, DS and AH collected field samples
- 387 ST, JN, RM and DF performed laboratory analyses
- 388 ST analysed the data
- 389 ST and JE led the writing of the manuscript
- 390
- 391 Data Accessibility
- 392 TBC
- 393

394 **References**

- Adelman, J.S., Moyers, S.C., Farine, D.R. and Hawley, D.M., 2015. Feeder use predicts both acquisition
- and transmission of a contagious pathogen in a North American songbird. *Proceedings of the RoyalSociety B.* 282, 1815.
- 398 Arcese, P. and Smith, J.N., 1988. Effects of population density and SF on reproduction in song sparrows.
- 399 *The Journal of Animal Ecology*, pp.119-136.
- 400 Bartoń K. 2016 MuMIn: multi-model inference. *R package version*1.15.6
- 401 Bates D., Maechler M., Dai B. 2010. lme4: linear mixed-effects models using S4 classes. R package
- 402 version 0.999375-33. R Foundation for Statistical Computing. Vienna, Austria. CRAN R-project
 403 org/packageplme4.
- 404 Blanco, G., Lemus, J. A. and García-Montijano, M. 2011. When conservation management becomes
- 405 contraindicated: impact of food supplementation on health of endangered wildlife. *Ecological*406 *Applications*, 21, 2469-2477.
- 407 Bolker B.M., Brooks M.E., Clark C.J., Geange S.W., Poulsen J.R., Stevens M.H.H., White J.S.S. 2009
- 408 Generalized linear mixed models: a practical guide for ecology and evolution. *Trends in Ecology & Evolution* 24(3), 127-135.
- 410 Boutin, S. 1990. Food supplementation experiments with terrestrial vertebrates: patterns, problems, and
- 411 the future. *Canadian Journal of Zoology*, 68, 203-220.
- 412 Burnham, K.P. & Anderson, D.R. 2002. Model Selection and Multimodel Inference: A Practical
- 413 Information-Theoretic Approach. Springer Verlag, New York.
- 414 Burnham, K.P., Anderson, D.R. and Huyvaert, K.P., 2011. AIC model selection and multimodel inference
- in behavioural ecology: some background, observations, and comparisons. *Behavioural Ecology and*
- 416 *Sociobiology*, 65(1), 23-35.
- Butchart, S. H., Stattersfield, A. J., & Collar, N. J. 2006. How many bird extinctions have we prevented? *Oryx*, 40(03), 266-278.
- 419 Cade, B.S., 2015. Model averaging and muddled multimodel inferences. Ecology, 96(9), 2370-2382.
- 420 Chauvenet, A.L.M., Ewen, J.G., Armstrong, D.P., Coulson, T., Blackburn, T.M., Adams, L., Walker,
- 421 L.K. and Pettorelli, N., 2012. Does supplemental feeding affect the viability of translocated populations?
- 422 The example of the hihi. *Animal Conservation*, *15*(4), 337-350.

- 423 Clout, M. and Craig, J. 1995. The conservation of critically endangered flightless birds in New Zealand.
 424 *Ibis*, 137, S181-S190.
- 425 Crates, R.A., Firth, J.A., Farine, D.R., Garroway, C.J., Kidd, L.R., Aplin, L.M., Radersma, R., and
- 426 Verhelst, B.L., 2016. Individual variation in winter supplementary food consumption and its
- 427 consequences for reproduction in wild birds. *Journal of Avian Biology* 47(5), 678-689.
- 428 Crawley, M.J., 2012. *The R Book*. John Wiley & Sons.
- Ewen, J.G., Walker, L., Canessa, S. and Groombridge, J.J., 2015. Improving supplementary feeding in
 species conservation. *Conservation Biology*, *29*(2), 341-349.
- 431 Eastwood, J.R., Berg, M.L., Spolding, B., Buchanan, K.L., Bennett, A.T. and Walder, K., 2015.
- 432 Prevalence of beak and feather disease virus in wild *Platycercus elegans*: comparison of three tissue types
- 433 using a probe-based real-time qPCR test. *Australian journal of zoology*, 63(1), pp.1-8.
- 434 Harrison, T. J., Smith, J. A., Martin, G. R., Chamberlain, D. E., Bearhop, S., Robb, G. N., & Reynolds, S.
- J. (2010). Does food supplementation really enhance productivity of breeding birds?. Oecologia, 164(2),
 311-320.
- 437 Hasselquist, D., Wasson, M.F. and Winkler, D.W., 2001. Humoral immunocompetence correlates with
- date of egg-laying and reflects work load in female tree swallows. *Behavioral Ecology*, 12(1), 93-97.
- Hobson, K.A. and Clark, R.G., 1992. Assessing avian diets using stable isotopes I: turnover of 13C in
 tissues. *Condor*, pp.181-188.
- Johnson, P.C.D., 2014. Extension of Nakagawa & Schielzeth's R2 GLMM to random slopes models. *Methods in Ecology and Evolution*. 5, 944–946.
- 443 Jones, C.G. and Merton, D.V. (2012) A Tale of Two Islands: The Rescue and Recovery of Endemic Birds
- 444 in New Zealand and Mauritius. *Reintroduction Biology: Integrating Science and Management* (eds J.G.
- Ewen, D.P. Armstrong, K.A. Parker & P.J. Seddon). Wiley-Blackwell.
- Jones, C., Tollington, S., Raisin, C., Zuel, N., Tatayah, V. (2013) Birds of the Mascarenes: *Psittacula*. In
- *The Birds of Africa: Volume VIII: The Malagasy Region* (eds. Safford R., Hawkins F.), pp. 430-438,
 A&C Black Ltd.
- 449 Kundu, S., Faulkes, C.G., Greenwood, A.G., Jones, C.G., Kaiser, P., Lyne, O.D., Black, S.A.,
- 450 Chowrimootoo, A. & Groombridge, J.J. (2012) Tracking viral evolution during a disease outbreak: The
- 451 rapid and complete selective sweep of a circovirus in the endangered Echo parakeet. *Journal of Virology*,
- 452 86, 5221-5229.

- McDonald, T.L. and White, G.C., 2010. A comparison of regression models for small counts. *Journal of Wildlife Management*, 74(3), pp.514-521.
- 455 Møller, A.P., 2006. Sociality, age at first reproduction and senescence: comparative analyses of birds.
- 456 *Journal of evolutionary biology*, 19(3), 682-689.
- 457 Murray, M.H., Becker, D.J., Hall, R.J. and Hernandez, S.M., 2016. Wildlife health and supplemental
- 458 feeding: A review and management recommendations. *Biological Conservation*.
- 459 Naguib, M., Riebel, K., Marzal, A. and Gil, D., 2004. Nestling immunocompetence and testosterone
 460 covary with brood size in a songbird. Proceedings of the Royal Society B: Biological Sciences,
 461 271(1541), p.833.
- 462 Newey, S., Allison, P., Thirgood, S.J., Smith, A.A. and Graham, I.M., 2009. Using PIT-tag technology to
- target supplementary feeding studies. Wildlife biology, 15(4), pp.405-411.
- 464 Newton, I. 1989. *Lifetime reproduction in birds*. Academic Press.
- 465 Oro, D., Hernández, N., Jover, L. and Genovart, M., 2014. From recruitment to senescence: food shapes
- the age-dependent pattern of breeding performance in a long-lived bird. Ecology, 95(2), pp.446-457.
- 467 Parnell, A., Inger, R., Bearhop, S. and Jackson, A. 2008. SIAR: stable isotope analysis in R. *The*468 *Comprehensive R Archive Network*).
- 469 Parnell, A.C., Phillips, D.L., Bearhop, S., Semmens, B.X., Ward, E.J., Moore, J.W., Jackson, A.L., Grey,
- J., Kelly, D.J. and Inger, R., 2013. Bayesian stable isotope mixing models. *Environmetrics*, 24(6), 387399.
- 472 Peach, W.J., Mallord, J.W., Ockendon, N., Orsman, C.J. and Haines, W.G., 2015. Invertebrate prey
- 473 availability limits reproductive success but not breeding population size in suburban House Sparrows
- 474 Passer domesticus. Ibis, 157(3), pp.601-613.
- 475 R Development Core Team. 2017 R: A language and environment for statistical computing. Vienna,
 476 Austria, R Foundation for statistical computing.
- 477 Raisin, C., Frantz, A.C., Kundu, S., Greenwood, A.G., Jones, C.G., Zuel, N. and Groombridge, J.J. (2012)
- Genetic consequences of intensive conservation management for the Mauritius parakeet. *ConservationGenetics*, 13, 1-9.
- 480 Robb, G. N., McDonald, R. A., Chamberlain, D. E. and Bearhop, S. 2008. Food for thought:
- 481 supplementary feeding as a driver of ecological change in avian populations. *Frontiers in Ecology and the*
- 482 *Environment*, 6, 476-484.

- 483 Robb, G.N., McDonald, R.A., Inger, R., Reynolds, S.J., Newton, J., McGill, R.A., Chamberlain, D.E.,
- 484 Harrison, T.J. and Bearhop, S., 2011. Using stable-isotope analysis as a technique for determining
- 485 consumption of supplementary foods by individual birds. *The Condor*, *113*(3), 475-482.
- 486 Robinson, J.P., Williams, I.D., Edwards, A.M., McPherson, J., Yeager, L., Vigliola, L., Brainard, R.E.
- and Baum, J.K., 2016. Fishing degrades size structure of coral reef fish communities. *Global change biology*.
- 489 Safford, R.J., 1997. A survey of the occurrence of native vegetation remnants on Mauritius in 1993.
- 490 Biological Conservation, 80(2), pp.181-188.
- 491 Saino, N., Incagli, M., Martinelli, R., Ambrosini, R. and Møller, A.P., 2001. Immunity, growth and
- 492 begging behaviour of nestling barn swallows Hirundo rustica in relation to hatching order. *Journal of*
- 493 *Avian Biology*, 32(3), 263-270.
- 494 Salleh Hudin, N., De Neve, L., Strubbe, D., Fairhurst, G.D., Vangestel, C., Peach, W.J. and Lens, L.,
- 495 2017. Supplementary feeding increases nestling feather corticosterone early in the breeding season in
- house sparrows. Ecology and Evolution, 7(16), pp.6163-6171.
- Tollington, S., Greenwood, A., Jones, C., Hoeck, P., Tatayah., V., and Groombridge, J. 2015. Long-term
 monitoring of an endangered parakeet population reveals disproportionate effects of viral outbreak on
 productivity of supplementary-fed birds but little signal of immune response. *Journal of Animal Ecology*.84, 969-977
- Tollington, S., Jones, C.G., Greenwood, A., Tatayah, V., Raisin, C., Burke, T., Dawson, D.A. &
 Groombridge, J.J. 2013. Long-term, fine-scale temporal patterns of genetic diversity in the restored
 Mauritius parakeet reveal genetic impacts of management and associated demographic effects on
 reintroduction programmes. *Biological Conservation*, 161, 28-38.
- 505 Torres, R., Drummond, H. and Velando, A., 2011. Parental age and lifespan influence offspring 506 recruitment: a long-term study in a seabird. PloS one, 6(11), p.e27245.
- 507 Walters, J. R., Derrickson, S. R., Fry, D. M., Haig, S. M., Marzluff, J. M. & Wunderle JR, J. M. (2010).
- 508 Status of the California condor (Gymnogyps californianus) and efforts to achieve its recovery. *The Auk*, 509 127, 969-1001.
- 510 Wilcoxen, T.E., Horn, D.J., Hogan, B.M., Hubble, C.N., Huber, S.J., Flamm, J., Knott, M., Lundstrom,
- 511 L., Salik, F., Wassenhove, S.J. and Wrobel, E.R., 2015. Effects of bird-feeding activities on the health of
- 512 wild birds. *Conservation Physiology*, 3(1).

- 513 Whittingham, M.J., Stephens, P.A., Bradbury, R.B. & Freckleton, R.P. (2006). Why do we still use
- stepwise modelling in ecology and behaviour? *Journal of Animal Ecology*, 75, 1182–1189.
- 515 Zuur A.F., Ieno E.N., Walker N.J., Saveliev A.A., Smith G.M. 2009 Mixed effects models and extensions
- 516 *in ecology with R*, Springer Verlag.

Source	δ ¹³ C	\pm SD (δ^{13} C)	$\delta^{15}N$	\pm SD (δ^{15} N)
Supplemental pellets	-19.52	1.19	3.07	1.43
(n=10)				
Vegetation	-29.73	4.31	-0.95	2.95
(n=37)				
Target				
Wild (n=194)	-20.73	1.81	4.42	0.57
Captive (n=20)	-19.21	0.69	5.60	0.32

518 Table 1 Variation in raw mean isotopic signatures between dietary sources and target populations

520 Table 2 Model averaged coefficients, standard errors (S.E.), confidence intervals and t-statistics (absolute,

ratio and variance) from GLMM to predict relative individual dietary proportion of supplemental food.
 Predictors are ordered by weighted t-statistics as a measure of relative variable importance, those in bold feature coefficient estimates where confidence intervals do not cross zero.

	Estimate	S.E.	CI 2.5%	CI 97.5%	T abs	T ratio	T var
(Intercept)	0.08	0.00	0.08	0.08			
Distance	-0.01	0.00	-0.02	-0.01	6.22	0.96	0.39
Subpop	-0.01	0.00	-0.02	0.00	0.33	0.07	1.42

524

Table 3 Model averaged coefficients, standard errors (S.E.), confidence intervals and variable t-statistics
 (absolute, ratio and variance) from GLM to predict number of fledglings per brood. Predictors are ordered

526 (absolute, ratio and variance) from GLM to predict number of fledglings per brood. Predictors are ordered 527 by weighted t-statistics as a measure of relative variable importance, those in bold feature coefficient 528 estimates where confidence intervals do not cross zero.

	Estimate	S.E.	CI 2.5%	CI 97.5%	T abs	T ratio	T var
(Intercept)	2.27	0.08	2.1	2.43			
Supp food	0.84	0.25	0.33	1.34	3.78	0.97	0.05
Dam age	0.61	0.16	0.28	0.93	3.78	0.97	0.05
Lay date	-0.33	0.16	-0.66	-0.01	1.62	0.42	0.16
Distance	0.40	0.24	-0.09	0.89	1.10	0.28	0.30
Subpop	0.32	0.24	-0.16	0.79	0.69	0.18	0.29
Dam age: Supp	0.92	0.32	0.29	1.55	2.87	0.73	0.02
Lay date: Supp	-0.35	0.39	-1.12	0.42	0.21	0.06	0.12
Distance: Supp	-0.19	0.38	-0.96	0.58	0.08	0.02	0.03
Subpop: Supp	0.05	0.44	-0.82	0.92	0.02	0.01	0.01

529

Table 4 Model averaged coefficients, standard errors (S.E.), confidence intervals and t-statistics (absolute,
 ratio and variance) from GLMM to predict individual viral load. Predictors are ordered according

	Estimate	S.E.	CI 2.5%	CI 97.5%	T abs	T ratio	T var
(Intercept)	-7.02	0.09	-0.15	0.15			
Subpop	-0.31	0.29	-0.94	0.03	1.39	0.67	0.31
Lay date	-0.21	0.21	-0.67	0.02	1.25	0.62	0.29
Hatch order	-0.09	0.15	-0.54	0.13	0.51	0.26	0.22
Distance	0.10	0.20	-0.26	0.76	0.44	0.21	0.25
Dam age	-0.07	0.14	-0.55	0.17	0.40	0.22	0.19
Supp food	0.05	0.15	-0.31	0.61	0.25	0.15	0.17

534

Figure 1. Mean (±SD) of raw isotopic values from dietary sources and individual values from feather
 samples. Captive individuals are shown in filled black circles.

Figure 2. Average proportional consumption of supplemental food and distance in km to nearest feeding station. Each datapoint represents the combined diet of a breeding pair. ($\beta = -0.1$, S.E = 0.01, P = < 0.001, R² = 0.48).

Figure 3. Interactive effect from GLMM of proportional supplemental food consumption and female age on the number of fledglings produced. Plots illustrate the relationship at the 10th, 50th and 90th quantile of female age illustrating the increasing benefit of supplemental food to productivity as female age increases.

Electronic Supplementary Material for Tollington et al., "Characterising individual consumption of supplemental food by Mauritius parakeets as a predictor of reproductive performance and viral infection intensity"

Appendix S1 – Supplementary Methods

Stable Isotope Analysis

Each dried leaf was crushed and 1.9mg weighed into tin capsules for analysis, samples of supplemental pellets weighing 0.7mg were similarly prepared. Each feather sample was washed in a 2:1 choloroform:methanol solution to remove excess dirt and oils and 0.7mg was weighed into tin capsules. Samples were analysed via continuous-flow mass spectrometry in order to derive the ratios of the stable isotopes of carbon (δ^{13} C) and nitrogen (δ^{15} N). Replicate analyses of gelatin (n=20) in each run implied a precision (s.d.) of 0.08 ‰ for both δ^{13} C and δ^{15} N. Analysis was conducted at the NERC Life Sciences Mass Spectrometry Facility, East-Kilbride, using a Costech ECS 4010 interfaced with a Thermo Fisher Scientific Delta XP Plus IRMS.

We applied isotope discrimination factors ($\pm 2.16^{0}/_{00}$ for δ^{13} C and $\pm 3.84^{0}/_{00}$ for δ^{15} N) to our raw results following the recommendations of Caut et al., (2009). Discrimination (or trophic enrichment) factors describe the variation in isotopic composition between the tissue sample of a consumer and the dietary source as a result of trophic enrichment and physiological assimilation (Hobson and Clark 1992, Pearson et al., 2003). Estimates of fractionation factors vary according to nutritional status, taxon, tissue etc and are inherently difficult to accurately determine in free-living populations (Caut et al., 2009). Furthermore, estimates are often applied across a variety of food sources under the assumption that isotopes are enriched in a similar fashion. Studies invariably use estimates derived from controlled laboratory experiments in the absence of more accurate values which can only be calculated from exhaustive sampling of dietary sources and are therefore often unknown. Mean values (± 1 SD) for δ^{13} C and δ^{15} N

Relative proportional contribution of different food sources to feather samples was implemented in the R package SIAR (Parnell et al., 2008). SIAR uses a hierarchical Markov Chain Monte Carlo model fitting

procedure to estimate dietary proportions from a Dirichlet probability distribution (Parnell et al., 2013). Models were run for 500000 iterations with a burn-in period of 50000 and we took the mean values for each sample, from the resulting probability-density functions, to represent the individual proportional dietary contribution of SF and natural vegetation in subsequent analyses.

Quantification of viral load

The primers (Fwd: 5'-TGGGTGGCTACCTTATTG-3' and Rev: 5'-GGCTTATTGCTCGTGATAA-3') were first optimised and assay performance evaluated using serial dilutions of a positive control in a SYBR Green reaction according to a detailed Bio-Rad protocol (Bio-Rad 2006). A FAM-labelled fluorescent probe (5'FAM-CTCTGCGACCGTTACCCACA-3'TAM) incorporating a TAMRA quencher was then designed and optimised using the same protocol.

Concentrations were standardised to 10ng/µl using a Qubit 2.0 fluorometer and a high specificity assay kit (Invitrogen, ThermoFisher Scientific Inc). The qPCR protocol was designed according to iTaq Universal Probes Supermix (Bio-Rad Inc.) guidelines. Each reaction was performed in 20µl volumes and contained:

iTaq Universal Probes Supermix	10µl
Forward primer (10µM)	0.8µl
Reverse primer (10µM)	0.8µl
Probe (10µM)	0.2µl
DNA (10ng/µl)	5.0µl
DDH ₂ O	3.2µl

Samples were arranged in 96-well plates, each sample was duplicated and each plate contained at least two negative and two positive controls. A Bio-Rad CFX Connect real-time thermal cycler was then used to perform qPCR analysis on each plate with the following conditions: initial denaturation of 5 min at 95°C; followed by 40 cycles of: 5 s at 95°C and 30 s at 60°C.

To calculate individual viral load we adhered to the protocol outlined by Eastwood et al., (2015) by repeating samples where the duplicate C_T values differed by more than one cycle and by normalising the difference between the plates by using the positive controls. We then used the comparative C_T method (Schmittgen and Livak 2008) to determine individual infection intensity (where ΔCT = average C_T between sample duplicates – average C_T of positive control duplicates):

Viral load =
$$2(-\Delta CT)$$

Any sample that returned an average C_T of >38 cycles was attributed a viral load of zero (Eastwood et al.,

2015).

Cited Literature

Caut, S., Angulo, E. and Courchamp, F. 2009. Variation in discrimination factors (Δ 15N and Δ 13C): the effect of diet isotopic values and applications for diet reconstruction. *Journal of Applied Ecology*, 46, 443-453.

Eastwood, J.R., Berg, M.L., Spolding, B., Buchanan, K.L., Bennett, A.T. and Walder, K., 2015. Prevalence of beak and feather disease virus in wild Platycercus elegans: comparison of three tissue types using a probe-based real-time qPCR test. Australian journal of zoology, 63(1), pp.1-8.

Hobson, K.A. and Clark, R.G., 1992. Assessing avian diets using stable isotopes I: turnover of 13C in tissues. *Condor*, pp.181-188.

Pearson, S.F., Levey, D.J., Greenberg, C.H. and Del Rio, C.M., 2003. Effects of elemental composition on the incorporation of dietary nitrogen and carbon isotopic signatures in an omnivorous songbird. Oecologia, 135(4), pp.516-523.

Parnell, A., Inger, R., Bearhop, S. and Jackson, A. 2008. SIAR: stable isotope analysis in R. *The Comprehensive R Archive Network*).

Parnell, A.C., Phillips, D.L., Bearhop, S., Semmens, B.X., Ward, E.J., Moore, J.W., Jackson, A.L., Grey, J., Kelly, D.J. and Inger, R., 2013. Bayesian stable isotope mixing models. *Environmetrics*, *24*(6), 387-399.

Schmittgen, T.D. and Livak, K.J., 2008. Analysing real-time PCR data by the comparative CT method. *Nature protocols*, *3* (6), 1101-1108.

Supplementary Tables

Table S1 Model selection table and R-squared values using standardised predictors of supplemental feeding where $\Delta AICc < 7$

Model ID	Intercept	Subpop	Dam age	Hatch order	Lay date	Distance in Km	Df	logLik	AICc	ΔAICc	Weight	R ²
17	0.08					-0.01	4	665.34	-1322.43	0.00	0.92	0.36
2	0.08	-0.01					4	662.25	-1316.24	6.19	0.04	0.30
18	0.08	-0.01				-0.01	5	663.18	-1315.99	6.43	0.04	0.40

Model ID	Intercept	Subpop	Dam age	Distance in Km	Lay date	Supp food	Subpop: Supp food	Dam age: Supp food	Distance: Supp food	Lay date: Supp food	df	logLik	AICc	ΔΑΙϹϲ	Weight	R ²
95	2.25		0.64	0.46	-0.34	0.85		0.90			7	-66.20	148.18	0.00	0.17	0.37
92	2.25	0.37	0.60		-0.31	0.74		0.83			7	-66.85	149.47	1.30	0.09	0.36
96	2.25	0.24	0.64	0.37	-0.32	0.92		0.89			8	-65.58	149.48	1.30	0.09	0.38
351	2.23		0.63	0.44	-0.35	0.89		1.04		-0.33	8	-65.79	149.90	1.72	0.07	0.37
91	2.25		0.57		-0.33	0.52		0.82			6	-68.45	150.21	2.04	0.06	0.34
223	2.21		0.63	0.40	-0.36	0.87		0.91	-0.22		8	-66.00	150.33	2.15	0.06	0.37
87	2.25		0.59	0.45		0.92		0.95			6	-68.57	150.45	2.27	0.05	0.33
84	2.25	0.41	0.56			0.83		0.88			6	-68.76	150.83	2.65	0.04	0.33
348	2.23	0.36	0.59		-0.32	0.80		1.00		-0.39	8	-66.26	150.85	2.67	0.04	0.37
88	2.25	0.29	0.59	0.34		1.00		0.94			7	-67.73	151.23	3.06	0.04	0.35
352	2.23	0.25	0.63	0.34	-0.33	0.97		1.03		-0.33	9	-65.15	151.24	3.07	0.04	0.38
347	2.23		0.57		-0.35	0.60		1.00		-0.41	7	-67.83	151.44	3.26	0.03	0.34
224	2.21	0.26	0.63	0.29	-0.34	0.95		0.90	-0.25		9	-65.32	151.59	3.41	0.03	0.38
124	2.25	0.36	0.60		-0.31	0.74	-0.03	0.83			8	-66.84	152.01	3.83	0.02	0.36
83	2.25		0.53			0.60		0.87			5	-70.59	152.10	3.93	0.02	0.30
128	2.25	0.24	0.64	0.37	-0.32	0.92	-0.02	0.89			9	-65.58	152.10	3.93	0.02	0.37
479	2.21		0.63	0.41	-0.36	0.90		1.02	-0.13	-0.28	9	-65.73	152.41	4.23	0.02	0.37
215	2.24		0.59	0.43		0.93		0.95	-0.06		7	-68.55	152.88	4.70	0.02	0.33
116	2.26	0.43	0.56			0.82	0.11	0.88			7	-68.72	153.22	5.04	0.01	0.33
380	2.24	0.38	0.59		-0.32	0.80	0.07	1.01		-0.40	9	-66.25	153.45	5.27	0.01	0.36
120	2.27	0.32	0.59	0.34		1.00	0.13	0.93			8	-67.68	153.67	5.50	0.01	0.34
216	2.23	0.30	0.59	0.31		1.02		0.94	-0.11		8	-67.68	153.69	5.51	0.01	0.34
480	2.20	0.25	0.63	0.30	-0.34	0.98		1.02	-0.16	-0.28	10	-65.05	153.77	5.59	0.01	0.38
384	2.24	0.26	0.63	0.34	-0.33	0.97	0.07	1.04		-0.35	10	-65.13	153.93	5.75	0.01	0.38
256	2.22	0.32	0.62	0.26	-0.33	0.95	0.24	0.91	-0.38		10	-65.19	154.05	5.88	0.01	0.38
31	2.27		0.59	0.37	-0.38	0.72					6	-70.91	155.13	6.96	0.01	0.29

Table S2 Model selection table and R-s	quared values using	g standardised p	redictors of numbers	of fledglings pe	er breeding attempt w	where $\Delta AICc < 7$.
		5				

Model ID	Intercept	Subpop	Supp food	Dam age	Hatch order	Lay date	Distance in Km	Df	logLik	AICc	ΔAICc	Weight	R ²
18	0.001498439	-0.32				-0.30		5	-229.90	470.19	0.00	0.06	0.04
50	0.000825429	-0.52				-0.29	0.28	6	-228.95	470.44	0.25	0.06	0.06
26	0.000580952	-0.34			-0.21	-0.33		6	-228.97	470.48	0.29	0.05	0.05
22	0.00075291	-0.35		-0.19		-0.27		6	-229.19	470.92	0.73	0.04	0.05
58	0.000195651	-0.52			-0.19	-0.31	0.26	7	-228.16	471.02	0.84	0.04	0.06
17	0.001112492					-0.31		4	-231.56	471.37	1.18	0.04	0.02
30	0.000256289	-0.36		-0.16	-0.19	-0.30		7	-228.47	471.65	1.46	0.03	0.06
34	0.000470614	-0.54					0.30	5	-230.68	471.75	1.56	0.03	0.03
2	0.001482964	-0.32						4	-231.75	471.75	1.57	0.03	0.02
6	0.000470529	-0.36		-0.23				5	-230.71	471.80	1.62	0.03	0.03
54	0.000522435	-0.50		-0.14		-0.27	0.23	7	-228.60	471.92	1.73	0.03	0.06
25	0.000208981				-0.18	-0.33		5	-230.84	472.06	1.87	0.02	0.03
20	0.001421686	-0.34	-0.03			-0.31		6	-229.89	472.31	2.13	0.02	0.04
52	0.000934486	-0.49	0.09			-0.28	0.32	7	-228.86	472.43	2.25	0.02	0.06
10	0.000176404	-0.34			-0.17			5	-231.11	472.61	2.42	0.02	0.03
28	0.000612182	-0.32	0.02		-0.21	-0.32		7	-228.97	472.64	2.46	0.02	0.05
19	0.001639751		0.15			-0.28		5	-231.13	472.65	2.46	0.02	0.03
21	0.000561339			-0.14		-0.29		5	-231.17	472.72	2.53	0.02	0.03
27	0.000677812		0.19		-0.22	-0.30		6	-230.11	472.74	2.56	0.02	0.04
38	7.55E-05	-0.52		-0.18			0.23	6	-230.11	472.75	2.56	0.02	0.04
60	0.000284124	-0.47	0.14		-0.21	-0.29	0.32	8	-227.92	472.76	2.57	0.02	0.07
62	8.19E-05	-0.51		-0.11	-0.18	-0.30	0.22	8	-227.92	472.77	2.59	0.02	0.07
42	-0.000490763	-0.54			-0.16		0.29	6	-230.15	472.84	2.66	0.02	0.04
1	0.000530946							3	-233.39	472.94	2.75	0.02	0.00
14	-0.00030762	-0.37		-0.21	-0.15			6	-230.26	473.05	2.86	0.02	0.04
24	0.000749302	-0.35	0.00	-0.19		-0.27		7	-229.19	473.10	2.91	0.01	0.05
36	0.000954266	-0.48	0.17				0.37	6	-230.35	473.23	3.04	0.01	0.04
49	0.001190099					-0.31	-0.02	5	-231.55	473.48	3.29	0.01	0.02
3	0.001916606		0.19					4	-232.68	473.61	3.43	0.01	0.01
23	0.000942551		0.18	-0.17		-0.25		6	-230.55	473.63	3.45	0.01	0.04
29	-4.49E-05			-0.11	-0.17	-0.31		6	-230.59	473.72	3.53	0.01	0.04
5	-0.000283729			-0.18				4	-232.76	473.76	3.58	0.01	0.01
32	0.00029368	-0.33	0.04	-0.16	-0.19	-0.29		8	-228.44	473.81	3.62	0.01	0.06
4	0.001664852	-0.30	0.04					5	-231.73	473.84	3.66	0.01	0.02
8	0.00067354	-0.32	0.06	-0.24				6	-230.66	473.85	3.67	0.01	0.03
44	-1.91E-05	-0.47	0.22		-0.19		0.38	7	-229.59	473.90	3.71	0.01	0.05
7	0.000899533		0.22	-0.22				5	-231.78	473.93	3.74	0.01	0.02
56	0.000611004	-0.47	0.09	-0.14		-0.26	0.27	8	-228.51	473.94	3.75	0.01	0.06

Table S3 Model selection table and R-sc	uared values using standardis	ed predictors of viral l	oad where $\Delta AICc < 7$

31	0.000356887		0.22	-0.15	-0.21	-0.27		7	-229.69	474.09	3.90	0.01	0.05
Model ID	Intercept	Subpop	Supp food	Dam age	Hatch order	Lay date	Distance in Km	Df	logLik	AICc	ΔΑΙϹϲ	Weight	R ²
9	-0.000825829				-0.15			4	-232.92	474.09	3.91	0.01	0.01
46	-0.000629383	-0.53		-0.16	-0.14		0.23	7	-229.69	474.09	3.91	0.01	0.05
11	0.000551619		0.24		-0.20			5	-231.87	474.12	3.93	0.01	0.02
57	0.000333074				-0.19	-0.33	-0.04	6	-230.80	474.14	3.95	0.01	0.03
40	0.000477348	-0.46	0.16	-0.17			0.30	7	-229.79	474.29	4.11	0.01	0.05
51	0.001468069		0.22			-0.27	0.11	6	-230.97	474.47	4.29	0.01	0.03
59	0.000535994		0.27		-0.23	-0.29	0.12	7	-229.92	474.55	4.36	0.01	0.04
64	0.000165948	-0.46	0.14	-0.11	-0.20	-0.27	0.28	9	-227.69	474.55	4.36	0.01	0.07
12	0.000483692	-0.28	0.09		-0.19			6	-231.01	474.56	4.37	0.01	0.03
53	0.000693187			-0.16		-0.28	-0.07	6	-231.08	474.68	4.50	0.01	0.03
15	2.79E-05		0.26	-0.20	-0.18			6	-231.12	474.78	4.59	0.01	0.03
16	-3.14E-05	-0.31	0.11	-0.22	-0.16			7	-230.11	474.94	4.75	0.01	0.04
35	0.001597489		0.29				0.17	5	-232.33	475.03	4.84	0.01	0.01
33	0.000594642						-0.01	4	-233.39	475.03	4.85	0.01	0.00
13	-0.001231071			-0.16	-0.13			5	-232.42	475.21	5.02	0.01	0.01
48	-0.000214865	-0.45	0.21	-0.15	-0.17		0.32	8	-229.17	475.26	5.08	0.01	0.05
43	0.000276321		0.35		-0.21		0.18	6	-231.47	475.46	5.28	0.00	0.02
61	0.000115498			-0.14	-0.17	-0.31	-0.08	7	-230.46	475.64	5.46	0.00	0.04
37	-3.37E-07			-0.21			-0.07	5	-232.66	475.70	5.51	0.00	0.01
55	0.000922837		0.21	-0.16		-0.25	0.06	7	-230.50	475.72	5.54	0.00	0.04
39	0.000855177		0.28	-0.19			0.10	6	-231.65	475.84	5.65	0.00	0.02
63	0.000319507		0.27	-0.13	-0.21	-0.27	0.08	8	-229.61	476.15	5.96	0.00	0.05
41	-0.000684096				-0.15		-0.03	5	-232.91	476.19	6.00	0.00	0.01
47	-4.77E-05		0.33	-0.17	-0.19		0.12	7	-230.96	476.62	6.44	0.00	0.03
45	-0.00090978			-0.19	-0.13		-0.08	6	-232.29	477.12	6.93	0.00	0.01

Table S4 Model averaged coefficients, standard errors (S.E.), confidence intervals and variable t-statistics (absolute, ratio and variance) from GLM to predict number of fledglings per brood omitting proportional consumption of supplemental food. Predictors are ordered according to the weighted t-statistics as a measure of relative variable importance and those in bold feature coefficient estimates where confidence intervals do not cross zero.

	Estimate	SE	CI 2.50%	CI 97.50%	T abs	T ratio	T var
(Intercept)	2.27	0.09	2.10	2.44			
Dam age	0.58	0.18	0.22	0.93	3.21	0.98	0.03
Lay date	-0.46	0.18	-0.81	-0.11	2.39	0.72	0.07
Distance	-0.14	0.19	-0.52	0.25	0.23	0.08	0.09
Subpop	-0.05	0.21	-0.47	0.37	0.08	0.03	0.02