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ABSTRACT2

Uniaxial negative thermal expansion (NTE) is known to occur in low n members of the3
An+1BnO3n+1 Ruddlesden–Popper layered perovskite series with a frozen rotation of BO64
octahedra about the layering axis. Previous work has shown that this NTE arises due to5
the combined effects of a close proximity to a transition to a competing phase, so called6
“symmetry trapping”, and highly anisotropic elastic compliance specific to the symmetry of the NTE7
phase. We extend this analysis to the broader Ruddlesden–Popper family (n = 1, 2, 3, 4, . . . ,∞),8
demonstrating that by changing the fraction of layer interface in the structure (i.e. the value of 1/n)9
one may control the anisotropic compliance that is necessary for the pronounced uniaxial NTE10
observed in these systems. More detailed analysis of how the components of the compliance11
matrix develop with 1/n allows us to identify different regimes, linking enhancements in compliance12
between these regimes to the crystallographic degrees of freedom in the structure. We further13
discuss how the perovskite layer thickness affects the frequencies of soft zone boundary modes14
with large negative Grüneisen parameters, associated with the aforementioned phase transition,15
that constitute the thermodynamic driving force for NTE. This new insight complements our16
previous work – showing that chemical control may be used to switch from positive to negative17
thermal expansion in these systems – since it makes the layer thickness, n, an additional well-18
understood design parameter that may be used to engineer layered perovskites with tuneable19
thermal expansion. In these respects, we predict that, with appropriate chemical substitution, the20
n = 1 phase will be the system in which the most pronounced NTE could be achieved.21

Keywords: NTE, perovskite, Ruddlesden-Popper, anisotropy, compliance, corkscrew22

1 INTRODUCTION

Ruddlesden–Popper (RP) oxides are an intriguing class of ceramic materials. They have the basic formula23
An+1BnO3n+1 and consist of a perovskite block of n corner sharing BO6 octahedra separated by an AO24
rock salt layer. Blocks of octahedra are stacked perpendicular to the long crystallographic axis making25
this layering axis structurally distinct from the two in-plane axes. Neighbouring blocks are de-phased26
from each other by a lattice translation of (0.5, 0.5, 0.5), and the aristotypical symmetry for any value27
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of n is I4/mmm (Figure 1). As with the perovskites, the A-site chemistry is dominated by larger alkali,28
alkali-earth and rare earth metals, and the B-site by transition metals. In the limit n =∞, the perovskite29
structure is recovered. While in practice most chemistries are found to predominantly exhibit the n = 1, 230
phases only (Palgrave et al. (2012)), in principle any value of n between 1 and ∞ is possible; n = 331
structures have been synthesised by careful compositional control (Battle et al. (1998)) and although32
n > 3 phases are often predicted to be unstable to decomposition (McCoy et al. (1997)), epitaxial growth33
techniques have allowed the synthesis of n = 2− 5 (Haeni et al. (2001)), n = 6 (Yan et al. (2011)) and34
n = 10 (Lee et al. (2013)) structures.35

Figure 1. In the An+1BnO3n+1 Ruddlesden–Popper series, blocks consisting of n layers of ABO3
perovskite structure are separated by a single layer of AO rock salt structure, with BO6 octahedra in
the next block displaced by a (0.5, 0.5, 0.5) lattice translation. In the n = ∞ limit the pure ABO3
perovskite structure is recovered.

One of the most explored systems is the n = 1 A2CuO4 on account of its high-temperature36
superconductivity, where doping of divalent A = Ba and Sr with trivalent rare earth cations has been37
extensively investigated (Dwivedi and Cormack (1991)). Superconductivity in these systems is not limited38
to the cuprates, and there has been substantial interest in Sr2RuO4 (Mackenzie and Maeno (2003)) on39
account of its superconducting phase transition below 0.8 K, and in Sr3Ru2O7 for its nematic orbitally-40
ordered phase (Borzi et al. (2007)). The doped nickelates have also been much studied due to their believed41
proximity to a superconducting phase transition, and their charge ordering physics (Yoshizawa et al.42
(2000)). More recently, the n = 2 member of the RP family has received much attention on the account of43
a new form of improper ferroelectricity predicated in Ca3Mn2O7 and Ca3Ti2O7, termed hybrid improper44
ferroelectricity (Benedek and Fennie (2011)). This mechanism circumvents the so-called d0 criterion for45
ferroelectricity, as it does not require an off-centring of cations to drive the phase transition. Instead, this46
off-centring (P ) may occur as a slave process driven by an octahedral tilt (R1) and rotation mode (R2)47
of the parent structure that are inherently unstable in some of these systems. This leads to a so-called48
trilinear term βR1R2P in the free energy expansion about the parent structure (Benedek et al. (2015))49
which, regardless of the sign of the coefficient β, as R1 and R2 are inherently unstable, leads to a non-zero50
value of the polarisation P (either positive or negative depending on the sign of β).51
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Our contribution to this field of hybrid improper ferroelectricity was to provide experimental confirmation52
of this mechanism for the case of Ca3Ti2O7 (Senn et al. (2015)). However, our high-resolution powder53
diffraction data for Ca3Mn2O7 revealed an added complexity. What was believed to be a single phase54
at room temperature, having the polar symmetry A21am, was in fact a mixture of this and a phase that55
we identified as having Acaa symmetry. Crucially, this phase only has a single octahedral rotation that is56
out-of-phase rather than in-phase, and the octahedra remain untilted along the c-axis. No hybrid improper57
ferroelectric mechanism is therefore possible. However, over the large phase coexistence region, which58
spans a temperature range of 120 K, we did observe pronounced uniaxial negative thermal expansion59
(NTE) along the c-axis in the Acaa phase. This had not been observed previously in the n = 2 system and,60
although reported in the literature in an analogous n = 1 system (Takahashi and Kamegashira (1993)),61
its significance had not been noted. We were able to explain this NTE phenomenon as being driven by a62
leftover degree of freedom, the octahedral tilt in the Acaa phase, which remains dynamic.63

NTE is a rare property, that when it does occur is known to be caused by a diverse range of mechanisms64
in different materials. Even within inorganic perovskite-based systems, NTE has been found to originate65
due to coupling of the lattice parameters to: charge ordering (Azuma et al. (2011)), ferroelectric ordering66
(Chen et al. (2013)) and magnetic and orbital ordering via an invar-like mechanism (Yoshida et al. (2005),67
Qi et al. (2010)). In framework structures, formed from connected strongly-bonded polyhedral units,68
NTE has been explained by transverse vibrations of these units, known as rigid-unit modes (RUMs)69
(Dove et al. (1995), Heine et al. (1999)). We argued in Acaa Ca3Mn2O7 that certain vibrational modes70
with RUM character would have negative Grüneisen parameters and be soft on account of the proximity71
of the system to the symmetry-forbidden phase transition to A21am (Senn et al. (2015)). Using this idea72
of “trapping” a soft mode in the Acaa phase of Ca3Mn2O7 to systematically control and tune the uniaxial73
thermal expansion properties of the solid solution Ca3−xSrxMn2O7 (Senn et al. (2016)), we were able74
to demonstrate that this is a property exclusively of the Acaa phase in these materials, and that NTE is75
enhanced as the system approaches the A21am phase boundary as a function of chemical composition x.76
Although other effects operate in related materials, in this study we restrict our discussion to NTE driven77
by the coupling of the cell parameters to soft lattice modes since it is the most appropriate mechanism to78
describe our system.79

The presence of dynamic octahedral tilts in this Ca3−xSrxMn2O7 system explained the thermodynamic80
driving force for NTE along the layering axis. However, the question remained open of why NTE was only81
observed in this Acaa phase with a frozen in-plane rotation and not in the high-symmetry I4/mmm phase82
or related ABO3 perovskite phases, where dynamic octahedral tilts would still operate. We were able to83
answer this question in a recent computational study using density functional theory (DFT) and working84
within the quasi-harmonic approximation (QHA) to reproduce experimentally measured uniaxial NTE in85
the I41/acd phase of n = 1 Ca2MnO4 (Ablitt et al. (2017)).86

Equation 1 (Grüneisen and Goens (1924)) describes the thermal expansion, αη (T ), at temperature, T ,87
of the three cell axes of a tetragonal crystal (η = 1, 2, 3 where α1 = α2 by symmetry). Equation 1 is88
explained in detail in Appendix 1 and the concept of a Φ vector driving bulk PTE being transformed by89
a highly anisotropic s into uniaxial NTE (Barron and Munn (1967)) is depicted pictorially in Figure 2.90
In this picture, the anisotropic thermal expansion is separated into a thermodynamic driving force vector,91
Φ – arising from the lattice dynamics – that is transformed by the anisotropic elastic compliance matrix,92
s. By computing the compliance matrix for our NTE phase, we were able to extract the thermodynamic93
driving force vector from our QHA simulation and found that the effect from dynamic tilts alone would not94
predict NTE over the wide temperature range observed in experiment. It is only when this thermodynamic95
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driving force is transformed by the highly anisotropic elastic compliance of the layered RP phase that96
our simulations demonstrated uniaxial NTE of a magnitude and over a temperature range comparable to97
experiment. Comparing the compliance matrices computed for different phases, we found that particularly98
high anisotropic compliance is unique to the NTE phase of the RP structure and we linked this anisotropy99
to combined in-plane (frozen rotations) and out-of-plane (the AO layer) symmetry breaking in the NTE100
phase.101

 α1 (T )
α1 (T )
α3 (T )

 =

 s11 s12 s13
s12 s22 s13
s13 s13 s33

 Φ1 (T )
Φ1 (T )
Φ3 (T )

 (1)
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Figure 2. Equation 1 is illustrated on axes describing normal cell deformations using Voigt notation (e.g.
where the vector [ε, ε, 0] corresponds to normal strains of ε of the a and b axes with the c axis unstrained).
A 3× 3 elastic compliance matrix s is shown here in its quadratic form as an ellipsoid projected onto the
(1̄, 1, 0) plane. s may transform a vector describing the thermodynamic driving force for thermal expansion,
Φ, in the positive quadrant (corresponding to bulk positive thermal expansion), into a thermal expansion
vector, α, in the quadrant corresponding to uniaxial negative thermal expansion of the c axis. The direction
of α is given in the figure by utilising the radius normal property of the representation ellipsoid of the
matrix s.

Until now, our research has focused on understanding uniaxial NTE in the low n Ruddlesden–Popper102
compounds. In the present paper, we focus on extending these concepts to predict how the material103
properties that we have linked to NTE develop as a function of n. Studying the Can+1GenO3n+1 system104
within the framework of DFT, we find that the magnitude of anisotropic elastic compliance is dependent105
upon the proportion of CaGeO3:CaO interface in the structure – which may be conveniently expressed106
by the fraction 1/n. This high compliance is then maximised with the highest proportion of interface107
(n = 1). To provide an explanation for this key result, we analyse how the components of the compliance108
matrix vary with 1/n. We identify a series of regimes in which groups of structures display similar elastic109
behaviour based on the atomic degrees of freedom allowed by symmetry, and propose mechanisms by110
which these internal degrees of freedom couple to cell strains. The most important of these is the atomic111
“corkscrew” mechanism that operates at this interface in the NTE phase. We go on to investigate how the112
frequencies of the softest (lowest frequency) octahedral tilt modes, which provide the thermodynamic113
driving force for NTE, vary as a function of n in the high-symmetry and NTE phases. We find that a higher114
proportion of interface causes these phonons to stiffen (increase in frequency) and we infer that within115
a given chemical composition, the layer thickness n provides a structural constraint on an approximate116
temperature window for which the NTE phase will be stable – where increasing n drives this window to117
higher temperatures. One may thus use this insight, combined with our previous discovery that chemical118
substitution within a given structure may be used to tune the thermodynamic driving force for NTE, to119
use layer thickness n and composition as design parameters to engineer Ruddlesden–Popper phases with120
optimal thermal expansion properties.121

The layout of the paper is as follows: Section 2 gives details of simulation parameters used in this work;122
Section 3 (Results and Discussion) is then split into 4 subsections: Section 3.1 presents the key result123
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of the paper, showing how the magnitude of anisotropic compliance, linked with uniaxial NTE, varies124
with 1/n; for the more interested reader, Sections 3.2 and 3.3 then take a step back and analyse the origin125
of the result in Section 3.1 in more detail, in Section 3.2 by analysing how the different elements of the126
compliance matrix evolve with 1/n and in Section 3.3 by identifying different compliance regimes linked to127
crystallographic degrees of freedom in the structure that couple to strain; finally in Section 3.4 we consider128
how the thermodynamic driving force for NTE varies with 1/n by presenting lattice dynamics calculations129
investigating phonons corresponding to tilts of GeO6 octahedra in Can+1GenO3n+1, and compare these130
results against experimental phase diagrams constructed with data taken from the literature of the analogous131
Can+1MnnO3n+1 system. Additionally, Appendix 1 gives a brief overview of the mathematical concepts132
relevant for the study of thermal expansion in an anisotropic material and Appendix 2 outlines the symmetry133
of the phases simulated throughout this study.134

2 METHODS

Calculations were performed using CASTEP, a plane-wave density functional theory (DFT) code, version135
7.0.3 (Clark et al. (2005)). A plane wave cut-off energy of 1400 eV was employed for all calculations with136
electron density stored on a grid twice as dense. A 7× 7× 2 Monkhorst–Pack grid of kpoints shifted away137
from the Γ-point was used for calculations of the 14 atom I4/mmm phase of (n = 1) Ca2GeO4, with grids138
of equivalent reciprocal space density used for all other structures (high-symmetry and rotation phases139
for n = 1, 2, 3, 4,∞ - see Appendix 2). Norm-conserving pseudopotentials, generated on-the-fly using140
CASTEP version 16.0, were used for all calculations and the associated pseudopotential strings may be141
found Table S1 in the SI. All calculations used the PBEsol exchange-correlation functional (Perdew et al.142
(2008)). Absolute energies were converged to an accuracy of 0.5 meV/atom with respect to k-point grid143
density and plane wave cut-off energy. Geometric relaxations were performed with a force tolerance of144
10-4 eV/Å and a stress tolerance of 10 MPa.145

We expect our Can+1GenO3n+1 system to be well-described by conventional GGA density functionals.146
There are other members of the chemical space that might require more careful consideration in terms of147
the appropriate methodology, such as hybrid functionals, DFT+U, or potentially even DMFT in order to148
accurately describe the physics associated with localised d and f-electrons.149

Elastic constants were computed by fitting 2nd order polynomials to the energies of cells with applied150
strains of +/- 0.2, 0.4% from the fully relaxed cell, where the internal degrees of freedom (the atomic151
positions) were free to relax. The quadratic terms to these fits were used to construct terms within the elastic152
constant matrix, c, and this matrix inverted to compute the elastic compliance matrix, s (see Appendix 1153
for the definition of s studied).154

Bulk moduli, K, were computed by allowing the cell and all internal degrees of freedom to relax in155
response to hydrostatic pressures in the range -2 to +2 GPa. The bulk modulus was then found by fitting156

the computed relaxed volume, V , as a function of the external pressure, P , to the equation: K = −d(ln[V ])
dP .157

The bulk compressibility, β, is then given by β = K−1.158

Density functional perturbation theory (DFPT) was used within CASTEP (Refson et al. (2006)) to159
perform phonon calculations. In the present study, only phonon frequencies computed at single, high160
symmetry q-points are reported. In n = 1, 3,∞ phases, these are at the X (1/2, 1/2, 0) and P (1/2, 1/2, 1/2)161
points in the I4/mmm high-symmetry phase (labelledM andR respectively in n =∞ Pm3̄mABO3) and162
for n = 2, 4 phases at the X-point in I4/mmm. Phonons in child rotation phases were always computed at163
the Γ-point. In every compound studied, the initial structure was the highest symmetry phase that was fully164
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relaxed. All child phases were found by freezing unstable phonons (modes with imaginary frequencies)165
into the structure with small amplitudes and allowing this child structure to relax. The lattice parameters166
and cell energies relative to the high-symmetry parent of all relaxed structures may be found in Table S2 in167
the SI.168

3 RESULTS AND DISCUSSION

3.1 Anisotropy of the Compliance Matrix169

It was previously shown in first-principles calculations performed on the NTE phase of Ca2GeO4 (i.e. the170
I41/acd rotation phase) that a highly anisotropic s is an essential ingredient for uniaxial NTE in this system171
(Ablitt et al. (2017)). κ, as defined in Equation 2, is the ratio of the highest (sH ) and lowest (sL) eigenvalues172
of s and gives a measure of the anisotropy of s; where higher κ indicates that s is more conducive to173
uniaxial NTE. Figure 3 therefore shows how sH , sL and κ evolve with varying n for high-symmetry and174
rotation phases in the Can+1GenO3n+1 series.175

κ =
sH
sL

(2)

In the composite mechanics community, the elastic properties of laminates are typically described by176
the properties of the constituent phases, weighted by the relative fraction of that phase (Sarlosi and Bocko177
(2016)). However, in the functional oxides community, it is well known that the local structure of atomic178
interfaces within a crystal often dictate the physical properties of the entire material (Int (2012)). There179
are therefore two ways to conceive the layered Ruddlesden–Popper structure shown in Figure 1: (i) as180
being comprised of constituent CaGeO3 and CaO phases or (ii) as being comprised of CaGeO3 and the181
CaGeO3:CaO interface.182

Can+1GenO3n+1 = [CaGeO3]n [CaO] = [CaGeO3]n−1 [CaGeO3 : CaO] (3)

From Equation 3, it is clear that (i) the mole fraction of CaO in Can+1GenO3n+1 is given by the ratio183
1/(n+ 1) and (ii) the mole fraction of Ca2GeO4, which represents the fraction of CaGeO3:CaO interface184
in the structure, is given by the ratio 1/n. Therefore to reflect the importance of the interface, sH , sL185
and κ are plotted as a function of 1/n in the subplots on Figure 3. Straight lines have also been plotted186
interpolating between values for the CaGeO3 (1/n = 0) and Ca2GeO4 (1/n = 1) end members to show187
how well the structure may be considered as a mixture of these two constituents in the high-symmetry188
(blue dot-dashed) and rotation (red dotted) phase series.189

The least compliant eigenvector, sL, corresponds to isotropic expansion/contraction for all structures190
investigated (see Table S3 in SI) and thus is closely linked to the bulk compressibility, β. Figure 3 shows191
that sL increases linearly with higher Ca2GeO4 mole fraction but is invariant to changes in symmetry for a192
given n. All values for sL lie on the line interpolating between CaGeO3 and Ca2GeO4 high-symmetry end193
members regardless of phase symmetry implying that sL is determined mainly by the composition.194

sH also increases in magnitude with Ca2GeO4 content for all RP phases. However, unlike sL, sH is195
greatly enhanced in the phase with a frozen rotation compared to the high-symmetry phase, and the rate of196
increase in sH for rotation phases with 1/n is also greater in the rotation phase than in the high-symmetry197
parent. For all the tetragonal phases studied, the eigenvector sH lies in a strain direction corresponding198
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Figure 3. a Lowest, sL and highest, sH , eigenvalues to the compliance matrix, s, and b the anisotropy
ratio κ plotted for high-symmetry and rotation phases in the Ca1+nGenO3n+1 series against the mole
fraction of CaGeO3:CaO interface (1/n). Interpolations between values in the CaGeO3 (1/n = 0) and
Ca2GeO4 (1/n = 1) structures are plotted for both high-symmetry and rotation phases (blue dot-dashed
and red dotted lines respectively).

to a cooperative increase in in-plane lattice parameters, ab, and decrease in the lattice parameter along199
the layering axis, c, or visa versa. In a previous work, we proposed an atomic mechanism to facilitate a200
large compliance eigenvector in Ruddlesden–Popper phases with a frozen octahedral rotation that relies201
on combined in-plane and out-of-plane symmetry breaking at the CaGeO3:CaO layer interface to closely202
couple the ab and c axes (Ablitt et al. (2017)). Since this mechanism operates at the CaGeO3:CaO interface,203
it is interesting to note that sH in the rotation phase is linearly dependent upon the mole fraction of this204
interface in the structure, increasing as this interface fraction becomes greater, and thus sH for intermediate205
values of 1/n may be easily predicted by interpolating between the sH values for CaGeO3 (with no206
interface) and Ca2GeO4 (maximum interface) rotation phases.207

This steeper increase in sH for rotation phases than high-symmetry phases with interface mole fraction208
(1/n) thus manifests as a large enhancement in κ between the child structure and parent, where the209
magnitude of this enhancement increases greatly with 1/n, reaching a maximum in the n = 1 structure.210
The key result of this analysis of the compliances is hence that this n = 1 structure is the best in the211
Ruddelsden-Popper series for facilitating uniaxial NTE.212

3.2 Elastic Compliances213

Figure 3 showed how the eigenvalues of s vary with the CaGeO3:CaO interface fraction (1/n). In this214
section we take a step back and analyse how the individual components of the compliance matrix, sij , vary215
with 1/n. In the second half of the section, we assess the quality of the two interpolations, (i) between216
CaGeO3 and CaO constituents and (ii) between CaGeO3 and CaGeO3:CaO interface constituents, to predict217
the compliance components of intermediate values of 1/n.218
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Figure 4 shows the elastic compressibility, β, and components of the elastic compliance matrix, s,219
computed for fully relaxed high-symmetry and rotation phases in the Can+1GenO3n+1 series. Since all220
phases are (pseudo-)tetragonal, only the 4 symmetrically distinct sij components identified in Equation 1221
are plotted. The full smatrix, associated eigenvalues and eigenvectors and β may be found for all structures222
in Table S3 in the SI.223

Figure 4. a The bulk compressibility, β and b-e components sij of the elastic compliance matrix for a
tetragonal material plotted for high-symmetry and rotation phases in the Ca1+nGenO3n+1 series against the
mole fraction of CaGeO3:CaO interface (1/n). Interpolations between values in the CaGeO3 (1/n = 0) and
Ca2GeO4 (1/n = 1) structures are plotted for both high-symmetry and rotation phases (blue dot-dashed
and red dotted lines respectively). A third curve shows the interpolation between values in the Pm3̄m
CaGeO3 phase and CaO rock salt structure computed as a function of CaO mole fraction 1/(n+ 1) (cyan
dashed).

The bulk elastic compressibility, β, increases linearly with 1/n but only very slight enhancement in224
compressibility is seen between the high-symmetry and rotation phases for a given n. Differences in β225
can therefore not be used to explain why uniaxial NTE is common in low n RP rotation phases but not in226
parent I4/mmm phases.227

The normal compliance components, s11 and s33, also increase with 1/n but unlike in β there is a228
significant enhancement in the rotation phase compared to the high-symmetry parent, with both the229
magnitude and gradient with respect to 1/n greater in the rotation phase.230

The sign of the off-diagonal compliance components, s12 and s13, that couple normal stresses to normal231
strains between axes, are negative for all compounds. This indicates that all materials have all positive232
Poisson ratios, νij , where νij describes the normal strain of axis j in response to a strain of axis i233
(νij = −εjεi ). Most materials have νij > 0, so these NTE RP phases are not auxetic (νij < 0), even though234
auxetic materials have been linked with materials that exhibit anisotropic NTE (Wang et al. (2017)).235

Despite the negative sign, the behaviour of s13 is similar to that of s11 and s33: compliance increases with236
1/n and there is a large enhancement in both the magnitude and the gradient increase with 1/n in the NTE237
phase compared with the high-symmetry parent. s12, on the other hand, displays the opposite trend since238
the magnitude of coupling decreases with 1/n and going from the high-symmetry to rotation phases.239
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As in Figure 3, straight lines have been plotted on the subplots in Figure 4 interpolating between values240
for the CaGeO3 (1/n = 0) and Ca2GeO4 (1/n = 1) end members. A third dashed cyan line has been added241
to interpolate between the pure high-symmetry CaGeO3 and CaO rock salt constituent phases. Because242
the mole fraction of CaO is actually expressed as 1/(n+ 1) (Equation 3) these lines appear curved when243
plotted against the 1/n x-axis.244

The trend in β follows that that would be predicted by modelling the Ruddlesden–Popper series as245
a laminate of CaGeO3 and CaO, suggesting that β is determined predominantly by the composition.246
Since bulk volume thermal expansion, α, is proportional to the bulk compressibility, β, this implies247
that the magnitude of α is heavily dependent on chemistry. This result echoes recent work showing that248
experimental measurements of many thermodynamic properties of Ruddlesden–Popper structures may be249
predicted by interpolating between values of their chemical constituents (Glasser (2017)).250

Whereas β could be approximated well as a function of CaO content for RP phases, s11 of high-symmetry251
phases increases above that predicted by the cyan curve. This indicates that even in the high-symmetry252
phase, the CaGeO3 and CaO layers do not behave independently and are affected by the interface between253
them. The prediction for s33 based on the CaO content is quite good, which may be because s33 corresponds254
to deformations along the layering axis (with 0 strain boundary conditions on the a and b axes) and therefore255
the different constituent layers are being squashed in series1. For both s11 and s33, the rotation phases256
follow a linear relationship with 1/n and therefore may be considered dependent upon the fraction of257
CaGeO3:CaO interface in the structure (red dotted line). However, in the high-symmetry phase the n > 1258
values for both normal compliance components increase slightly beyond that predicted by interpolating259
between the extreme CaGeO3 and Ca2GeO4 values (blue dot-dashed line). This is surprising since it is not260
immediately obvious how the structure of higher n compounds is different to local regions of CaGeO3 and261
Ca2GeO4 and therefore what additional compliance mechanisms could operate.262

For both s12 and s13, modelling the compliance according to the mole fraction of CaO is a poor263
approximation, so much so that this prediction actually gives the wrong sign of the change in s12 with 1/n.264

3.3 Compliance Enhancement Mechanisms265

In Section 3.2 we showed that certain elastic properties, such as the bulk compressibility, β, are insensitive266
to small changes in crystal symmetry and may be accurately predicted by interpolating between the value267
of β in CaGeO3 and CaO end member structures based on the mole fraction of CaO. However, components268
of the anisotropic compliance matrix, sij , typically differ in magnitude between high and low symmetry269
phases and are generally more compliant than a CaGeO3:CaO interpolation predicts. Figure 5 shows the270
same plot as in Figure 4.e (s13 vs 1/n) but with annotations decomposing the s13 behaviour of different271
structures into regimes of increasingly enhanced compliance. By separating the compliance regimes in this272
way, in this section we discuss the atomic displacements allowed in each regime by the phase symmetry and273
thus propose atomic mechanisms that may explain these enhancements in the s13 axis coupling parameter.274
In many cases (although not discussed here) this analysis may be used to explain the different regimes of275
the s11, s33 and s12 components in Figure 4.276

Taking the value of s13 that would be predicted by interpolating between values in the CaGeO3 and CaO277
constituent structures as a base (the dashed cyan curve in Figure 5), arrow 1 represents an increase in278
the coupling between in-plane (a and b) axes and the layering axis (c) in the n = 1 Ca2GeO4 I4/mmm279

1 However, we note that under these conditions one should use a Voigt average to interpolate s33, whereas by drawing a straight line of compliance vs mole
fraction we have actually performed a Reuss interpolation. In the Figure S1 in the SI we show that a Voigt fit against CaO mole fraction is actually less close.
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Figure 5. The s13 term of the elastic compliance matrix (corresponding to coupling between an in-plane
axis, a or b, and the layering axis, c) for a tetragonal material plotted for high-symmetry and rotation phases
in the Ca1+nGenO3n+1 series against the mole fraction of CaGeO3:CaO interface (1/n). Numbered arrows
show the enhancement in compliance between different regimes represented by lines.

phase. In a pure cubic ABO3 perovskite, the A cations by symmetry have the same z position as the apical280
O anions. However, the inclusion of the AO layer in high-symmetry RP phases causes symmetry breaking281
along c at the ABO3:AO interface such that the apical O and interfacial A ions are no longer restricted to282
the same z coordinate, leading to a so-called “rumpling” of the AO layer. We propose that this rumpling283
facilitates a mechanism for enhanced s13 coupling illustrated in Figure 6.a: As the in-plane, ab, axes are284
strained, the interstitial void between BO6 octahedra below the interfacial A cation changes in size, but285
the rumpling adds a degree of freedom to the z coordinate of the A cation which may thus move further286
into/out of the void in response to the in-plane strain. This thus couples the in-plane, ab, axes to internal287
displacements along the layering axis c and therefore to the layering axis itself.288

It was commented in the preceding section that the enhancement in compliance from the interpolation289
between CaGeO3 and Ca2GeO4 values to n > 1 high-symmetry RP structures (shown by arrow 2290
in Figure 5) is surprising since all structures consist of a CaGeO3:CaO interface (with rumpling of the291
CaO z positions) and blocks of CaGeO3 (that one might expect to behave as bulk cubic CaGeO3). Close292
inspection of the n = 1 and n = 2 I4/mmm phases in Figure 1 allows us to see that in A2BO4 structures,293
the length of all apical B–O bonds are equal due to the mirror symmetry plane lying in each BO6 layer.294
Similarly the angle between epitaxial B–O and apical B–O bonds must be 90◦ by the same reasoning.295
However, in A3B2O7 I4/mmm phases, this restriction that the perovskite blocks must contain a mirror296
plane at the centre only means that the two outer apical B–O bond lengths and BO6 internal angles must297

Frontiers 11



Ablitt et al. Control of Uniaxial Negative Thermal Expansion in Layered Perovskites

Figure 6. Strain coupling mechanisms that make structures particularly compliant to cooperative strains.
Since these mechanisms couple the a (and/or b) and c axes, they are typified by large s13 off-diagonal
components of the compliance matrix. a Mechanism for increased compliance in I4/mmm RP structures
where the rumpling between the interfacial A and apical O ions means that A is free to displace
independently of O in response to in-plane strains; b corkscrew mechanism in RP rotation phases – the
structure is able to couple in-plane tensile strains to compressive strains along c via internal displacements
assuming all nearest neighbour B–O bonds and the two shortest A–O bonds do not deform (shown as rigid
struts labelled r1-r4) by changing the angle of in-plane and out-of-plane hinges (described by the angles θ
and α as shown); c wine rack structure where tensile strains along a may couple to compressive strains
along c in a system of rigid struts in a trellis structure by only changing the angle ξ.

be equal and the apical B–O bond lengths between the two inner BO6 layers must be equal. There is no298
restriction by symmetry that all apical B–O bond lengths must be equal or in fact that all BO6 internal299
angles must be 90◦. These weaker restrictions create internal degrees of structural freedom that may300
facilitate greater compliance, since there is greater freedom for the atoms to move in response to external301
strains. In structures relaxed using DFT, we find that there is are slight differences in these two bondlengths:302
1.87 Å and 1.90 Å for the outer and inner apical B–O bonds respectively, and the angle between outer303
apical B–O and epitaxial B–O bonds is 91.2◦. This same argument may be applied to all n > 1 I4/mmm304
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phases. However, in the special case of the n = ∞ series end member, there is no AO layer to break305
any symmetry along c and thus all B–O bond lengths are equal and all O–B–O angles are 90◦. That this306
difference between s13 of n = 2, 3, 4 high-symmetry phases and the CaGeO3:Ca2GeO4 interpolation is307
not also seen in the significantly more compliant rotation phases may be because in these rotation phases,308
additional compliance mechanisms operate that dwarf the effect described by arrow 2 .309

Arrow 3 in Figure 5 represents the increase in coupling between the a/b and c axes from the cubic310
CaGeO3 phase to an I4/mcm phase with anti-phase octahedral rotation about the c axis. From a structural311
symmetry point of view, this may again come as a surprise since the I4/mcm phase only has an internal312
degree of freedom in the ab plane and not along the c axis that this plane couples to. Therefore one might313
expect large changes in in-plane strain in response to biaxial stress from rigid BO6 octahedra rotating,314
but not also large changes in c. However, DFT studies on LaAlO3 (Hatt and Spaldin (2010)) and LaNiO3315
(Weber et al. (2016)) show that while the application of compressive biaxial strain to the I4/mcm causes316
the rotation angle to increase, it also leads to a large tetragonal distortion of the BO6 units with compression317
of the epitaxial B–O bonds and extension of the apical B–O bonds.318

Finally, arrow 4 in Figure 5 represents the increase in s13 coupling between rotation phases of CaGeO3319
perovskite and RP phases with a frozen octahedral rotation. In these phases, the rumpling of the interfacial320
AO layer identified in the high-symmetry structure is still present. However, whereas in the high-symmetry321
structure, in-plane strains necessarily involved deformations of stiff epitaxial B–O bonds, in this lower-322
symmetry phase, the frozen in-plane octahedral rotation adds an internal degree of freedom in the in-plane323
epitaxial O positions. There are thus internal degrees of freedom in both in-plane and layering axes in324
RP rotation phases. In our previous paper (Ablitt et al. (2017)) we proposed a “corkscrew” mechanism325
to explain high s13 coupling in RP1 rotation phases but not in I4/mcm ABO3 phases. This coupling326
mechanism in theory allows a and c to deform cooperatively without extending the four most stiff cation-327
anion bonds identified in the I41/acd Ca2GeO4 structure, by only changing two bond angles, labelled θ328
and α in Figure 6.b. We call this mechanism “corkscrew” since an in-plane rotation leads to an extension329
along the rotation axis: Figure 6.b shows how the in-plane rotation angle θ may decrease in response to330
a biaxial expansion, such that this in turn pulls the stiff O-A bond (shown as a rigid rod), decreasing the331
angle α and thus increasing the rumpling of the rock salt layer and forcing contraction along the c-axis.332

The net result of these interfacial strain coupling mechanisms in RP phases, yielding an enhanced333
off-diagonal s13 compliance term, is rather reminiscent of the “wine-rack” mechanism such as that334
which operates in methanol monohydrate (Fortes et al. (2011)). In the wine-rack trellis structure, shown335
schematically in Figure 6.c with rigid struts but flexible hinges, a couples strongly to c, mediated by the336
hinge angle, ξ, in the ac plane. Following the method used to analyse the wine-rack (Grima and Evans337
(2000)) and other idealised geometries (Smith et al. (2000), Grima et al. (2012)), we were able to derive the338
mechanical properties that our pure “corkscrew” mechanism would exhibit under the conditions that the339
four stiff bonds shown in Figure 6.b indeed remained rigid and all resistance to strain came from a harmonic340
potential in the θ and α-hinges (Ablitt et al. (in preparation)). Under these restrictions, a “corkscrew” model341
would have an s13 compliance parameter as a function of RP layer thickness, n, given by342

s13 = − f (θ, α) r31[
n kθ + kα

(
dα
dθ

)2] , (4)
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where kθ and kα represent the harmonic stiffness of the θ and α-hinges, respectively, and f (θ, α) is an343
expression of trigonometric functions of θ and α344

f (θ, α) =
sin (2θ) [sin (θ) + cos (θ)]

4 tan (α)
. (5)

Under the constraints of this model, α is explicitly dependent on θ by the equation345

r4 cos (α) = r1 [cos (θ)− sin (θ)] , (6)

and therefore given the bond lengths r1-r4 (as defined in Figure 6.b), the value of θ fully determines the346
structure.347

In the limit that kα >> kθ, the AO interface is stiffer than the ABO3 perovskite blocks and s13 loses348
dependence on n. However, in the opposing limit that kθ >> kα and changing the in-plane rotation angle349
is the main obstacle to strain, s13 ∝ 1/n. The real system is closer to the kθ >> kα limit as we observe350
linear behaviour of s13 with 1/n. Although this model has been derived assuming that all epitaxial B–O351
bond lengths (r1) and all apical B–O bond lengths (r2) are equal, the bond lengths r2 and r3 do not feature352
in Equation 4 and r1 and θ only need refer to the in-plane bond lengths and rotation angle in the outer353
layer of the perovskite block. Therefore this mechanism is compatible with a distribution of possible bond354
lengths and rotation angles in different layers of a perovskite block if n > 1.355

We accept the limitations of such simple models but developing the study of how symmetry-allowed356
local distortions can give rise to new compliance mechanisms in different crystallographic phases, such as357
those identified using arrows 1 - 4 in Figure 5, may allow for the prediction of phases with high cross358
compliances by symmetry alone, before needing to explicitly compute the elastic constants. Calculations of359
elastic constants are, in turn, frequently less expensive than performing lattice dynamics calculations across360
the full Brillouin zone to compute the thermodynamic driving force for anisotropic thermal expansion, Φ.361

Therefore, looking for other materials with such high cross compliances, using symmetry analysis as362
a guide to narrow the pool of structures, may prove a more general method for searching for novel NTE363
materials. Indeed, by considering this analysis and our thermodynamic criteria requiring a proximity to a364
competing phase transition to provide Φ, we have already been able to identify (Ablitt et al. (2017)) the365
layered double perovskites Sr2MgWO6 (Achary et al. (2006)) and (110)-cut perovskite LaTaO4 (Cordrey366
et al. (2015)) which fall within this general paradigm. Substantial research opportunities exist in this area367
to more fully explore the NTE behaviour of these classes of materials.368

3.4 Dynamic Driving Force for NTE369

So far we have not addressed the thermodynamic driving force for thermal expansion Φ (T ), and it370
is rather more computationally expensive to calculate than κ as it requires the full phonon density of371
states to be computed for different strained structures within the quasi-harmonic approximation (QHA).372
Furthermore, this procedure is only possible if all phonons within the NTE structure simulated using373
DFT have real frequencies – suggesting that the phase must be stable at 0 K. For n > 1 structures in the374
Ca1+nGenO3n+1 series, this latter condition is not met, and therefore full computation of Φ (T ) as we375
performed previously (Ablitt et al. (2017)) would not be possible. However, we also previously identified376
that the most important modes driving NTE are octahedral tilts about an in-plane axis. Thus in Figure 7377
we have plotted the frequency of the lowest frequency tilt mode to occur at a high-symmetry q-point in378
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Figure 7. The lowest frequency harmonic phonon mode with octahedral tilt character found in DFT
simulations at high-symmetry q-points in the Ca1+nGenO3n+1 series against interface fraction, 1/n. Tilt
frequencies have been plotted in the high-symmetry and rotation phases with 0 GPa external pressure,
and also for the rotation phase with a 4.3 GPa biaxial pressure applied to give better agreement of the
Ca1+nGenO3n+1 structure to Ca1+nMnnO3n+1. DFT only simulates the system at 0 K whereas phonon
frequencies may harden with increased temperature. This means that many octahedral tilts are predicted
with imaginary frequencies (shown as negative) even if the mode has a real frequency and the structure is
stable at some higher temperature. To give an idea of how the equilibrium phase changes with temperature,
the inset graphs plot the experimentally observed phase diagram for each n in the Ca1+nMnnO3n+1 system.
The data to make these illustrations was taken from: Ca2MnO4 (Takahashi and Kamegashira (1993));
Ca3Mn2O7 (Senn et al. (2015)); Ca4Mn3O10 (Battle et al. (1998)); CaMnO3 (Taguchi et al. (1989)).

high-symmetry phases and phases with a frozen in-plane rotation. We note that these tilts are not the same379
as the vibrations of ions along the z direction predicted using a QHA-inspired method to cause NTE in a380
A21am Ca3Ti2O7 phase after 30 GPa hydrostatic pressure has been applied and in which these octahedral381
tilts are already frozen (Huang et al. (2016)). As in previous studies (Senn et al. (2016), Ablitt et al. (2017))382
the Ca1+nGenO3n+1 series is being treated as an analogue to Ca1+nMnnO3n+1 for comparison against383
experimental data to avoid expensive magnetic calculations since Ge4+ and Mn4+ are known to have equal384
ionic radii (Shannon (1976)). The authors have previously shown that this substitution has little bearing on385
the properties (phonon frequencies, elastic constants) relevant to modelling thermal expansion within the386
quasi-harmonic approximation.387

It can be seen from Figure 7 that in all phases, the frequency of the softest tilt mode stiffens with increased388
Ca2GeO4 content, indicating that the inclusion of the CaGeO3:CaO interface reduces the propensity of389
octahedra to tilt. The tilt mode is unstable (has an imaginary frequency) in all high-symmetry parent phases,390
which is unsurprising since these phases are not observed experimentally at low temperatures at any n for391
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the Ca1+nMnnO3n+1 series. The tilt stiffens between the parent and child phases for all n, showing that the392
dynamic tilt couples competitively with the frozen in-plane rotation. In both the high- and low-symmetry393
phases, the (imaginary) octahedral tilt frequency varies approximately linearly with Ca2GeO4 mole fraction,394
although the stiffening effect going between the high- and low- symmetry phases becomes greater at higher395
n (lower Ca2GeO4 fraction). The CaO rock salt layer also stiffens octahedral rotations and thus the angle396
of the frozen rotation increases with n in rotation phases from 10.55◦ in I41/acd Ca2GeO4 (n = 1) up to397
the limit of 12.7◦ in I4/mcm CaGeO3 (n = ∞)(see Figure S2 in the SI). Hence, the greater amplitude398
of frozen rotation observed in CaGeO3 means that the competitive coupling between the frozen rotation399
and dynamic tilt is greatest for this largest n member, and leads to further hardening of the dynamic tilt400
frequency.401

In the 0 GPa relaxed Ca1+nGenO3n+1 structures, the tilt is still unstable for all n. However, it was found402
previously (Ablitt et al. (2017)) that a discrepancy arises between the Ca2GeO4 and Ca2MnO4 in-plane403
lattice parameters in the I41/acd phase – due to in-plane magneto-strictive coupling – but that applying a404
biaxial 4.3 GPa pressure corrects for this small difference, yielding very close agreement in the frequencies405
of the softest phonon modes. After applying this biaxial pressure, the n = 1 I41/acd Ca2GeO4 rotation406
phase has all real mode frequencies, but the softest tilt in all structures with n > 1 is still unstable. This407
agrees with experimental observation of the low temperature stable phases, shown as inset figures for each408
composition on Figure 7.409

Ca3Mn2O7 is found at low temperature in the improper ferroelectric A21am phase, but undergoes a410
wide temperature region of phase coexistence with the uniaxial NTE Acaa phase between 150-280 K on411
cooling and 300-360 K on heating (Senn et al. (2015)). The strong first order nature of the phase transition412
arises because frozen octahedral rotations in the A21am and Acaa phases have opposite sense (in-phase413
vs out-of-phase about c within each perovskite layer – see Figure 8) but the approximate transformation414
temperature gives an indication of the temperature at which octahedral tilts in a rotation phase develop415
real frequencies. Furthermore, the n =∞ perovskite, CaMnO3, transforms around 1166 K from a Pnma416
ground state with frozen octahedral tilts, to an I4/mcm phase with only an out-of-phase octahedral rotation417
– the n =∞ analogue of the n = 2 Acaa – remaining in this phase for only a brief temperature window418
before transforming again to the cubic parent structure at 1184 K (Taguchi et al. (1989)). For n = 3, the419
reported symmetry for Ca4Mn3O10 from 5 K up until room temperature is Pbca (Battle et al. (1998)), in420
which a static rotation and tilt of the octahedra are present, and, although to the best of our knowledge421
a transformation to a higher-symmetry phase with only a frozen octahedral rotation has not yet been422
reported2, interpolating the experimental observations in Figure 7 predicts a transformation temperature423
in the 250-1100 K window. The magnitude of the imaginary tilt frequency computed in Figure 7 may424
therefore by interpreted as a crude indicator of the stability of the structure with condensed rotation and tilt425
and thus of the temperature required to transform to the higher-symmetry rotation phase.426

As well as having optimal elastic anisotropy to facilitate uniaxial NTE, the n = 1 Ca2MnO4 I41/acd427
phase has soft tilt modes at low temperatures providing a thermodynamic driving force for cooperative428
in-plane positive and out-of-plane negative thermal expansion. This feature is not unique to the n = 1429
structure however, since at some higher temperature all Ca1+nMnnO3n+1 compounds should transform to a430
phase in which the tilt frequencies are real and soft, at least over some temperature range. Furthermore, we431
have demonstrated previously in the Ca3−xSrxMn2O7 system, that for a given layer thickness n, chemical432
substitution (changing x) may be used to alter the Goldschmidt tolerance factor and thus the frequencies433

2 Although we do note that the high-symmetry I4/mmm parent structure has been stabilised at room temperature from solid state synthesis at high temperatures
and pressures (Yu et al. (2001)).
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of these octahedral tilts, switching between positive and negative uniaxial thermal expansion (Senn et al.434
(2016)). Therefore, Figure 7 shows that the Ruddlesden–Popper structure, through the layer thickness435
n, determines a ballpark value for the 0 K tilt frequency in the uniaxial NTE phase, and thus a ballpark436
temperature window in which the NTE phase will be stable. Hence, given this structural constraint we may437
use chemical control to optimise the proximity of the structure to the phase transition and so enhance the438
NTE. In this respect, the n = 1 family member, since one may presume that it may be tuned chemically to439
arbitrary proximity to the competing phase transition, is the most promising candidate for exhibiting the440
largest NTE on account of the anisotropy with respect to its most and least compliant directions which we441
have shown is maximised for this system.442

4 CONCLUSIONS

We have shown that the elastic anisotropy ratio, κ, found previously to be an essential ingredient for uniaxial443
NTE, increases linearly in the Ruddlesden–Popper Can+1GenO3n+1 series (n = 1, 2, 3, 4 . . .∞) with the444
CaGeO3:CaO content (expressed by the ratio 1/n), reaching a maximum in the structure with maximal445
interface (n = 1). By decomposing the components of the elastic compliance matrix for high-symmetry446
and NTE phases (with a frozen octahedral rotation about the layering axis) into different regimes that show447
similar trends with 1/n, we have been able to link these regimes with internal degrees of freedom in the448
structure that allow atomic mechanisms to operate that couple to cell strains. The most important of these449
is the “corkscrew” mechanism that operates locally at the CaGeO3:CaO interface in phases with a frozen450
octahedral rotation about the layering axis and therefore explains the trend that anisotropic compliance451
correlates with the fraction of interface in these phases. This local atomic compliance mechanism is452
analogous in certain ways to the wine-rack mechanism that operates in many much softer framework453
materials. The compliance matrices can be rapidly calculated by DFT methods and diagonalised to454
assess them for cross coupling terms that promote pronounced uni or biaxial NTE. This makes them455
suitable descriptors for high throughput computational searching for novel NTE materials, especially when456
symmetry constraints may be employed to narrow the space of candidate phases.457

We further investigated the trend in frequency of octahedral tilts with RP layer thickness and found that458
the 0 K tilt frequencies in NTE or analogous structures become softer with increasing n. This implies that a459
window of stability of the NTE phase with soft active tilt modes exists at increasingly higher temperatures460
with higher n. We had previously shown that the thermodynamic driver for NTE for a given n might461
be tuned with chemical substitution, and we now show that the anisotropic compliance necessary for462
NTE in these systems is maximised for a high fraction of CaGeO3:CaO interface layers in the structure.463
On the basis of this analysis, we thus predict that the n = 1 systems, such as Ca2MnO4, will be the464
Ruddlesden–Popper systems in which the maximum NTE can be achieved via chemical substitution.465
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1 BACKGROUND THEORY

This section briefly summarises some of the background theory relevant for understanding thermal589
expansion in an anisotropic material. An interested reader can find many more thorough explanations of590
these concepts in other sources (Ashcroft and Mermin (1976), Dove (1993)).591

The elastic compliance matrix, s, relates the anisotropic strain response of a material, ε to an applied592
stress, σ, via the equation593

εi =
∑
j

sij σj , (7)

where εi (σi) is component i of ε (σ) and ε (σ) is a 6-dimensional vector expressed in Voigt notation so594
that the first three components (i = 1, 2, 3) describe normal strains (stresses) of the crystal and the latter595
three components (i = 4, 5, 6) describe shear strains (stresses). s is therefore a 6×6 matrix.596

Using this definition of s, the general anisotropic thermal expansion, α, of a material is given by the597
equation598

α = s Φ, (8)

where α is the anisotropic thermal expansion vector expressed in Voigt notation, in response to an599
anisotropic driving force for thermal expansion, that we express by the vector Φ.600

In a tetragonal material, the a and b axes are equivalent, and thus in the compliance matrix s11 = s22 and601
s13 = s12. Furthermore, all normal-shear coupling terms, sij (i = 1, 2, 3; j = 4, 5, 6), are 0 by symmetry602
and thus shear components of Φ may not contribute to normal components of α. If we assume that we603
have a tetragonal material that remains tetragonal, and thus undergoes no shear deformations, Equation 8604
simplifies to:605

 α1 (T )
α1 (T )
α3 (T )

 =

 s11 s12 s13
s12 s22 s13
s13 s13 s33

 Φ1 (T )
Φ1 (T )
Φ3 (T )

 . (9)

In Equation 9 we assume that s is temperature independent to a first approximation and therefore606
the temperature dependence of α is given by the driving force for thermal expansion Φ (T ). We may607
then express Φ (T ) in terms of mode specific heat capacities, Civ (T ), and anisotropic mode Grüneisen608
parameters, γi, by the equation609

Φη (T ) =
∑
i

Civ (T ) γiη. (10)

In Equation 10 the summation over indices i is really of every discrete phonon mode at every phonon610
wavevector on a sufficiently dense grid to approximate an integral over the Brillouin zone. The specific611
heat capacity of mode i is a function of the frequency of that mode, ωi, and temperature T ,612
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Civ =
~wi

V

∂

∂T

[(
e

~wi

kBT − 1

)−1
]
, (11)

where the derivative describes how the population of that mode increases with increasing T . The613
component γiη of the vector γi then describes the contribution of mode i to thermal expansion of lattice614
parameter η, and is defined as615

γiη = −
∂ ln

[
wi
]

∂ ln [η]
, (12)

such that if γiη > 0 mode i contributes to PTE of η and likewise if γiη < 0 mode i contributes to NTE.616

Equation 9 implies that even a Φ vector with all positive components could be transformed into a uniaxial617
or biaxial NTE regime (α with one or two negative components respectively) by a sufficiently anisotropic618
compliance matrix. This scenario is illustrated for a tetragonal material in Figure 2 where a Φ driving bulk619
PTE is transformed by a highly anisotropic s into the quadrant corresponding to uniaxial NTE of the c axis.620

The degree of anisotropy can be quantified by the ratio, κ, of the highest and lowest eigenvalues of s, sH621
and sL respectively, given as622

κ =
sH
sL
. (13)

If κ = 1, the quadratic form of s in Figure 2 would be a sphere and s would not alter the direction of the623
vector Φ in Equation 8. However, as κ becomes greater, the quadratic form of s becomes more ellipsoidal624
and thus s has the potential to rotate the direction of Φ. κ is thus a good metric to consider the potential for625
s to transform Φ driving bulk PTE into α corresponding to anisotropic NTE.626

2 PHASE DIAGRAM AND SYMMETRY OF RUDDLESDEN–POPPER PHASES

In Figure 1, members of the An+1BnO3n+1 Ruddlesden–Popper series were displayed in the high-symmetry627
I4/mmm parent structure. Figure 8 shows the phase diagrams relevant for NTE in the n = 1 and n = 2628
systems. In Ca2MnO4 and Ca3Mn2O7, the uniaxial NTE phase has an anti-phase frozen octahedral rotation629
about the c axis, corresponding to the I41/acd or Acaa space groups respectively. In n = 1 I41/acd,630
this rotation is anti-phase between adjacent equivalent BO6 perovskite layers in different unit cells – the631
corresponding distortion is at P =(1/2, 1/2, 1/2) – whereas in n = 2 Acaa the rotations are anti-phase within632
each BO6 block but with no doubling of the I4/mmm unit cell along c – corresponding to a distortion at633
X =(1/2, 1/2, 0). In both systems, this NTE phase with anti-phase rotations competes with a ground-state634
phase with both frozen rotations (about c) and tilts (with rotation axes in the layering plane) of BO6635
octahedra, that is a child of an alternative rotation phase with in-phase rotations. The ground-state phase636
shown is found to be the lowest energy structure computed using DFT in Can+1GenO3n+1. The analogous637
phase diagram for an ABO3 perovskite (the n =∞ RP end-member) is also shown for comparison, even638
though ABO3 perovskites typically do not exhibit uniaxial NTE in their I4/mcm phase with anti-phase639
rotations.640

We previously used the concept of symmetry trapping to explain the presence of soft (low frequency), yet641
stable (real phonon frequencies), octahedral tilts driving uniaxial NTE in n = 2 Ca3Mn2O7 (Senn et al.642
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(2015)). This idea stems from the fact in the n = 1, 2 phase diagrams, that the crystal cannot transform from643
the NTE metastable phase to the ground-state phase without the frozen octahedral rotations changing sense644
– anti-phase rotations about c need to “unwind” to form the in-phase rotations in the ground-state phase.645
Thus soft phonons are able to persist without the structure undergoing a soft-mode phase transition to the646
ground state. In the ABO3 perovskite, the c axis is not as strongly defined as in layered RP compounds647
(since there is no inherent layering topologically distinguishing a particular axis in the ABO3 structure).648
Therefore, although there is no group-subgroup relationship between I4/mcm and the ground-state Pnma649
phases, there is no clear distinction between rotations and tilts and a phase transition with a relatively low650
activation barrier corresponding to a rotation of the direction of the out-of-phase octahedral tilting can be651
envisaged.652

Figure 8. Space-group diagrams showing the relevant phases for uniaxial NTE in low n An+1BnO3n+1
Ruddlesden–Popper systems. The NTE phase has a frozen rotation of BO6 octahedra about the layering
axis, which is out-of-phase between adjacent unit cells (P4 irrep) if n = 1 and out-of-phase with each
perovskite block but in-phase between adjacent unit cells (X−

1 irrep) in the n = 2 system. This NTE phase
competes with a ground state phase that has an in-phase frozen octahedral rotation about the layering axis
and frozen octahedral tilt in the plane of the layering axis. For higher n, the n = 1 picture extends to odd
values of n and the n = 2 to even values of n. An analogous phase diagram for the n =∞ extreme of an
ABO3 perovskite is also shown even though the I4/mcm phase seldom exhibits NTE.

The n = 1 phase diagram may be extended to all odd n in the Ruddlesden–Popper series and the n = 2653
phase diagram to all even n. In this work, we distinguish between high-symmetry phases – the I4/mmm654
RP or Pm3̄m perovskite parents – and rotation phases – by which we mean the NTE (or equivalent) phase655
with anti-phase rotations about the c axis – in first-principles simulations of the Can+1GenO3n+1 system656
(n = 1, 2, 3, 4,∞).657

Although the Acam and Acaa rotation phases have orthorhombic space groups, in DFT simulations in658
this work and from experimental measurement in previous works (Senn 2015) we in fact find them to659
be pseudo-tetragonal. This is because locally each BO6 octahedron has 4-fold rotational symmetry and660
the frozen rotation angle is the same for octahedra in equivalent layer positions in different perovskite661
blocks in the unit cell, even if the sense (clockwise vs anticlockwise) of the rotation is different. This662
pseudo-tetragonality means that even though structures were relaxed in orthorhombic space groups with no663
additional symmetry constraints, the a and b lattice parameters are always found to be equal to within the664
accuracy of the simulation with no spontaneous in-plane distortion of the BO6 units.665
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In the n = 1, 3 compounds, the structures (lattice parameters, relaxed cell energies, octahedral rotation666
angles) of the Acam and I41/acd phases were exactly equal (to the accuracy of the calculation), indicating667
that equivalent GeO6 octahedra in adjacent I4/mmm unit cells are sufficiently de-phased that the relative668
sense of their rotations has no effect on the structural properties of the crystal. Noting that in n = 3669
Acam the octahedral rotations are anti-phase within each perovskite block, exactly as in relaxed I41/acd670
(although still in-phase between unit cells), we used n = 3 Acam as a proxy for I41/acd in calculations671
of elastic properties in Sections 3.2-3.1 since many repeated cell relaxations were required that would672
have been extremely computationally expensive in the large n = 3 I41/acd unit cell. However, for lattice673
dynamics calculations, n = 3 I41/acd was studied since the phase of rotations between unit cells was674
found to give different frequencies for the softest tilt modes between Acam and I41/acd in the lattice675
dynamical calculations performed in Section 3.4.676

This is a provisional file, not the final typeset article 24


	Introduction
	Methods
	Results and Discussion
	Anisotropy of the Compliance Matrix
	Elastic Compliances
	Compliance Enhancement Mechanisms
	Dynamic Driving Force for NTE

	Conclusions
	Background Theory
	Phase diagram and symmetry of Ruddlesden–Popper Phases

