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Quantized Hamiltonian Curl Forces and Squeezed Light

P. Strange

School of Physical Sciences, University of Kent, Canterbury, Kent, CT2 7NH, UK

(Dated: July 3, 2018)

In this paper we discuss quantum curl forces. We present both the classical and

quantum theory of linear curl forces. The quantum theory is shown to reproduce the

classical theory precisely if appropriate combinations of eigenfunctions are chosen. A

series of examples are used to illustrate the theory and to demonstrate its limitations.

Furthermore we are able to point out an analogy between the quantum theory of

curl forces and some of the squeezed light states of quantum optics.
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I. INTRODUCTION

In recent years there has been considerable interest in classical curl forces. These are

forces that depend on position, but not velocity and whose curl is non-zero[1]. Such forces

are non-conservative and cannot be written as the gradient of a potential, but they are also

non-dissipative. The classical theory of such forces has been studied in a systematic and

detailed way in a series of papers by Berry and Shukla[1–4]. There appears to be considerable

controversy about the existence of such forces in the engineering literature[5], but that is

not the focus of this paper and their existence in physics is not in doubt. In the absence of

the usual relation between force and potential there would normally be no Hamiltonian or

Lagrangian formalism which describes curl forces. However they can be discussed within the

generalised Hamiltonian theory of Tveter[6, 7]. There is also a class of curl forces for which

the usual Hamiltonian formalism is applicable[3]. These are cases where the Hamiltonian

has an anisotropic quadratic dependence on momentum and it is these forces we discuss

in this paper. It does not include the most well-known curl force which is the magnetic

Lorentz force. There are examples of curl forces in nature, in particular some of the forces

exerted by light on small particles and applications in optical tweezers[8]. Another example

is the force felt by an electron in a semiconductor with a donor impurity where the band

structure and hence the effective mass becomes anisotropic[9]. In recent times an interesting

development in the subject has been the application of the theory of curl forces in statistical

mechanics[10]

In general it is not at all clear how to treat curl forces quantum mechanically. However

for Hamiltonian curl forces there is a straightforward procedure towards a quantum theory

and we develop that here as a first step towards a full quantum theory of curl forces. In the

following two sections we set up the classical theory of Hamiltonian curl forces and illustrate

it with a few simple examples. Then in section IV we write down and derive the equations

describing the quantum theory of curl forces. In section V we solve these equations and

show that the classical theory is recovered under certain conditions[14, 15]. We then go on

to show that the theory also yields some non-classical behaviour which can be viewed as

a representation of certain states of squeezed light[19, 20]. Finally we bring together our

results and draw some conclusions from the work.
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II. CLASSICAL HAMILTONIAN CURL FORCES

Here we summarise the classical theory of linear curl forces. Sections II and III follow the

work of Berry and Shukla [3] closely and are included because later we will demonstrate an

equivalence between some equations from the classical theory and some from the quantum

theory. It is sufficient to work in two dimensions and under very general assumptions the

Hamiltonian can be written as

H =
1

2m
αp2x +

1

m
βpxpy +

1

2m
γp2y + U(x, y) (1)

The first of Hamilton’s equations then give

ẋ = α
px
m

+ β
py
m

ẏ = β
px
m

+ γ
py
m

(2)

We can then get the forces from Hamilton’s second equations

Fx = mẍ = αṗx + βṗy = −α∂U(x, y)

∂x
− β∂U(x, y)

∂y

Fy = mÿ = βṗx + γṗy = −β∂U(x, y)

∂x
− γ ∂U(x, y)

∂y
(3)

The curl is

Ω = ∇× F = (α− γ)
∂2U(x, y)

∂x∂y
+ β

(
∂2U(x, y)

∂y2
− ∂2U(x, y)

∂y2

)
(4)

III. CLASSICAL LINEAR CURL FORCES

Now we are going to restrict ourselves to considering linear curl forces for which

Fx = ax+ by Fy = cx+ dy (5)

Clearly this is reminiscent of the harmonic oscillator. The kinetic energy parameters and

the potential are then given by

α =
1

c
, β = 0, γ =

1

b
(6)

U(x, y) = −1

2
acx2 − bcxy − 1

2
bdy2 (7)



4

Then

Ω = c− b (8)

which shows that this is indeed a curl force provided b 6= c. For the forces (5) we can write

F = mr̈(t) = qr(t) (9)

with the dynamical matrix

q =

a b

c d

 (10)

and we must have b 6= c for curl forces. The eigenvalues of this matrix are

q± =
1

2

(
a+ d±

√
4bc+ (a− d)2

)
(11)

For this orbit to exhibit oscillations requires q± to be negative and for a periodic orbit we

must require

M2q+ = N2q− (12)

where M and N are coprime integers. After some algebra this tells us that

q+ = N2 a+ d

M2 +N2
q− = M2 a+ d

M2 +N2

bc =
ad(M4 +N4)− (a2 + d2)M2N2

(M2 +N2)2
(13)

Without loss of generality we can take b = 1 and for oscillations we require a+ d < 0. Then

the elements of the dynamical matrix are

a = −A b = 1

c =
AD(M4 +N4)− (A2 +D2)M2N2

(M2 +N2)2
d = −D (14)

It is also convenient to define

ζ =

√
A+D

M2 +N2
(15)

It is now straightforward to solve equation (9) (with mathematica) to get

x(t) = x(0)
(AM2 −DN2) cos(ζMt) + (DM2 − AN2) cos(ζNt)

(A+D)(M2 −N2)

+ y(0)
cos(ζNt)− cos(ζMt)

ζ2(M2 −N2)
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+ vx(0)
(AM2 −DN2)N sin(ζNt) + (DM2 − AN2)M sin(ζNt)

ζ(A+D)MN(M2 −N2)

+ vy(0)
M sin(ζNt)−N sin(ζMt)

ζ3MN(M2 −N2)
(16)

y(t) = x(0)
(DM2 − AN2)(AM2 −DN2)(cos(ζNt)− cos(ζMt))

(A+D)(M4 −N4)

+ y(0)
(AM2 −DN2) cos(ζNt) + (DM2 − AN2) cos(ζMt)

(A+D)(M2 −N2)

+ vx(0)
(DM2 − AN2)(AM62−DN2)(M sin(ζNt)−N sin(ζMt))

ζ(A+D)MN(M4 −N4)

+ vy(0)
(AM2 −DN2)M sin(ζNt) + (DM2 − AN2)N sin(ζMt)

ζ(A+D)MN(M2 −N2)
(17)

The expression for y(t) differs slightly from that of Berry and Shukla[3] but does reproduce

their diagrams precisely, we believe that this is due to a typo in their paper. To solve the

equations of motion for a particular curl force the procedure is to select A, D, M and

N . b = 1 and c can be calculated from equation (14). Then we choose the initial position

(x(0), y(0)) and velocity (vx(0), vy(0)) of the particle and it becomes a straightforward matter

to use equations (16) and (17) to determine the position of the particle at future times.

Several examples are displayed in Figure 1.

The curl forces we have generated here are only a very small subset of those possible.

They are closed in phase space. That means that the kinetic energy is unchanged after each

orbit. However Stokes’s theorem implies that the change in kinetic energy around each orbit

is

1

2

∮
d

ds
(v.v)ds =

∮
r̈.dr =

∮
F (r)dr =

∫ ∫
∇× F(r)dS (18)

where s denotes arc-length around the orbit and the final double integral is over any surface

spanning the closed orbit. This integral is indeed zero for all the orbits above. In Figure

1a the orbit is self-retracing and so encloses no area. The other figures involve self-crossing

periodic orbits which divides them up into areas where the flux crosses the surface in opposite

directions and cancels.
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FIG. 1: Figure 1: A selection of periodic orbits generated using equations (??) and (17).

These are for values of (A,D,M,N, x(0), y(0), vx(0), vy(0)) given by: a. (1, 2, 1, 2, 1, 0, 0, 0);

b. (2, 0.2, 1, 2, 1, 1, 2,−1); c. (1, 2, 1, 3, 1, 2, 1, 0); d. (1, 3.5, 3, 2, 3, 4, 3, 4); e.

(1.800, 1.461, 3, 5,−0.1, 0.1, 0.6, 0.1); f. (1, 1, 2, 5, 4, 1, 0.5, 0).)

IV. QUANTUM LINEAR CURL FORCES

Above we have described and made statements about classical Hamiltonian curl forces

based on the work of Berry and Shukla[1, 3]. Now we go on to see how to do the equivalent

quantum mechanical calculations.
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A. The Hamiltonian

The Schrodinger Hamiltonian consistent with the classical theory of section III is

Ĥ = − h̄
2α

2m

d2

dx2
− h̄2γ

2m

d2

dy2
+ V (x̂, ŷ) (19)

with

V (x̂, ŷ) = −1

2
acx̂2 − bcx̂ŷ − 1

2
bdŷ2 (20)

This is clearly equivalent to a two-body Hamiltonian. To be as consistent as possible with

the classical case we choose

α = 1/c γ = 1/b. (21)

This is equivalent to a system where the mass becomes a tensor quantity (This occurs in

anisotropic materials where the effective mass of the electrons is dependent on direction in

the crystal[9]). We then choose

A = −a, D = −d, b = 1 C = c > 0 (22)

which means γ = 1 and the potential becomes

V (x̂, ŷ) =
1

2
ACx̂2 − Cx̂ŷ +

1

2
Dŷ2 (23)

which is the potential energy associated with two coupled harmonic oscillators. Defining the

effective spring constants accordingly as

k1 = C(A− 1), k2 = D − C, κ = C (24)

and with m1 = cm and m2 = bm we have

Ĥ = − h̄2

2m1

d2

dx2
− h̄2

2m2

d2

dy2
+

1

2
k1x̂

2 +
1

2
k2ŷ

2 − 1

2
κ(x̂− ŷ)2 (25)

This is the Hamiltonian associated with two coupled oscillators which can be solved using

standard methods[13]. Defining

µ = (m1m2)
1/2 ω1 =

√
k1
m1

ω2 =

√
k2
m2

(26)

eventually leads to

Ĥ =
p̂2x1
2µ

+
p̂2y1
2µ

+
1

2
µω2
−x̂

2
1 +

1

2
µω2

+ŷ
2
1 (27)
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with

ω− =

ω2
1 cos2 η + ω2

2 sin2 η +
κ

µ

((
m1

m2

)1/4

sin η −
(
m2

m1

)1/4

cos η

)2
1/2

ω+ =

ω2
1 sin2 η + ω2

2 cos2 η +
κ

µ

((
m1

m2

)1/4

cos η +

(
m2

m1

)1/4

sin η

)2
1/2

(28)

and

η =
1

2
arctan

(
2κ/µ

ω2
2 − ω2

1 + κ(m1 −m2)/µ2

)
. (29)

Equation (27) is a two-dimensional single particle Simple Harmonic Oscillator hamilto-

nian with suitably transformed coordinates (x1, y1). If we define a wavefunction

Ψ(x1, y1, t) = Φ(x1, t)ψ(y1, t) (30)

and separate the Schrodinger equation for this Hamiltonian we find

− h̄
2

2µ

d2Φ(x1)

dx21
+

1

2
µω2
−x

2
1Φ(x1) = ExΦ(x)

− h̄
2

2µ

d2ψ(y1)

dy21
+

1

2
µω2

+y
2
1ψ(y1) = Eyφ(y) (31)

V. SOLUTIONS

The Schrodinger equations above are solved in most quantum mechanics text books and

their general form is straightforwardly written as

Ψn(z, t) =

(
1

2nn!

)1/2 (mω
πh̄

)1/4
Hn

((mω
h̄

)1/2
z

)
exp

(
−mωz

2

2h̄

)
exp(−i(n+ 1/2)ωt) (32)

where Hn(z) are Hermite polynomials, and we have put back the time dependence. (Ψ here

is distinguished from Ψ in equation (30) by the number of arguments in the brackets). Of

course, if a single eigenstate is taken as the solution the motion exhibits no overall time

dependence and if a linear combination of eigenstates is chosen we get the usual oscillatory

time dependence. Throughout the rest of this paper we retain constants in equations, but

diagrams are drawn in units in which h̄ = m = 1.

There are two operators that commute with the Hamiltonian and hence represent con-

served quantities. Firstly there is the hamiltonian itself, simply representing the energy and

secondly the operator

C2 = (D − A)

(
p̂2x

2Cm
−

p̂2y
2Bm

)
+

2p̂xp̂y
m
−
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1

2

(
(2BC2 + AC(A−D))x̂2 − 2BC(A+D)x̂ŷ + (2B2C −BD(A−D))ŷ2

)
(33)

which does not have a clear interpretation and which is analogous to the corresponding

classical quantity[3].

A. Coherent States

Of course, any linear combinations of these eigenstates are acceptable solutions of the

Schrodinger equations (31). A particularly important example are the Glauber coherent

states[12, 14, 15], which, in quantum optics, are known to be a combination of electro-

magnetic oscillators which reproduce classical light as closely as possible. They accurately

describe the quantum state of a laser and have also found application in the description of

superfluids[16, 17] and superconductors[18] for example. In the configuration representation

they are given by[11, 15]:

|α >= e−
1
2
|α|2

∞∑
n=0

αn√
n!
|n > (34)

Here α is a constant (generally complex) which characterises the state and the sum is over

time independent harmonic oscillator eigenstates |n >. The time dependence evident in

equation (32) can be incorporated by replacing α with α exp(−iωt) and including an extra

phase factor of exp(−iωt/2) outside the sum.[11, 21]. It is straightforward to calculate the

expectation value of position and momentum for these states. For our case:

< x̂1(t) > =

√
2h̄

mω−
|αx| cos(ω−t− φ1)

< p̂x1(t) > = −|αx|
√

2mh̄ω sin(ω−t− φ1) (35)

and similar expressions can be derived for the y1-components. If we translate these back

into the original coordinate system we find

< x̂(t) > =

√
2h̄

m1

(
|αx|√
ω−

cos η cos(ω−t− φ−)− |αy|√
ω+

sin η cos(ω+t− φ+)

)

< ŷ(t) > =

√
2h̄

m2

(
|αx|√
ω−

sin η cos(ω−t− φ−) +
|αy|√
ω+

cos η cos(ω+t− φ+)

)

< p̂x(t) > =
√

2h̄m1 (−|αx|
√
ω− cos η sin(ω−t− φ−) + |αy|

√
ω+ sin η sin(ω+t− φ+))
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< p̂y(t) > = −
√

2h̄m2 (|αx|
√
ω− sin η sin(ω−t− φ−) + |αy|

√
ω+ cos η sin(ω+t− φ+))(36)

In these equations αx, αy, φ−, and φ+ are unknown. However to remain as close as possible

to the classical theory we can find them by specifying < x̂(0) >, < ŷ(0) >, < p̂x(0) > and

< p̂y(0) > as the boundary conditions and rearranging equations (36). This leaves us with

four equations and four unknowns:

φ− = arctan

[
1

m2ω−

(
(m2

m1
)1/2 cos η < p̂x(0) > + sin η < p̂y(0) >

(m1

m2
)1/2 cos η < x̂(0) > + sin η < ŷ(0) >

)]
;

αx =
1

cosφ−

√
ω−
2h̄

(
m

1/2
1 cos η < x̂(0) > +m

1/2
2 sin η < ŷ(0) >

)
;

φ+ = arctan

[
1

m1ω+

(
(m1

m2
)1/2 cos η < p̂y(0) > − sin η < p̂x(0) >

(m2

m1
)1/2 cos η < ŷ(0) > − sin η < x̂(0) >

)]
;

αy =
1

cosφ+

√
ω+

2h̄

(
m

1/2
2 cos η < ŷ(0) > −m1/2

1 sin η < x̂(0) >
)
. (37)

With these values of the constants we are now able to apply the quantum theory. We

choose values of < x̂(0) >, < ŷ(0) >, < v̂x(0) >=< p̂x(0) > /m1 and < v̂y(0) >=< p̂y(0) >

/m2 in complete analogy with the classical theory. These can be used in equations (37)

to evaluate the constants. In turn these can be used in equations (36) to calculate the

motion as a function of time in configuration space. To actually determine the particular

orbits we also need to choose values of A, B, C and D. As in the classical theory B = 1

and we choose A and D. We then have to select C so as to ensure commensurability (a

closed orbit). We have found that choosing M and N as in the classical case and using the

expression for C generated by equations (14) yields commensurate orbits. Several example

orbits have been calculated and these are shown in Figure 2. Here we have chosen identical

parameters to some of those shown in Figure 1. Clearly the orbits are identical. This

demonstrates unequivocally that our procedure is the right way to treat linear curl forces

quantum mechanically. We have not been able to reproduce figures 1b and d using this

method. The reason for this is that equation (14) causes C to be negative in these cases.

This is allowed in the classical theory. However in quantum mechanics it means that m1 is

negative and ω1 is imaginary and the resulting Schrodinger equation is no longer equivalent

to the harmonic oscillator.
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FIG. 2: A selection of periodic orbits calculated as the expectation values

(< x̂(t) >,< ŷ(t) >) for the Glauber coherent states. These are for values of

(A,D,M,N, x(0), y(0), vx(0), vy(0)) given by: a. (1, 2, 1, 2, 1, 0, 0, 0); b. (1, 2, 1, 3, 1, 2, 1, 0);

c. (1.800, 1.461, 3, 5,−0.1, 0.1, 0.6, 0.1); d. (1, 1, 2, 5, 4, 1, 0.5, 0).)

The fact that the orbits in the classical and quantum theory are identical in this case

indicates that the theories are mathematically equivalent and indeed this is the case. Equa-

tions (36) can be rewritten as coefficients multiplying cosω−t, cosω+t, sinω−t, and sinω+t,

while equations (16) and (17) can be written as coefficients multiplying cosNζt, cosMζt,

sinNζt, and sinMζt. We can then compare coefficients of these quantities and they turn

out to be numerically identical. Thus we can relate the parameters in the quantum theory

to those on the classical theory. For example from the expressions for < x(t) > we find

x(0)
DM2 − AN2

(A+D)(M2 −N2)
+ y(0)

1

ζ2(M2 −N2)
=

√
2h̄

m1

αx√
ω−

cos η cosφ−

x(0)
AM2 −DN2

(A+D)(M2 −N2)
− y(0)

1

ζ2(M2 −N2)
= −

√
2h̄

m1

αy√
ω+

sin η cosφ+ (38)

and several other similar equations exist. This shows that if the eigenfunctions are the

coherent states the motion in configuration space is entirely classical.

We can calculate the expectation values of the square of position and momentum. Then
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defining uncertainty in the usual way

∆A =

√
< Â2 > − < Â >2

we get some simple expressions.

∆x =

√
h̄

2m1

(
cos2 η

ω−
+

sin2 η

ω+

)1/2

∆y =

√
h̄

2m2

(
sin2 η

ω−
+

cos2 η

ω+

)1/2

∆px =

√
h̄m1

2

(
ω− cos2 η + ω+ sin2 η

)1/2
∆py =

√
h̄m2

2

(
ω− sin2 η + ω+ sin2 η

)1/2
(39)

which are consistent with

∆x∆px = ∆y∆py ≥ h̄/2 (40)

The uncertainties are all time-independent minimum uncertainty states, consistent with

what is expected for coherent states.

B. Yurke-Stoler States

Within quantum optics the Glauber coherent states describe light that is as close as

possible to our classical notion of light and contains an infinite number of photons. The

equivalence between the quantum theory of curl forces described by these coherent states

and the classical theory of curl forces leads us to look at other states that are important

in quantum optics. It is tempting to examine the odd and even cat-states[11], but their

symmetry properties yield < x(t) >=< y(t) >= 0 so no equivalence between classical curl

states and the cat states can be found. Therefore we have chosen to consider the Yurke-Stoler

states[11, 19, 20] which are defined in terms of the coherent states by

|ψ >=
1√
2

(|α > +i| − α >) (41)

In quantum optics these states describe non-classical squeezed light. The squeezing is de-

scribed by a quadrature operator which is equivalent to the momentum operator for curl

forces. If we assume the solutions to equations (31) take this form we can follow a very
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similar procedure to the coherent states to determine expressions for the expectation values

and they look similar. The coherent states are not orthogonal and obey

< α| − α >= exp(−2|α|2) (42)

We find

< x̂(t) > =

√
2h̄

m1

(
− |βx|√

ω−
cos η sin(ω−t− φ−)− |βy|√

ω+

sin η sin(ω+t− φ+)

)

< ŷ(t) > = −
√

2h̄

m2

(
βx√
ω−

sin η sin(ω−t− φ−) +
|βy|√
ω+

cos η sin(ω+t− φ+)

)

< p̂x(t) > =
√

2h̄m1 (|βx|
√
ω− cos η cos(ω−t− φ−)− |βy|

√
ω+ sin η cos(ω+t− φ+))

< p̂y(t) > = −
√

2h̄m2 (|βx|
√
ω− sin η cos(ω−t− φ−) + |βy|

√
ω+ cos η cos(ω+t− φ+))(43)

where

βx(y) = αx(y) exp(−2|αx(y)|2) (44)

The expressions (43) look remarkably similar to equations (36). Comparing the two shows

that they are identical apart from sin(ω+(−)t − φ+(−)) ←→ − cos(ω+(−)t − φ+(−)) and we

distinguish the constants β and α between the two cases.

As for the coherent states, the orbits in configuration space for the classical theory and

for the quantum theory with the Yurke-Stoler wavefunctions are identical. Some examples

of these are shown in Figures 3a and 4a. The expressions for the orbits only differ from those

for the coherent states by a phase. So we can go through the same procedure of comparing

coefficients of trigonometric functions of time to identify the parameters of the quantum

theory with those of the classical theory. For example from the expressions for < x(t) > we

find the relations equivalent to the expressions 38 are

x(0)
DM2 − AN2

(A+D)(M2 −N2)
+ y(0)

1

ζ2(M2 −N2)
=

√
2h̄

m1

βx√
ω−

cos η sinφ−

x(0)
AM2 −DN2

(A+D)(M2 −N2)
− y(0)

1

ζ2(M2 −N2)
= −

√
2h̄

m1

βy√
ω+

sin η sinφ+ (45)

along with several other similar equations. These differ from the coherent state expressions

simply through sinφ+(−) ←→ cosφ+(−) This shows that if the eigenfunctions are the Yurke-

Stoler states the motion in configuration space is entirely classical.
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Now following a very similar procedure to the coherent states case we can determine the

coefficients βx and βy. However these coefficients have a maximum value. The function on

the right of equation (44) takes on a maximum value of exp(−1/2)/2 ≈ 0.30326533 for α

real. If either |βx| or |βy| are larger than this there is no Yurke-Stoler state equivalent to that

curl force. However if both βx and βy are less than this number there are four Yurke-Stoler

states equivalent to a single classical curl force. This is because a single value of β in equation

(44) yields two possible values of α. It is only βx, βy, φ− and φ+ which determine the orbits

in configuration and momentum space. However other physically important expectation

values depend more directly on αx(y). If we calculate the expectation values of the square of

position and momentum we find:

< x̂2(t) > =
2h̄

m1

(
α2
x

ω−
cos2 η cos2(ω−t− φ−) +

α2
y

ω+

sin2 η cos2(ω+t− φ+)

− 2
|βx||βy|√
ω−ω+

sin η cos η sin(ω−t− φ−) sin(ω+t− φ+)

)
+

h̄

2m1

(
cos2 η

ω−
+

sin2 η

ω+

)
;

< ŷ2(t) > =
2h̄

m2

(
α2
x

ω−
sin2 η cos2(ω−t− φ−) +

α2
y

ω+

cos2 η cos2(ω+t− φ+)

+ 2
|βx||βy|√
ω−ω+

sin η cos η sin(ω−t− φ−) sin(ω+t− φ+)

)
+

h̄

2m2

(
sin2 η

ω−
+

cos2 η

ω+

)
;

< p̂2x(t) > = 2h̄m1

(
α2
xω− cos2 η sin2(ω−t− φ−) + α2

yω+ sin2 η sin2(ω+t− φ+)

− 2|βx||βy|
√
ω−ω+ sin η cos η cos(ω−t− φ−) cos(ω+t− φ+))

+
m1h̄

2

(
ω− cos2 η + ω+ sin2 η

)
;

< p̂2y(t) > = 2h̄m2

(
α2
xω− sin2 η sin2(ω−t− φ−) + α2

yω+ cos2 η sin2(ω+t− φ+)

+ 2|βx||βy|
√
ω−ω+ sin η cos η cos(ω−t− φ−) cos(ω+t− φ+))

+
m2h̄

2

(
ω− sin2 η + ω+ cos2 η

)
; (46)

which depend on α as well as β.

The structure of these equations is informative. The first two terms and the final term

are all real and positive. The final term leads to the minimum uncertainty for the harmonic

oscillator which is equal to the uncertainty for the n = 0 eigenfunction. However the
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third term is real and of indeterminate sign. If it is positive we can, in principle, choose

the parameters describing the curl force such that the third term is greater in magnitude

than the sum of the first two terms. This will lead to suppression of the n = 0 (vacuum)

fluctuations and an uncertainty below the usual minimum value. In < x̂2(t) > the third term

has the opposite sign to the equivalent term in < ŷ2(t) >, but is otherwise identical, so any

decrease in the uncertainty in x(t) is matched by a corresponding increase in the uncertainty

in y(t). Furthermore if we choose the parameters to minimise the position uncertainty the

momentum uncertainty will have a tendency to be maximised at the same time because

sines and cosines interchange between the two expressions. This mechanism means we are

never in danger of breaking the Uncertainty Principle. From equations (43) and (46) we can

calculate the uncertainty and in this case it is time-dependent.

In Figure 3. we illustrate the Yurke-Stoler state. For this Hamiltonian we find βx =

0.1954 and βy = 0.2638. The resulting motion in configuration space is shown in Figure

3a. This orbit is also identical to that found classically and this is generally true provided

the coefficients satisfy the above conditions. The values of αx and αy consistent with these

values of β are αx = 0.2141 or 0.8612 and αy = 0.3264 or 0.6969. As can be seen in equations

(46) the square of the momentum and position depends on αx and αy as well as βx and βy.

so they can take on different values, but are still cyclic. This means that the uncertainty is

also cyclic and we plot these as orbits in “uncertainty space” for this case in Figure 3 b-i.

Selecting values of M and N such that M/N << 1 or M/N >> 1 leads to widely

differing values of ω− and ω+. This is what is required to ensure that there are times in

the orbit at which the uncertainty goes below the vacuum value. An example is plotted

in Figure 4. Here Figures 4a displays the orbit in configuration space. In Figures 4b-i we

show the uncertainties again for the different consistent values of αx and αy as described

in the figure caption. There are several things worthy of note in these figures and in the

comparison of them with figure 3. Firstly, Figures 3b-i all appear to be 1-dimensional lines.

In fact they are not, but are a continuous curve that periodically crosses itself. However

the amplitude of the oscillations is smaller that the width of the line on the diagrams. This

is always the same for orbits where we have deliberately chosen the parameters to provide

a large difference between ω− and ω+ in the examples we have examined. Secondly, the

uncertainty figures fall into four pairs, b-d, c-g, e-i and f-h. This does not occur in Figure 3.

For example the curves in Figures 4b and d correspond to the same value of αx and different
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FIG. 3: For the case (1.8, 1.461, 3, 5,−0.1, 0.1, 0.6, 0.1). we find βx = 0.1954, βy = 0.2638:

a. the particle in orbit in configuration space as described by the expectation values of x̂

and ŷ; b. the uncertainties in the x-direction for αx = 0.2141, αy = 0.3264; c. the

uncertainties in the y-direction for αx = 0.2141, αy = 0.3264; d. the uncertainties in the

x-direction for αx = 0.2141, αy = 0.6969; e. the uncertainties in the y-direction for

αx = 0.2141, αy = 0.6969; f. the uncertainties in the x-direction for αx = 0.8612,

αy = 0.3264; g. the uncertainties in the y-direction for αx = 0.8612, αy = 0.3264; h the

uncertainties in the x-direction for αx = 0.8612, αy = 0.6969; i.the uncertainties in the

x-direction for αx = 0.8612, αy = 0.6969;

αy. Both the configuration space orbit and the uncertainty in x and px are identical, but

the uncertainties in y and py differ markedly. This works similarly for the other pairs and

indicates that the motion in the x and y directions become essentially independent in this

limit. Thirdly, in Figure 3. the axes are what we might expect, based on the classical

harmonic oscillator. However this is not the case in Figure 4. For the parameters used in

Figure 4. we find ω− = 0.9091 and ω+ = 10.001. This leads to the vacuum uncertainties
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FIG. 4: For the case (0.82808, 100.0, 11, 1, 0.1, 0.1, 1.0, 0.3). we find βx = 0.2992,

βy = 0.2330: a. the particle in orbit in configuration space; b. the uncertainties in the

x-direction for αx = 0.4428, αy = 0.2694; c. the uncertainties in the y-direction for

αx = 0.4428, αy = 0.2694; d. the uncertainties in the x-direction for αx = 0.4428,

αy = 0.7747; e. the uncertainties in the y-direction for αx = 0.4428, αy = 0.7747; f. the

uncertainties in the x-direction for αx = 0.5595, αy = 0.2694; g. the uncertainties in the

y-direction for αx = 0.5595, αy = 0.2694; h the uncertainties in the x-direction for

αx = 0.5595, αy = 0.7747; i. the uncertainties in the y-direction for αx = 0.5595,

αy = 0.7747;

∆x = 1.8517, ∆px = 0.2700, ∆y = 0.2236, and ∆py = 2.2361. Clearly in Figures 4b, d, f

and h the uncertainty in x goes well below this value at the upper end of the curve while

at the lower end the uncertainty in px is well below the vacuum value. This amounts to

about 19% squeezing in position and 25% squeezing in momentum at different points on the

orbit. A similar thing happens for the y-components in figures 4c, e, g and i although the

squeezing of the y-coordinate in Figure 4 is considerably less than for the other variables
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(11% and 10% respectively).

Even in Figure 3 there is some squeezing as the vacuum uncertainties are ∆x = 0.8523,

∆px = 0.6050, ∆y = 0.6740, and ∆py = 0.5156. This means that there is squeezing of

around 10% in the position variables.

VI. CONCLUSIONS

We have considered the class of curl forces most straightforward to quantise, those that

can be described within classical Hamiltonian mechanics, and written down the quantum

theory to describe them. The Glauber coherent states were used to calculate expectation

values of position and momentum and show that they produce paths in configuration space

that reproduce those from the classical theory. There is a one-to-one correspondence be-

tween the classical and quantum formalisms and we have demonstrated this through several

examples. It is interesting to ask whether such forces could be observed. In principle one

could set up a two-dimensional anisotropic harmonic trap for cold atoms and observe the

orbits through quantum scarring[22–25], although this is likely to be a very challenging

experiment.

We have also shown that there is a correspondence between the classical paths and those

produced by the quantum mechanical Yurke-Stoler states, but that in this case quantum

theory leads to four different states being consistent with the classical theory. These four

states lead to identical results for the configuration space orbits, but are distinguished by

their expectation values of the square of position and momentum and hence by their uncer-

tainties. For some values of the parameters these are shown to have uncertainties smaller

than the vacuum values, in direct analogy with the Yurke-Stoler states of squeezed light. It

is clearly possible to reduce the uncertainty in position along one direction and uncertainty

in momentum along the perpendicular direction simultaneously. The Yurke-Stoler states are

well-known states of squeezed light and there is a one-to-one correspondence between the

squeezing of light in these states and the squeezing of the dynamics of particles experiencing

curl forces. Thus, one way to think about these curl forces is as a mechanical representation

of squeezed light.

This work extends the range of applicability of the coherent states beyond its already

broad sphere of application[11, 15–18].
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