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Abstract 

Objectives: Trabecular bone structure is known to be influenced by joint loading during life. 

However, many additional variables have the potential to contribute to trabecular bone structure 

of an adult individual, including age, sex, body size, genetics and overall activity level. There is 

little research into intraspecific variability in trabecular bone and ontogeny of trabecular bone 

structure, especially in non-human primates. 

Materials and methods: This study investigates trabecular structure in adult and immature 

chimpanzees from a single population using high resolution micro-computed tomographic scans 

of the proximal humerus, proximal femur and distal tibia. Trabecular bone volume fraction 

(BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), trabecular spacing (Tb.Sp) 

and degree of anisotropy (DA) were quantified in specific regions of adult and immature 

chimpanzees, and colour maps were generated to visualise the distribution of BV/TV throughout 

the joint in the metaphysis of immature specimens. 

Results: The results demonstrate that variability in adult trabecular structure cannot be explained 

by sex or body size. During ontogeny, there is a general increase in trabecular BV/TV and Tb.Th 

with age, and ratios of trabecular parameters between the fore- and hindlimb may be consistent 

with locomotor transitions during ontogeny. 

Discussion: Variation in trabecular morphology among adult individuals is not related to sex or 

body size, and the factors contributing to intraspecific variability, such as overall activity levels 

and genetic differences, require further investigation. Trabecular ontogeny in chimpanzees 

differs from humans in some respects, most notably the absence of a high BV/TV at birth. 
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INTRODUCTION 

Reconstructing locomotor behaviour in extinct species requires identification of plastic features 

that reflect actual behaviour during life (Ward, 2002). The internal structure of bone is able to 

remodel in response to loading, a process known as bone functional adaptation (Cowin, 2001; 

Kivell, 2016; Ruff, Holt, & Trinkaus, 2006), and thus features of both cortical and trabecular 

bone may hold a functional signal that could be used to interpret behaviour of extinct taxa. 

Experimental studies have demonstrated the ability of trabecular bone to remodel in response to 

changes in joint loading (Barak, Lieberman, & Hublin, 2011; Biewener, Fazzalari, Konieczynski, 

& Baudinette, 1996; Pontzer et al., 2006), and several studies have identified behavioural 

correlates in the trabecular structure of extant (Griffin et al., 2010; MacLatchy & Müller, 2002; 

Maga, Kappelman, Ryan, & Ketcham, 2006; Ryan & Ketcham, 2002b; Tsegai et al., 2013) and 

fossil (Barak, Lieberman, Raichlen, et al., 2013; Ryan & Ketcham, 2002a; Skinner et al., 2015; 

Su & Carlson, 2017; Su, Wallace, & Nakatsukasa, 2013; Zeininger, Patel, Zipfel, & Carlson, 

2016; Ryan et al., 2018) primate taxa. However, we currently lack an understanding of how non-

biomechanical factors may influence trabecular structure, particularly within non-human 

primates. Here, we help to fill this gap through an analysis of how trabecular bone structure 

changes throughout ontogeny within the chimpanzee hind- and forelimb to provide insight into 

the underlying patterning of trabecular bone, and how the structure may change in response to 

locomotor changes throughout development. 

Cortical bone morphology of the adult humerus and femur reflects variation in human activity 

levels (Macintosh, Pinhasi, & Stock, 2014; Macintosh, Pinhasi, & Stock, 2017; Shaw & Stock, 

2013; Stock & Macintosh, 2016), as well as locomotor differences in extant apes, enabling the 

reconstruction of limb loading in fossil taxa (Ruff, 2008; Ruff, 2002; Ruff, Burgess, Ketcham, & 

Kappelman, 2016). Humans, gorillas and chimpanzees undergo changes in locomotion during 

ontogeny (Doran, 1992, 1997; Sarringhaus, MacLatchy, & Mitani, 2014; Sutherland, 1997; 

Sutherland, Olshen, Cooper, & Woo, 1980), which are reflected in limb bone cross-sectional 

geometry at various life stages (Cowgill, Warrener, Pontzer, & Ocobock, 2010; Gosman, 

Hubbell, Shaw, & Ryan, 2013; Ruff, 2003a; Ruff, Burgess, Bromage, Mudakikwa, & McFarlin, 

2013; Sarringhaus, MacLatchy, & Mitani, 2016). In humans, analysis of long bone cross-

sectional geometry, from neonates to adulthood, reveals ontogenetic changes in relative femoral 



4 
 

to humeral strength (i.e. polar section modulus), and femoral and tibial diaphyseal strength and 

shape (i.e. subperiosteal area, and the ratio of the maximum and minimum second moments of 

intertia, respectively), which reflect the acquisition of bipedal locomotion (Gosman et al., 2013; 

Ruff, 2003a). The increased stability that is acquired as bipedal locomotion becomes more 

refined is also reflected in changes in femoral cross-sectional shape (Cowgill et al., 2010). In 

chimpanzees, there is an increase in strength of the femur compared to the humerus during 

ontogeny, with a significant change between infant and juvenile periods (Sarringhaus et al., 

2016). This transition coincides with a reduction in forelimb loading and an increase in hindlimb 

loading, as the hindlimb becomes more dominant in locomotion (Doran, 1992, 1997; Sarringhaus 

et al., 2014; Sarringhaus et al., 2016). Similarly, young mountain gorillas, which engage in more 

arboreal and suspensory behaviour than adults (Doran, 1997), have forelimb to hindlimb strength 

ratios similar to more arboreal adult Western lowland gorillas, but have relatively stronger 

forelimbs than hindlimbs when compared to their less arboreal adult counterparts (Ruff et al., 

2013). The ratio of forelimb to hindlimb strength changes to the adult condition at around two 

years of age, which corresponds to the reduction of arboreal locomotion, and adoption of a more 

terrestrial, adult-like locomotor repertoire (Doran, 1997; Ruff et al., 2013). Evidence from 

cortical bone diaphyseal morphology demonstrates that both adult and non-adult cortical 

structure reflects locomotor behaviour at different life stages.  

In contrast to cortical bone, comparisons of trabecular architecture between the adult humeral 

and femoral head does not clearly distinguish bipedal humans from other primates (Shaw & 

Ryan, 2012; Tsegai, Skinner, Pahr, Hublin, & Kivell, 2018). In general, across primate taxa, 

regardless of their locomotor behaviour, the femoral head has a more robust trabecular structure 

(i.e. higher bone volume/total volume, or BV/TV) than the humeral head (Chirchir et al., 2015; 

Ryan & Walker, 2010; Shaw & Ryan, 2012; Tsegai et al., 2018). However, trabecular bone does 

show signals of locomotor changes during ontogeny. In humans, changes in trabecular structure 

in the lower limb occur around the time of acquisition of bipedal locomotion; the human 

proximal femur (Ryan & Krovitz, 2006) and proximal tibia (Gosman & Ketcham, 2009) have a 

shared pattern of trabecular ontogeny that is characterised by an initially high volume of 

numerous, thin trabeculae, with both BV/TV and uniformity of orientation (i.e. degree of 

anisotropy, or DA) reducing until 1-2 years of age. At this time, perhaps driven by 

commencement of bipedal locomotion, there is an increase in BV/TV and DA, reaching adult 
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levels at around 4-7 years. The human calcaneus shares this pattern of high BV/TV, followed by 

a rapid reduction after birth, subsequently increasing around three years of age (Saers, 2017). 

The DA follows the inverse pattern, unlike the femur and tibia, there is an increase in DA from 

birth until three years of age, followed by a reduction until DA stabilises at around five years of 

age (Saers, 2017). Furthermore, throughout human ontogeny, there is a reduction in the number 

of trabeculae and an increase in trabecular thickness (Tb.Th) in the lower limb and vertebrae, 

reaching adult-like values during adolescence (proximal tibia: Gosman & Ketcham, 2009; 

lumbar vertebra: Kneissel et al., 1997; proximal femur: Ryan & Krovitz, 2006; calcaneus: Saers, 

2017).  

Although these ontogenetic changes in trabeculae fit well with the onset and development of 

human bipedal locomotion, both the proximal humerus and proximal femur show a similar 

pattern of initial trabecular reduction, followed by an increase in BV/TV around 1-2 years of age, 

indicating the potential for genetic, rather than mechanical, influence on the timing of trabecular 

structural change (Ryan, Raichlen, & Gosman, 2017). In other words, these commonalities 

between the upper limb and lower limb bones may suggest, a “general model for trabecular 

development” (Ryan et al., 2017, p294), which may also be shared with the vertebral column 

(Acquaah, Robson Brown, Ahmed, Jeffery, & Abel, 2015). During this period, bone is adapting 

from the initial grid-like structure laid down during endochondral ossification (Carter & 

Beaupré, 2000; Martin, Burr, Sharkey, & Fyhrie, 2015; Scheuer & Black, 2000), and undergoing 

changes in both physical properties and bone mineral content (Mølgaard, Thomsen, & 

Michaelsen, 1998; Nafei, Danielsen, Linde, & Hvid, 2000), while adjusting to a rapidly 

increasing body mass (Tanck, Homminga, van Lenthe, & Huiskes, 2001). In the ilium, 

characteristic adult-like trabecular organisation is observed in neonates, further indicating the 

potential roles of genetics, or other factors such as joint morphology, in determining trabecular 

structure (Abel & Macho, 2011; Cunningham & Black, 2009a, 2009b). Other non-primate, 

domesticated mammalian taxa also demonstrate an increase in BV/TV and DA during ontogeny 

(sheep tibia: Nafei, Kabel, Odgaard, Linde, & Hvid, 2000; pig vertebra and tibia: Tanck et al., 

2001; dog ulna: Wolschrijn & Weijs, 2004).  

Nonetheless, in humans divergence of trabecular bone characteristics of the humerus and femur, 

with a higher rate of increase in BV/TV, Tb.Th and Young’s Modulus in the femur, begins at 
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around one year of age, indicating that although the general pattern of ontogeny is similar 

between these elements, differences in the developmental trajectory between elements may 

reflect biomechanical changes in limb function (Ryan et al., 2017). At later stages of ontogeny, 

the refinement of bipedal locomotion, which involves increased stability and reduced variability 

(Cowgill et al., 2010; Raichlen et al., 2015), is indeed reflected in increased homogeneity of 

trabecular organisation across the distal tibia (Raichlen et al., 2015). There is perhaps evidence 

of changes in trabecular morphology of the human foot related to the acquisition of the 

characteristic human heel-strike and toe-off stance phases (Saers, 2017; Zeininger, 2013).  

Among non-human primates, ontogenetic changes in trabecular structure have, to our 

knowledge, only been studied in the African ape foot (Zeininger, 2013). Similar to humans, 

African apes show an increase in BV/TV and Tb.Th between infant and adult age groups across 

taxa (Zeininger, 2013). However, whether the timing of trabecular structural changes in African 

apes is similar to that of humans is unknown. With very little comparative context, it remains 

unclear to what extent ontogenetic changes in human trabecular architecture are driven by 

biomechanical changes associated with the onset of bipedal locomotion, or by pre-determined 

genetic transitions in bone microarchitecture. 

Bone is a complex structure, with adult form being determined by a combination of factors that 

can change throughout life, including body mass, sex, age, hormonal and genetic differences. For 

example, non-behavioural factors, such as genetic and hormonal differences, can influence 

trabecular structure and/or the responsiveness of trabecular bone to mechanical load between 

species or populations, and even between anatomical sites (Lovejoy, McCollum, Reno, & 

Rosenman, 2003; Wallace, Judex, & Demes, 2015; Wallace, Kwaczala, Judex, Demes, & 

Carlson, 2013; Wallace, Pagnotti, et al., 2015; Wallace, Tommasini, Judex, Garland, & Demes, 

2012). Our understanding of these factors in non-human primates, and their contribution to bone 

structure at different life-stages, is limited. For example, chimpanzees and bonobos have been 

shown to vary in the ontogenetic timing of changes in thyroid hormone, regulating among other 

things somatic growth and metabolism (Behringer, Deschner, Murtagh, Stevens, & Hohmann, 

2014). Sex differences have the potential to affect bone structure at all life stages. During 

growth, the body mass of male and female chimpanzees diverges at around seven years of age, 

with males and females showing different growth rates and ages of growth cessation (Leigh & 
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Shea, 1995, 1996), potentially contributing to sex differences in adult bone morphology. There 

are locomotor differences between male and female chimpanzees from the Taï National Park 

(Doran, 1993), with females engaging in a greater proportion of arboreal quadrupedalism and, to 

a lesser extent, suspension than males, who use more quadrupedal climbing and bipedal 

locomotion compared to females. The percentage of locomotor time spent on different substrates, 

comprising the ground and five types of arboreal substrate, are similar between sexes (Doran, 

1993). 

In this study, we use a sample of chimpanzee (Pan troglodytes verus) specimens from a single 

population – the Taï National Forest, Cote D’Ivoire – to investigate trabecular ontogeny and 

within population variability in the proximal humerus, proximal femur and distal tibia. We 

hypothesise that: 

1. Across taxa Tb.Th, trabecular separation (Tb.Sp) and BV/TV scale positively with size 

(Doube, Klosowski, Wiktorowicz-Conroy, Hutchinson, & Shefelbine, 2011; Fajardo et al., 2013; 

Ryan & Shaw, 2013), trabecular number (Tb.N) scales negatively with size (Fajardo et al., 2013; 

Ryan & Shaw, 2013), and there is a weak relationship between the relative uniformity of 

trabecular orientation (i.e. DA) and body size (Doube et al., 2011). Among humans, it has been 

found that Tb.Th, BV/TV and bone mineral density of the calcaneus are correlated with body 

size (Best, Holt, Troy, & Hamill, 2017), however, this is only the case in individuals who do not 

engage in regular running. Here, we test whether there is a relationship between body size and 

trabecular variables in adult chimpanzees within a single subspecies of chimpanzee, with a 

limited range of size variability.  

2. Trabecular bone will change during ontogeny in a manner similar to that found in humans, 

following the model for trabecular bone development outlined by Ryan et al. (2017) and 

identified in other studies (Gosman & Ketcham, 2009; Ryan & Krovitz, 2006; Saers, 2017; 

Zeininger, 2013). Trabecular BV/TV and DA will be initially high followed by a reduction and 

then subsequent increase. We also predict Tb.Th will increase and Tb.N will decrease, from birth 

to adulthood.  

3. Locomotor ontogeny in chimpanzees is characterised by a reduction in arboreal locomotion 

and an increase in the frequency of quadrupedal knuckle-walking with increasing age (Doran, 
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1992, 1997; Sarringhaus et al., 2014). It is difficult to directly characterise loading experienced 

by the skeleton in chimpanzees, as their complex locomotor repertoire includes a diverse range 

of positional and locomotor behaviours (Hunt, 1991), and there are both practical and ethical 

limitations to research on chimpanzee locomotion. To simplify interpretation of skeletal signals 

of locomotion, a dichotomy of reduced forelimb and increased hindlimb loading during ontogeny 

has been used, however, this may not fully capture changing loads on the skeleton. This concept 

is generally based on reduced torso-orthograde suspension and increased frequencies of knuckle-

walking, which incurs higher vertical reaction forces on the hindlimb than the forelimb (Demes 

et al., 1994). Together this implies a reduction in forelimb loading and an increase in hindlimb 

loading. However, infants and juveniles use some hindlimb loaded modes more frequently than 

adults, specifically, they have higher frequencies of bipedalism, leaping and vertical climbing 

(for limb loading during vertical climbing: Hanna, Granatosky, Rana, & Schmitt, 2017). Despite 

this complexity of locomotor changes, there is morphological evidence for increased loading of 

the hindlimb relative to the forelimb across ontogenetic stages, as the femur increases in 

torsional and bending strength (i.e. polar second moment of area and polar section modulus) 

compared to the humerus during ontogeny (Sarringhaus et al., 2016). As such, we predict that, as 

with diaphyseal cross sectional properties, trabecular bone will reflect increased hindlimb 

(femoral head and distal tibia) loading compared to the forelimb (proximal humerus), with this 

change occurring after five years of age (Doran, 1992, 1997; Sarringhaus et al., 2014; 

Sarringhaus et al., 2016).  

4. During ontogeny, the distribution of trabecular BV/TV within each metaphysis will be initially 

homogeneous, with increasing heterogeneity over time (Ryan & Krovitz, 2006). Previous studies 

have not assessed the stage in humans at which heterogeneity stabilises, due to absence of adult 

or adolescent specimens in the study samples. Therefore, we make no prediction as to which age 

adult-like distributions of trabecular BV/TV will be reached. 

 

MATERIALS AND METHODS 

Study sample 
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The study sample was taken from a single population of Pan troglodytes verus, wild collected in 

the Taï National Park, Republic of Côte d’Ivoire. This is a long-term study site for which age, 

sex, behavioural data and cause of death is available for some individuals (Boesch & Boesch-

Achermann, 2000). Trabecular bone was analysed in the proximal humerus, proximal femur and 

distal tibia of 21 adult and 21 immature individuals (Table 1), although all elements were not 

present for every individual in the sample. The proximal humerus, proximal femur and distal 

tibia were selected based on preservation and availability, with femora and tibiae taken from the 

same side where possible. 

Age categories 

The locomotor repertoire of chimpanzees comprises a range of positional and locomotor modes, 

and changes in frequencies of these behaviours occur at different life stages (Doran, 1992, 1997; 

Sarringhaus et al., 2014; Sarringhaus et al., 2016). As such, the study sample was divided into 

five age categories based on locomotor transitions reported by Sarringhaus et al. (2014; 2016) 

and, for this particular population/subspecies, by Doran (1992, 1997). Age of each individual 

was based on the collection records, as the identification, sex and date of birth for most 

individuals was known (see Supporting Information).  

Age categories were defined as follows. Baby: from birth to 5 months, the period prior to onset 

of independent locomotion where chimpanzees are carried by the mother, although locomotor 

play occurs after 3 months (Doran, 1992). Infant: from 5 months until 4 years, after the 

commencement of locomotion but before complete independence from the mother. During this 

stage torso-orthograde suspension is the most frequent locomotor mode (42.8%: Sarringhaus et 

al., 2014), but individuals continue to engage in higher frequencies of arboreal locomotion than 

adults (Doran, 1992; Sarringhaus et al., 2014). Juvenile: 5-9 years, after independence from the 

mother but before the adolescent period; quadrupedal walking is the most frequent locomotor 

mode for this age category (42.3%: Sarringhaus et al., 2014), however, a higher frequency of 

suspensory behaviour is used during arboreal locomotion than in adults (Doran, 1992). 

Adolescent: from 10 years until epiphyseal fusion, locomotor modes are approaching adult-like 

frequencies of each locomotor mode. Adult: defined by complete epiphyseal fusion. The oldest 

individual included in the sample of known age was 38 years old. Among the individuals of 

unknown age, only one male individual had pronounced tooth wear, however, the trabecular 
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structure of this individual showed no evidence of age related reduction in BV/TV, compared to 

other males in the sample. For four immature individuals in the study sample, age was estimated 

based on dental eruption data (B. H. Smith & Boesch, 2011; B. H. Smith, Crummett, & Brandt, 

1994; see Supporting Information). One individual was considered juvenile (M2 erupted) and 

three were considered to be infants (two individuals with incomplete deciduous dentition and one 

individual with M1 erupted). One indiviual (MPI 15003) was very small (see Supporting 

Information for femoral length), and could potentially be younger than five months, however, to 

be conservative, this individual was included in the Infant category.  

Scan acquisition 

Micro-computed tomographic scans (micro-CT) were collected using three scanners (BIR 

ACTIS 225/300, diondo d3, and SkyScan 1173) housed at the Department of Human Evolution, 

Max Planck Institute for Evolutionary Anthropology (Leipzig, Germany). Specimens were 

scanned at an isotropic voxel size of 13.7-42.8 microns. All scans were reconstructed as 16-bit 

TIFF image stacks. Specimens were downsampled in Avizo 6.3 (FEI Visualization Sciences 

Group) to reduce file size for subsequent processing stages. The downsampled resolutions, along 

with relative resolution, are shown in Table 1 for each age category. Adequate resolution for 

analysis of trabecular structure was retained, as demonstrated by the range of relative resolutions, 

which indicates the number of pixels representing trabeculae with mean thickness (Kivell, 

Skinner, Lazenby, & Hublin, 2011; Sode, Burghardt, Nissenson, & Majumdar, 2008). 

Segmentation 

All specimens were reoriented into standardised positions in Avizo 6.3, and segmented using the 

Ray Casting Algorithm (Scherf & Tilgner, 2009). Scans were subsequently segmented into three 

regions (cortex, trabeculae, and internal region of the bone) using an in-house script for medtool 

4.0 (www.dr-pahr.at), following Gross et al. (2014). The cortex was removed to create the inner 

mask, where the internal region of the bone and the trabecular bone had different grey values 

(Fig 1a).  

3D morphometric mapping 
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Morphometric maps of BV/TV were generated for immature individuals following Gross et al. 

(2014) using medtool v4.0 (www.dr-pahr.at) as shown in Figure 1c. A 3D tetrahedral mesh was 

created of the internal region of the bone using CGAL (http://www.cgal.org). For adolescent 

individuals a mesh size of 1 mm was used, and a mesh size of 0.5mm was used for younger 

individuals. A 2.5mm background grid was applied in three dimensions to the inner mask, and 

BV/TV was quantified at each node of the background grid using a 5mm sampling sphere. The 

values from each sampling sphere were interpolated and applied to elements of the 3D 

tetrahedral mesh in order to generate morphometric maps of BV/TV. For some specimens in the 

immature sample (four tibia, four femora and six humeri) BV/TV maps were not generated, 

either due to the presence of matrix or, due to high porosity, the cortex could not be segmented 

(see Supporting Information). 

Definition of regions and volumes of interest 

Definition of biomechanically-homologous subregions in trabecular analyses in adult specimens 

is often complex (Kivell et al., 2011; Lazenby, Skinner, Kivell, & Hublin, 2011; Maga et al., 

2006), and this complexity only increases when investigating immature specimens. Therefore, 

different methods of defining subregions were applied here for adult and immature specimens. 

To investigate variability in adult chimpanzees, trabecular bone was quantified in large regions 

of interest (ROIs; following Tsegai et al., 2018), which were defined according to the following 

protocol (Fig 1b and Fig 2). The proximal humerus was defined from the point at which 

curvature of the shaft expands towards the humeral head (Fig 2a). The femoral head was defined 

by the most inferior and lateral points of the femoral head (Fig 2b). The ROI in the distal tibia 

was defined by increasing curvature of the shaft in medial and anterior views (Fig 2c).  

In immature individuals, it is difficult to define homologous regions, especially in very young 

individuals, due to continued longitudinal growth and changing morphology over time (Ryan & 

Krovitz, 2006). As such, definition of a large ROI, similar to that used for adult individuals, 

across an ontogenetic series is challenging. Instead, volumes of interest (VOIs) were extracted 

from the inner mask using medtool v4.0, and trabecular bone parameters were quantified in these 

subregions (Fig 2d-f). A spherical VOI, with a 5mm diameter, was placed 5mm deep to the 

epiphyseal surface in each individual, centred in the mediolateral and anteroposterior planes of 

the proximal humerus and distal tibia following approximately the VOI size and placement 

http://www.dr-pahr.at/
http://www.cgal.org/
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protocols of Ryan and Krovitz (2006) and Ryan et al. (2017). In the proximal femur, centering 

the VOI in the mediolateral and anteroposterior planes, resulted in VOIs located in clearly 

different locations between different age categories. Thus, in the youngest individuals (N = 3) 

VOIs were placed centred in the mediolateral and anteroposterior plane, whereas in older 

individuals the VOI was centered in the anteroposterior plane, the mediolateral location was 

determined by the most proximal extent of the metaphysis and the proximodistal location by the 

most medial extent of the metaphysis. This resulted in similar VOI placement between 

individuals. Specimens with partially fused epiphyses were included in the study, if the 

epiphyseal line remained clearly visible.  

An advantage of this methodology is that it enables comparison of the results of the present study 

to previous studies of trabecular ontogeny in humans. There are potential advantages to using 

scaled VOIs due to the problem of oversampling (Lazenby, Skinner, Kivell, et al., 2011), and 

scaled VOIs have been applied to investigate trabecular ontogeny of the proximal and distal tibia 

(Gosman & Ketcham, 2009; Raichlen et al., 2015). However, for many volume based variables, 

including most variables quantified in this study, VOI size has less of an impact than location 

(Kivell et al., 2011; Lazenby, Skinner, Kivell, et al., 2011). 

Quantification of regional trabecular variables 

Trabecular bone architectural variables were quantified in each defined ROI or VOI (Fig 1b and 

Fig 2). These were quantified from the inner mask using a script available in medtool v4.0. Bone 

volume fraction (BV/TV) was calculated as the total number of bone voxels divided by the total 

number of voxels. Trabecular thickness (Tb.Th) and trabecular spacing (Tb.Sp) were calculated 

following the sphere fitting method of Hildebrand and Rüegsegger (1997), and trabecular 

number (Tb.N) was calculated as Tb.N = 1/(Tb.Th+Tb.Sp). The mean intercept length method 

was used to quantify the second order fabric tensor and the degree of anisotropy (DA) was 

calculated as DA = 1 – [smallest eigenvalue/largest eigenvalue], with a DA of 0 reflecting 

complete isotropy and a DA of 1 representing “complete” anisotropy.  

Statistical analysis 

Non-parametric tests were used for the statistical analysis, as the Shapiro-Wilk test for normal 

distribution found that trabecular variables were not normally distributed in the adult and 
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immature samples. A p-value of <0.05 was considered significant. All statistical tests were 

conducted using R v3.3 (R Core Team 2016) and ggplot2 (Wickham, 2009) and cowplot (Wilke, 

2017) were used for plot generation. 

Adult analysis. In the adult sample, Mann-Whitney U tests were applied to test for significant 

differences between sexes. As no significant differences were found between sexes in any 

trabecular variable, sexes were pooled for subsequent analyses. To test for significant differences 

in trabecular parameters between elements in the adult sample, Kruskal-Wallace tests were used, 

followed by post-hoc Nemenyi tests for pairwise comparisons. The relationship between 

trabecular variables both within and between elements was tested using Spearman’s rank 

correlation tests with a post-hoc Bonferroni correction. To investigate the relationship between 

body size and trabecular structure among adult chimpanzees, two measures of size were used. 

Firstly, the superoinferior femoral head height (FHH) was used as a proxy for body size. 

Although, primate taxa differ slightly in the relationship between femoral head height and body 

mass, only one taxon is included in the study sample and there is a strong correlation between 

FHH and body mass in chimpanzees (Burgess, McFarlin, Mudakikwa, Cranfield, & Ruff, 2018; 

Jungers, 1991; Ruff, 2003b). Moreover, this measurement has been used in previous analyses of 

allometric relationships in trabecular bone structure (e.g. Doube et al., 2011; Ryan & Shaw, 

2013). The second measure of size was the total joint volume (TJV) included within each ROI, 

which was used to investigate the relationship between joint size and trabecular bone structure. 

TJV was found to correlate significantly with FHH in each element, using Spearman’s rank 

correlation test (humerus: r = 0.86, p < 0.01; femur: r = 0.75, p < 0.01; tibia: r = 0.77, p < 0.01). 

The relationship between trabecular variables and both size proxies, FHH and TJV, were tested 

using Spearman’s rank correlation tests with a post-hoc Bonferroni correction. 

Ontogenetic analysis. The four individuals for whom exact age was not known were included in 

all statistical analyses conducted by age category, but excluded from those analyses that were 

based on exact age. To test for significant differences in trabecular variables between age groups, 

a Kruskal-Wallace test was applied, followed by post-hoc pairwise Nemenyi tests. To test for 

changes in trabecular structure over time, OLS regressions with a post hoc Bonferroni correction 

of age against each trabecular variable in each element were conducted. To compare changes in 

trabecular structure between elements over time, the ratio of trabecular variables between 
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elements was calculated. Kruskal-Wallace tests were applied to test for differences in these ratios 

between elements.  

 

RESULTS 

Adults 

Mean and standard deviations of each trabecular parameter from ROIs in adult individuals are 

shown in Table 2, and box-and-whisker plots of trabecular variables are shown for each element 

in Figure 3. Mann-Whitney U tests find no significant differences between males and females in 

any trabecular parameter in the femur, humerus and tibia, with box-and-whisker plots of 

trabecular variables by sex shown in Figure 4. Results of Kruskal-Wallace tests indicate 

significant differences between elements in all trabecular variables (Table 2) and post-hoc 

pairwise Nemenyi tests (Table 3) reveal that this is due to differences between the proximal 

femur and the other two elements in the majority of trabecular variables. The only variable that 

differs significantly between the humerus and tibia is DA.  

Results of Spearman’s correlation test to identify correlations between trabecular variables in 

each element are shown in Table 4. There is a significant correlation between the humerus and 

femur in BV/TV, Tb.Th, Tb.Sp and Tb.N, and between the humerus and tibia in Tb.N. These 

relationships between trabecular variables are shown in Figure 5 as the values for the femur and 

tibia compared to the humerus. Spearman’s correlation test to identify the relationship between 

trabecular variables within each element (Table 5), shows that in both the femur and tibia, 

BV/TV and Tb.Th are significantly correlated, and in the femur DA is significantly correlated 

with both BV/TV and Tb.Th. In all elements, there is a significant correlation between Tb.Sp and 

Tb.N. Within the humerus there are no additional significant correlations. Spearman's correlation 

tests between trabecular structure and both FHH and TJV of each element find no significant 

relationship between either size variable and trabecular bone structure, with no R
2
 value above 

0.08 (Table 6). Figure 6 shows the relationship between TJV and trabecular structure. 

VOIs during ontogeny 
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For the immature individuals, means and standard deviations of trabecular variables measured in 

VOIs are shown in Table 7. Scatterplots of trabecular variables by age are shown in Figure 7, 

with four individuals for whom exact age is unknown plotted in the shaded area on the right side 

of each plot. These plots show a general trend of increasing BV/TV and Tb.Th with age, a 

relatively constant Tb.N and Tb.Sp over time, and DA that is higher at a younger age in the 

humerus and tibia, but in the femur remains relatively similar across age groups. There appears 

to be an increase in DA in all three elements in the oldest individuals. Significant differences 

between age categories are only present in the femur for BV/TV, Tb.Th and Tb.N (Table 7). 

Post-hoc Nemenyi tests (Table 8) find significant differences between the Baby and Adolescent 

groups in both Tb.Th and Tb.N and significant differences between the Infant and Adolescent 

groups in Tb.Th. Results of OLS regressions (Table 9) show a significant relationship between 

age and Tb.Th and BV/TV in both the femur and tibia, but not in the humerus. 

The ratio of each trabecular variable between the femur and humerus, femur and tibia, and tibia 

and humerus, is shown by age group in box-and-whisker plots in Figure 8. No significant 

differences in ratios between age groups are found in the Kruskal-Wallace tests (Table 10). 

However, the pattern of change over time does demonstrate potential differences between age 

categories, and a different pattern between the humerus and each hind limb element.  

Comparisons between age groups in the ratio of femoral to humeral trabecular variables 

demonstrate that both BV/TV and Tb.Th in the femur increases relative to the humerus between 

Juvenile and Adolescent age groups. Between the Baby and Infant age groups, there is a slight 

reduction in the ratio of BV/TV, but not in Tb.Th. Tb.N and Tb.Sp show an inverse pattern, 

having more numerous, closely spaced trabeculae in the femur than humerus in the Baby group 

compared to older age groups. The ratio of Tb.N and Tb.Sp is highly variable among the other 

three age groups. The ratio of femoral to humeral DA follows a similar pattern to that of BV/TV, 

with a decrease between Baby and Infant groups, and then increasing with age.  

The ontogenetic pattern of tibial to humeral trabecular ratios differs from the femoral to humeral 

pattern. There is an increase in the BV/TV ratio between the Infant and Juvenile age groups, but 

this ratio is similar between Baby and Infant, and between Juvenile and Adolescent groups. For 

Tb.Th ratios, although the median shows an increase with age, there is a great deal of variability 

and overlap between all age groups. There is overlap between all age groups in the ratios for 
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Tb.Sp and there is no clear pattern between age groups. The ratio of DA appears to reduce 

between Baby and Infant stages, and to subsequently increase with increasing age. 

Comparisons between the two hindlimb elements, the tibia and femur, demonstrate that the ratio 

of BV/TV, Tb.N, Tb.Sp, and DA remains fairly constant over time in these elements. There is a 

slight trend toward a lower ratio of Tb.N and a higher ratio of Tb.Sp with increasing age. 

However, there is a greater increase in Tb.Th in the femur compared to the tibia between the 

Infant and Juvenile, and between the Juvenile and Adolescent age groups. 

Morphometric maps during ontogeny 

Figures 9-11 show cross-sections of segmented micro-CT data and colour maps of the 

distribution of BV/TV in a subset of the study sample (see Supporting Information for images of 

the other individuals in the sample). In the proximal humerus, distal tibia, and proximal femur, 

the youngest individual (MPI_11787) has a relatively homogenous trabecular bone structure, 

with BV/TV values within a narrow range. When scaled to the range of BV/TV values in this 

individual, it is apparent that despite the fairly homogenous distribution, the medial region of the 

proximal humerus and femur, and the posterior region of the distal tibia, have the highest 

BV/TV. With increasing age, BV/TV increases and more regional differences become apparent, 

notably regions of high BV/TV on both the medial and lateral edges of the proximal humerus, 

femoral neck, and anterior and posterior edges of the distal tibia. 

 

DISCUSSION 

Trabecular bone structure is thought to reflect behavioural differences and joint loading (Barak et 

al., 2011; Ehrlich & Lanyon, 2002; Lanyon, 1974; Pontzer et al., 2006), however, the precise 

relationship between trabecular structure and behaviour in primates requires further 

consideration (Kivell, 2016). To accurately reconstruct behaviour in fossil species, it is essential 

to better understand all factors that can influence trabecular structure in extant taxa. To address 

this, the present study explores how trabecular structure changes throughout ontogeny, and 

intraspecific variability, within a single sub-species of chimpanzee from the Taï National Park, 

Republic of Côte d’Ivoire, using a multi-element approach. Amongst adult chimpanzees, there is 
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no clear link between trabecular bone structure and sex or size, emphasising the importance of 

further investigation of factors that contribute to adult bone structure. These results establish that 

adult-like trabecular structure and distribution in chimpanzees is not present from birth but, 

rather, is acquired over time during ontogeny. Changes in chimpanzee trabecular structure during 

growth reveal both similarities and differences compared to published studies of humans.  

Variability of trabecular structure in adult chimpanzees 

Numerous factors have the potential to influence intraspecific variation in trabecular structure, 

and consequently the degree to which trabecular architecture reflects behavioural differences. 

These include differences between sexes that may be due to sexual dimorphism in bone lengths 

(Behringer et al., 2016; Zihlman, Stahl, & Boesch, 2008) and body mass (Leigh & Shea, 1995, 

1996; R. J. Smith & Jungers, 1997), or due to hormonal differences (Behringer, Deschner, 

Deimel, Stevens, & Hohmann, 2014; Behringer, Deschner, Murtagh, et al., 2014). Trabecular 

structure correlates with body size both across primates (Barak, Lieberman, & Hublin, 2013; 

Cotter, Simpson, Latimer, & Hernandez, 2009; Fajardo et al., 2013; Ryan & Shaw, 2013), and a 

broad sample of both mammalian and non-mammalian taxa (Doube et al., 2011). Trabecular 

structure may differ across anatomical sites for multiple reasons including, for example, as an 

adaptation to reduce mass distally and maximise locomotor efficiency (Chirchir, 2015; Saers, 

Cazorla-Bak, Shaw, Stock, & Ryan, 2016), due to differences in susceptibility to remodelling  

(Wallace, Pagnotti, et al., 2015), or individual trabecular parameters varying in their contribution 

to Young’s modulus (i.e. bone stiffness; Ulrich, van Rietbergen, Laib, & Ruegsegger, 1999). In 

addition, genetic differences (Paternoster et al., 2013; Wallace, Demes, & Judex, 2017), diet and 

the intestinal microbiome (Cao, Gregoire, & Gao, 2009; Cashman, 2007; Charles, Ermann, & 

Aliprantis, 2015; McCabe, Britton, & Parameswaran, 2015; Prentice, 1997; Shea et al., 2002), 

and activity levels (Best et al., 2017; Chirchir et al., 2015; Chirchir, Ruff, Junno, & Potts, 2017; 

Ryan & Shaw, 2015; Saers, 2017; Saers et al., 2016) influence bone morphology.  

Contrary to our prediction, we find no relationship between size proxies FHH or TJV and 

trabecular structure in either the proximal humerus, proximal femur or distal tibia of chimpanzee 

adults. This indicates that within a species with limited size variation, body size may not be 

critical in determining trabecular structure. Trabecular structure does not differ significantly 

between sexes in the study sample in any element. Male individuals are underrepresented in the 
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sample, with only eight males included, perhaps due to a female bias in the sex ratio of the Taï 

population (Boesch & Boesch-Achermann, 2000). Sex specific median values are similar with 

overlapping ranges of variation within all three elements and, as such, the smaller sample of 

male individuals is unlikely to explain the statistical results. Trabecular structure of other 

anatomical regions does not differ significantly between male and female adult chimpanzees in 

the vertebra (Cotter et al., 2009) or metacarpals (Lazenby, Skinner, Hublin, & Boesch, 2011). 

Sexual dimorphism in body size is relatively low in the Taï chimpanzees, with males only having 

significantly longer clavicles and broader scapulae across the postcranial skeleton (Zihlman et 

al., 2008). Correlations between elements and trabecular variables within elements were 

identified, indicating the complex interrelationships between trabecular variables across the 

skeleton. We found DA of the proximal femur to be correlated with BV/TV, which differs from 

the findings of Ryan et al. (2018). This is likely due to the different methodological approach, as 

DA results differ between analyses which focus on the entire joint and those which quantify 

trabecular structure in a smaller sub-region (Tsegai et al., 2018). 

The absence of a relationship between trabecular structure and body size or sex in this population 

of adult chimpanzees suggests alternative factors, such as ontogeny, locomotor behaviour, 

activity level and/or genetic differences, may influence adult trabecular structure. With regards to 

activity level, at a broad scale, across a range of mammalian taxa, longer daily travel distances 

are associated with higher trabecular mass (Chirchir, Ruff, Helgen, & Potts, 2016). Within living 

humans, comparison between runners and non-runners reveals that only in non-runners is body 

mass correlated with trabecular structure of the calcaneus, specifically trabecular density, Tb.Th 

and BV/TV (Best et al., 2017). In contrast, in runners, weekly running distance, number of years 

running and age of onset of running is correlated with Tb.Th, together explaining 68.2% of 

variation (Best et al., 2017).This demonstrates that behavioural differences, such as weekly 

running distance, have the potential to mask allometric requirements of bone structure at the 

intraspecific level. Across an archaeological sample, trabecular robusticity of the calcaneus, talus 

and first metatarsal is related to subsistence strategies based on predictions of overall activity 

level (Saers, 2017). The degree of sexual dimorphism in trabecular structure of the foot differs 

between populations, but does not clearly relate to predictions based on cross-sectional geometry 

of the long bones of male and female individuals, indicating a complex relationship between sex, 

activity level/type and bone morphology (Saers, 2017). Across human populations, subsistence 
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strategies requiring higher activity levels are associated with a more robust trabecular (Chirchir 

et al., 2015; Chirchir et al., 2017; Ryan & Shaw, 2015; Saers, 2017; Saers et al., 2016; Scherf, 

Wahl, Hublin, & Harvati, 2016) and cortical (Macintosh et al., 2014; Macintosh et al., 2017; 

Shaw & Stock, 2013; Stock & Macintosh, 2016) structure. Although this degree of intraspecific 

variability is likely unique to modern humans, due to the greater degree of behavioural and 

technological variability (both geographical and temporal), activity levels could be an important 

factor determining intraspecific variability in chimpanzees.  

The contribution of travel distance and locomotor repertoire to both cortical and trabecular bone 

structure between populations of chimpanzee is as yet uncertain. Daily travel distance varies 

between chimpanzee populations from 2.1km to 4.8km at different study sites (Gruber, 

Zuberbühler, & Neumann, 2016), and locomotor repertoires differ between groups, in part due to 

variation in local ecology (Carlson et al., 2006; Carlson et al., 2008; Hunt, 1991). Cortical bone 

cross-sectional geometry differs between populations and subspecies of chimpanzee, specifically 

at the study sites of Mahale, Gombe, Kibale and Taï, and ecological/locomotor variables such as 

the degree of arboreal behaviour, the amount of forest cover, elevation and incline of the terrain, 

as well as genetic differences, may explain bone structural differences across subspecies 

(Carlson et al., 2006; Carlson et al., 2008; Carlson et al., 2011). Comparison of trabecular 

structure between populations of chimpanzee has only been conducted in the 1
st
, 2

nd
 and 5

th
 

metacarpals (Lazenby, Skinner, Hublin, et al., 2011). Taï chimpanzees have a less robust 

trabecular structure in the hand compared to Pan troglodytes troglodytes from Cameroon, which 

cannot be explained by either differences in body mass or daily travel distance between the 

subspecies. Potentially, the contribution of terrestrial knuckle-walking to the locomotor 

repertoire of each subspecies, or more frequent manipulation during tool use in the Taï 

population, contributes to this structural difference (Lazenby, Skinner, Hublin, et al., 2011). With 

regard to the Taï population, daily travel distance differs between the three study groups living in 

the Taï National Park, and varies seasonally within each study group (Herbinger, Boesch, & 

Rothe, 2001). Within two groups for whom sufficient data is available, there are no sex 

differences in daily travel distance (Herbinger et al., 2001), despite the distances travelled by 

male chimpanzees during territorial patrols (Amsler, 2010; Boesch & Boesch-Achermann, 2000; 

Mitani, 2009; Watts & Mitani, 2001). As the study sample was collected over a long period, a 

potential factor contributing to bone structure is temporal changes in home range size, which 
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have occurred, for example due to changes in group composition, i.e. the number of adult males 

in the group, but not with fruit availability (Lehmann & Boesch, 2003). Thus, activity levels may 

differ across individuals in the sample.  

Ontogenetic changes in trabecular structure 

Understanding how chimpanzee trabecular structure changes throughout ontogeny and how this 

compares with humans may provide further insight into the functional inferences that can be 

drawn from adult trabecular bone. We find that chimpanzee trabecular structure in the Baby 

category is characterised by thin, numerous, closely spaced trabecular struts, with a low BV/TV 

compared to older age groups. In this youngest age group, trabecular structure is more uniformly 

oriented in the proximal humerus and distal tibia, than in the proximal femur. With increasing 

age, both BV/TV and Tb.Th increase in all elements, however, this is only significant for the 

femur and tibia. Trabeculae become less numerous and more widely spaced with age, although 

this is relatively subtle, the only significant difference being higher Tb.N in the femur of the 

Adolescent group compared to the Baby group. After birth, trabeculae in the humerus and tibia 

become less uniformly organised, subsequently increasing in uniformity after five years of age. 

In the femur, the uniformity of orientation shows no clear pattern of change during ontogeny. 

These changes to trabecular structure during ontogeny may reflect locomotor transitions. 

Increasing BV/TV and Tb.Th of the hindlimb elements during ontogeny may reflect increased 

loading of these elements as the frequency of knuckle-walking increases in the locomotor 

repertoire. Moreover, the ratio of femoral to humeral BV/TV increases with age, suggesting 

increased loading of the femur in comparison to that of the humerus during ontogeny. Although 

comparisons of trabecular structure between elements is complex, due to differences in external 

joint morphology and VOI placement protocols, the higher DA of the distal tibia may reflect the 

more restricted movement of this joint, compared to the ball-and-socket joints included in this 

study (proximal humerus and femur).  

In humans, there is a shared pattern of trabecular ontogeny across the proximal femur, proximal 

tibia and proximal humerus, with structural changes coinciding with the adoption of bipedal 

locomotion after one year of age (Gosman & Ketcham, 2009; Milovanovic et al., 2017; Ryan & 

Krovitz, 2006; Ryan et al., 2017). An increase in BV/TV, Tb.N, and DA occurs at around 1-2 

years in the human proximal femur and proximal tibia, at the time of acquisition of bipedal 
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locomotion (Gosman & Ketcham, 2009; Ryan & Krovitz, 2006), and BV/TV, Tb.Th and DA 

continue to increase into early adulthood in the proximal tibia (Gosman & Ketcham, 2009). The 

sample used for the proximal femur does not extend beyond nine years (Ryan & Krovitz, 2006). 

The humerus follows a similar pattern of changing trabecular structure to these hindlimb 

elements, but differs from the femur in having a slower rate of change, reflecting increased 

loading of the femur with the acquisition of bipedal locomotion (Ryan et al., 2017). At a later 

stage of ontogeny, reduced regional variation in DA, i.e. more homogeneous structure, across the 

distal tibia reflects increasing stability in bipedalism (Raichlen et al., 2015). These findings in 

humans emphasise the complex interplay between regulation of growth and biomechanical 

influences on the skeleton. The pattern of trabecular ontogeny identified here in chimpanzee long 

bones has both similarities and, contrary to our prediction, differences to the findings of previous 

analyses of humans. This emphasises the potential for both different regulatory mechanisms 

underlying trabecular ontogeny in these taxa, and the influence of locomotion, i.e. mechanical 

loading. 

The most often discussed trabecular structural measurement is BV/TV, which explains 88 % of 

variation in trabecular stiffness (Stauber, Rapillard, van Lenthe, Zysset, & Müller, 2006), and as 

such is of great biomechanical importance. Trabecular ontogeny in humans is characterised by an 

initially high BV/TV at birth, which drops until around 1-2 years of age, followed by an increase 

in BV/TV in both the proximal femur, proximal tibia, and proximal humerus. This initial 

reduction in BV/TV is due to a rapid reduction in Tb.N, alongside a gradually increasing Tb.Th 

(Gosman & Ketcham, 2009; Ryan & Krovitz, 2006; Ryan et al., 2017). This trabecular structure 

characteristic of neonatal humans appears to be acquired during gestational bone development 

through increasing BV/TV and Tb.Th in the human vertebral column (Acquaah et al., 2015) and 

proximal femur (Glorieux, Salle, Travers, & Audra, 1991; Salle, Rauch, Travers, Bouvier, & 

Glorieux, 2002). However Reissis and Abel (2012) found an increase in Tb.Th, but not BV/TV, 

during gestation in the proximal humerus and proximal femur. Unlike the pattern identified in 

humans, we do not find an initially high BV/TV in any of the three elements in chimpanzees at 

the youngest ages included in this sample, rather, BV/TV increases in all three elements during 

ontogeny, with a significant increase in BV/TV with age in the femur and tibia. This gradual 

increase in BV/TV is associated with increasing Tb.Th, also significant in the femur and tibia, 

similar to humans (Gosman & Ketcham, 2009; Ryan & Krovitz, 2006; Ryan et al., 2017), but 
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with no rapid reduction in Tb.N. Tb.Sp remains relatively constant across ontogeny in all 

elements.  

This contrast in ontogenetic changes between humans and chimpanzees is unlikely to be 

explained entirely by our small sample size below one year of age. Three individuals in the study 

sample are known to be younger than one year of age, and the suspected cause of death in these 

individuals is starvation (MPI_11787: 0.04 years) and respiratory disease (MPI_14993: 0.74 

years; MPI_15015: 0.18 years). There are two individuals in the study sample whose age is not 

known, but appear to be around 1 year of age (MPI_15000 and MPI_15003), based on dental 

eruption and femoral length (see Supporting Information). Neither of these individuals has high 

BV/TV, and their values are similar to those known to be younger than one year of age. Younger 

chimpanzees in this skeletal collection have delayed dental eruption when compared to captive 

chimpanzees, and have a higher incidence of dental anomalies, indicating the potential influence 

of external factors, such as illness or nutritional stress, on their development (B. H. Smith and 

Boesch, 2011). As human specimens included in previous publications may also have died of 

disease and/or starvation, it seems unlikely, although remains a possibility, that health related 

factors contributed to this absence of high BV/TV in our sample prior to one year of age. The 

VOI protocol adopted in this study is similar to that of previous studies in humans (Gosman & 

Ketcham, 2009; Ryan & Krovitz, 2006; Ryan et al., 2017), and studies using a very different 

VOI protocol have found similar high BV/TV at birth in the human proximal femur 

(Milovanovic et al., 2017). In general, in chimpanzees there is an increase in trabecular bone 

robusticity (i.e. higher BV/TV and Tb.Th) with age in all three elements. This pattern is likely 

related to increasing body size with age, but perhaps also to increasing activity levels, such as 

greater locomotor independence from the mother (Doran 1992) and longer day ranges as 

individuals get older (Pontzer & Wrangham, 2006).  

In non-primate, domesticated taxa, trabecular BV/TV follows a similar pattern to humans, being 

high early in ontogeny (dog ulna: Wolschrijn & Weijs, 2004), however, not all studies could 

determine the presence or absence of this pattern, as they did not include individuals from birth 

(e.g. pig mandible: Mulder, Koolstra, Weijs, & van Eijden, 2005; sheep tibia: Nafei, Kabel, et 

al., 2000; pig vertebra and tibia: Tanck et al., 2001). In contrast, there is no postnatal reduction in 

BV/TV in the distal tibia and talus of Dutch warm-blooded horses, rather, BV/TV and Tb.Th 
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increase after birth (Gorissen et al., 2018). Acquaah et al. (2015) have suggested several potential 

explanations for the presence of a high BV/TV at birth in the human skeleton. Firstly, prenatally 

bone structure is likely to be, primarily, under genetic regulation, whereas postnatally 

biomechanical loading may be more influential for bone structure. Secondly, development of a 

dense trabecular structure where bone is subsequently removed and its structure is refined, may 

enable greater flexibility for adaptation to mechanical load (see Tanck et al., 2001). Finally, a 

high BV/TV at birth may function as a calcium reserve, as human breast milk may contain lower 

levels of calcium than required, and this bone loss may be regulated by elevated parathyroid 

hormone levels at this stage of development in humans. The pattern of trabecular ontogeny in 

horses, which differs from that of humans and dogs, has been explained by Gorissen et al (2018; 

2016) as an adaptation for a precocial species whereby, in anticipation of the onset of locomotion 

only hours after birth, genetic factors prepare the skeleton for the mechanical loading it will 

experience. Potentially, all taxa could undergo a similar stage of reduction in BV/TV, but at 

different developmental stages, i.e. at birth in humans but in-utero in horses and chimpanzees. 

Future studies of trabecular bone structure in other mammalian taxa are required to fully 

understand this variability. Further, analysis of a larger sample of non-human apes at the 

youngest developmental stages are required to determine whether a high BV/TV and Tb.N at 

birth is a feature absent from their trabecular ontogeny, as the results of the present study 

suggest.  

The uniformity of trabecular bone orientation (i.e. DA) and primary trabecular orientation is 

often found to reflect locomotor differences across primate taxa (e.g. Barak, Lieberman, 

Raichlen, et al., 2013; Barak, Sherratt, & Lieberman, 2017; Griffin et al., 2010; MacLatchy & 

Müller, 2002; Ryan & Ketcham, 2002b; Su et al., 2013; Tsegai et al., 2017) and to reflect both 

experimental or natural changes in loading during ontogeny (Barak et al., 2011; Pontzer et al., 

2006; Raichlen et al., 2015). DA is thought to reflect whether a joint is more stereotypically 

loaded in a particular direction (i.e. a high DA) or loaded from a wide range of joint positions 

(i.e. a low DA). In the chimpanzee humerus and tibia, DA reduces from birth until around five 

years, when it begins to increase. In contrast, DA of the femur remains relatively constant across 

ontogeny. The pattern in the humerus and tibia is consistent with that of the human proximal 

femur (Ryan & Krovitz, 2006), although the age at which DA begins to increase is earlier in 

humans. In humans, locomotor transitions occur at a young age, with bipedalism acquired at 1-2 
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years and a stable gait at 3.5-4 years (Raichlen et al., 2015; Sutherland, 1997; Sutherland et al., 

1980). In contrast, in chimpanzees locomotor changes are more gradual and occur throughout 

ontogeny (Doran, 1992, 1997; Sarringhaus et al., 2014; Sarringhaus et al., 2016), with a 

transition to increased terrestrial knuckle-walking at five years (Sarringhaus et al., 2014; 

Sarringhaus et al., 2016). Thus, in both humans and chimpanzees, changes in DA occur at a 

similar time to locomotor transitions, indicating that this parameter may be indicative of 

locomotor transitions during ontogeny. The only exception to this is the chimpanzee femur in 

which DA values suggest a consistency in the variability of load orientation throughout 

ontogeny. 

Through analysis of ontogenetic changes in trabecular bone structure it is possible to characterise 

the process by which adult-like bone structure is obtained. A characteristic feature of the 

trabecular bone structure of adult primates is higher BV/TV in the femur compared to humerus 

(Chirchir et al., 2015; Ryan & Walker, 2010; Tsegai et al., 2018). Comparison of trabecular 

structure across the skeleton of chimpanzees and humans demonstrates that this similar pattern is 

driven by high BV/TV in the chimpanzee femur and low BV/TV in the human humerus 

compared to other anatomical sites (Tsegai et al., 2018). The pattern of ontogeny identified here 

in the chimpanzee skeleton demonstrates that adult-like trabecular ratios between the femur and 

humerus are not present at birth, but rather are acquired during life, with femoral and humeral 

BV/TV similar at birth but very different by adolescence. The femur of adult chimpanzees may 

have a higher BV/TV than the humerus for several reasons. Quadrupedal knuckle-walking is the 

largest component of the locomotor repertoire of chimpanzees (Doran, 1992, 1997; Sarringhaus 

et al., 2014; Sarringhaus et al., 2016), and although both the forelimb and hindlimb are loaded, 

the hindlimb experiences higher vertical ground reaction forces than the forelimb at various 

speeds, including both walking and galloping (Demes et al., 1994; Kimura, Okada, & Ishida, 

1979). Furthermore, during vertical climbing, which has been considered to load both the 

forelimb and hindlimb equally (Sarringhaus et al., 2014; Sarringhaus et al., 2016), the hindlimb 

produces greater propulsive forces than the forelimb in most primates (Hanna et al., 2017; 

Hirasaki, Kumakura, & Matano, 1993). The relationship between vertical ground reaction forces 

and trabecular bone structure has not been tested. However, the domestic dog has higher vertical 

reaction forces on the forelimb (Kimura et al., 1979; Lee, Bertram, & Todhunter, 1999; Lee, 

Stakebake, Walter, & Carrier, 2004), while trabecular ash (correlated with trabecular density) 
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(Gong, Arnold, & Cohn, 1964; Kang, An, & Friedman, 1998) and Young’s modulus (Kang et al., 

1998) are higher in the femoral compared to the humeral head. Thus, dogs may have a similar 

pattern of femoral compared to humeral trabecular structure to primates, despite the difference in 

vertical reaction forces. Apart from biomechanical loading of the femur, potential differences in 

response to loading between the forelimb and hindlimb, as demonstrated experimentally in mice 

(Wallace, Pagnotti, et al., 2015), is an additional factor that could contribute to this pattern.  

Ontogenetic changes in bone distribution 

Ontogenetic studies are an ideal way to identify plastic features of bony morphology to recognise 

phylogenetic and functional signals in the fossil record (Congdon, 2012; Kivell & Schmitt, 2009; 

Richmond, 1998; Tardieu, 1999; Tardieu & Trinkaus, 1994; Ward, 2002). In adult individuals, 

the distribution of trabecular BV/TV is consistent with habitually-loaded joint positions in the 

adult hand (Skinner et al., 2015; Stephens et al., 2016; Tsegai et al., 2013), and in the talus and 

distal tibia (Tsegai et al., 2017). During ontogeny, regional variability of several trabecular 

parameters increases in the human proximal femur, reflecting the development of complex 

regional trabecular patterns characteristic of the adult proximal femur (Ryan & Krovitz, 2006). 

In contrast, DA becomes increasingly homogeneous with age throughout the human distal tibia 

as a more stable bipedal gait is acquired (Raichlen et al., 2015). This demonstrates that the way 

in which trabecular structure changes during ontogeny differs between anatomical sites, 

reflecting the loading environment of each joint during ontogeny. Thus, it is important to explore 

these changes in different skeletal sites. For example, in contrast to the limb bones discussed 

here, an adult-like trabecular pattern is present from birth in the human ilium (Abel & Macho, 

2011; Cunningham & Black, 2009a, 2009b).  

The distribution patterns of BV/TV during ontogeny in the chimpanzee proximal humerus, distal 

tibia and proximal femur demonstrate that the sub-epiphyseal distribution of BV/TV differs at 

different ontogenetic stages. In all elements, the trabecular structure is initially homogenous, 

with increasing regional differences in BV/TV with age, reaching more adult-like distributions in 

juvenile or adolescent stages. The changes in BV/TV distribution that occur during ontogeny 

may be due to biomechanical changes caused either by locomotion and/or by the general process 

of growth, and the changing morphology of the external joint. During growth, trabecular bone 

develops beneath the epiphyseal plate via the process of endochondral ossification (Carter & 
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Beaupré, 2000; Martin et al., 2015; Scheuer & Black, 2000), where columnar rows of 

chondrocytes form cartilage which is subsequently ossified to form primary trabeculae. These 

are then remodelled to form secondary trabeculae. This process of endochondral ossification, by 

which trabecular bone is formed, could explain the initially homogeneous trabecular bone 

distribution in all three elements (Gosman & Ketcham, 2009; Ryan & Krovitz, 2006; Ryan et al., 

2017). However, BV/TV is not entirely homogeneous and all elements have regions of higher 

BV/TV, even before the onset of locomotion. These early appearing regions of differentiated 

trabecular structure could be attributed to joint morphology and non-locomotor loading both pre- 

and postnatally, or to genetically predetermined patterns of deposition (Abel & Macho, 2011; 

Cunningham & Black, 2009a, 2009b).  

During subsequent growth, trabecular bone is deposited at the metaphyseal surface, likely partly 

in response to the local mechanical environment. As experimental studies are often performed on 

immature individuals (e.g. Barak et al., 2011), it is unclear whether trabecular bone orientation is 

remodelled after its initial deposition, or whether adult-like morphology is entirely a result of 

strain during deposition (Bertram & Swartz, 1991). Although we are unable to address this 

question using a quantitative approach, due to the difficulty in selecting homologous regions in 

an ontogenetic series, qualitative comparison of both mid-slices and BV/TV maps appear to 

show changes in BV/TV in regions deeper to the articular surface across the ontogenetic series. 

As growth is not only characterised by increased bone length, via deposition at the epiphyseal 

plate, but also by appositional growth leading to increasing anteroposterior and mediolateral 

width (Carter & Beaupré, 2000; Martin et al., 2015; Scheuer & Black, 2000), it would be 

expected that BV/TV in regions deep to the epiphyseal plate would be characterised by reduction 

in BV/TV, i.e. due to increases in TV with an unchanged BV. This is not the case, and BV/TV 

does increase deeper to the articular surface, most notably in the proximal femur, and does not 

appear to reduce over time with increasing size. Further research is required to compare 

trabecular bone distributions in ontogenetic series of both metaphyseal and epiphyseal regions in 

extant apes, in order to identify potential signals of locomotor changes during ontogeny. These 

results suggest such analyses would be useful for understanding adult trabecular structure, and 

potentially the trabecular morphology of immature fossil hominoids.  
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Figure Captions 

 

Figure 1. Processing stages for analysis of trabecular bone structure, shown here in the proximal 

humerus. a) Mid-plane images of the segmented bone (left) and the masked image (right), where 

trabecular bone, cortical bone, and internal region of the bone are assigned different grey values. 

b) Trabecular variables are quantified in a large ROI for adult individuals and a small spherical 

VOI for immature individuals. c) Trabecular bone is quantified using a spherical VOI at each 

node of a 3D grid (left), using a mesh of the internal region of the bone (middle), the values are 

interpolated to produce a 3D morphometric map of BV/TV (right). 

 

Figure 2. Definition of cubic ROIs in a) the proximal humerus, b) the proximal femur and c) the 

distal tibia of adult chimpanzees. Definition of 5mm spherical VOIs in d) the proximal humerus, 

e) the proximal femur and f) the distal tibia of immature chimpanzees. 

 

Figure 3. Trabecular bone quantified from ROIs in the humerus, femur and tibia of adult 

chimpanzees. 

 

Figure 4. Sex specific trabecular bone structure quantified from ROIs in the humerus, femur and 

tibia of adult chimpanzees. Females are shown in red, males in blue, and individuals of unknown 

sex in green. 

 

Figure 5. Trabecular bone structure in the humerus compared to the femur and tibia of adult 

chimpanzees. 

 

Figure 6. The relationship between total joint volume and trabecular bone structure in the 

humerus, femur and tibia of adult chimpanzees. 

 

Figure 7. Trabecular bone ontogeny in the proximal humerus, proximal femur and distal tibia in 

immature chimpanzees. Individuals of unknown age are shown in the shaded area to the right of 

each plot. 
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Figure 8. Ratios of femoral to humeral (left), tibial to humeral (centre) and femoral to tibial 

(right) trabecular structure in each age category. B: Baby; I: Infant; J: Juvenile; A: Adolescent. 

 

Figure 9. Ontogenetic changes in BV/TV of the chimpanzee proximal humerus. Shown in the 

mid-coronal plane, segmented trabecular and cortical bone (left), trabecular structure scaled from 

0-60% BV/TV (center) and scaled to the range of each specimen (right), with a 5mm scale bar. 

The age of each individual is shown in years and specimens from the right side are flipped for 

comparison. 

 

Figure 10. Ontogenetic changes in BV/TV of the chimpanzee proximal femur. Shown in the mid-

coronal plane, segmented trabecular and cortical bone (left), trabecular structure scaled from 0-

60% BV/TV (center) and scaled to the range of each specimen (right), with a 5mm scale bar. The 

age of each individual is shown in years and specimens from the right side are flipped for 

comparison. 

 

Figure 11. Ontogenetic changes in BV/TV of the chimpanzee distal tibia. Shown in the mid-

sagittal plane, segmented trabecular and cortical bone (left), trabecular structure scaled from 0-

60% BV/TV (center) and scaled to the range of each specimen (right), with a 5mm scale bar. The 

age of each individual is shown in years and specimens from the right side are flipped for 

comparison. 

 

 

 

 



Table 1. Study sample 

Age Group Age Number of 
individuals  
(M/F/U) 

Number per Element Resolution Relative 
resolution 

*
 

Humerus Femur Tibia 

Adult Fused epiphyses 8/12/1 19 21 20 0.035-0.045 4.25-8.10 
Adolescent 10 -  2/2/0 4 4 3 0.025-0.035 5.03-11.85 
Juvenile 5-10yrs 6/2/1 9 7 6 0.015-0.030 4.41-12.54 
Infant 5m-4yrs 2/1/3 6 6 5 0.014-0.020 7.99-13.07 
Baby 0-5m 1/0/1 2 2 2 0.014-0.015 6.48-9.82 

* Relative resolution is calculated as mean trabecular thickness divided by the resolution. This 

demonstrates how many pixels represent trabeculae of mean thickness. 

 

  



Table 2. Trabecular variables from ROIs in adult individuals. Mean and standard deviation, in 

parentheses, for each trabecular variable in the proximal humerus, proximal femur and distal tibia. 

Results of Kruskal-Wallace test for significant differences between elements, with significant differences 

in bold. 

 BV/TV (%) 
Tb.Th 
(mm) 

Tb.Sp 
(mm) 

Tb.N 
(mm-1) 

DA 
 

Humerus 
24.82 
(2.91) 

0.22 
(0.02) 

0.69 
(0.11) 

1.12 
(0.12) 

0.16 
(0.02) 

Femur 
37.56 
(5.13) 

0.28 
(0.03) 

0.56 
(0.07) 

1.20 
(0.12) 

0.09 
(0.06) 

Tibia 
25.26 
(3.22) 

0.23 
(0.02) 

0.73 
(0.14) 

1.07 
(0.15) 

0.35 
(0.05) 

p-value <0.01 <0.01 <0.01 0.01 <0.01 

 

  



Table 3. Results of post-hoc Nemenyi test to identify significant differences between elements in adult 

chimpanzees, with significant differences shown in bold. 

 BV/TV Tb.Th Tb.Sp Tb.N DA 

Humerus-Femur <0.01 <0.01 <0.01 0.12 0.03 

Humerus-Tibia 0.94 0.45 0.75 0.61 <0.01 

Femur-Tibia <0.01 <0.01 <0.01 <0.01 <0.01 

 

  



Table 4. Spearman’s correlation test between elements in adult chimpanzees, with a post-hoc 

Bonferroni correction and significant correlations in bold. 

 BV/TV Tb.Th Tb.Sp Tb.N DA 

 r p r p r p r p r p 
Humerus-Femur 0.64 0.047 0.67 0.023 0.81 <0.001 0.75 0.003 -0.43 1.000 
Humerus-Tibia 0.49 0.569 0.26 1.000 0.64 0.060 0.66 0.044 -0.04 1.000 
Femur-Tibia 0.41 1.000 0.45 0.726 0.59 0.091 0.52 0.274 0.33 1.000 

 

  



Table 5. Spearman's correlation between trabecular variables within elements in adult chimpanzees, 

with a post-hoc Bonferroni correction and significant correlations in bold. 

  BV/TV Tb.Th Tb.Sp Tb.N 

Humerus  r p r p r p r p 
 Tb.Th 0.38 1.000       
 Tb.Sp -0.64 0.104 0.12 1.000     
 Tb.N 0.54 0.547 -0.31 1.000 -0.97 <0.001   
 DA 0.29 1.000 0.25 1.000 0.29 1.000 -0.29 1.000 
Femur Tb.Th 0.75 0.002       
 Tb.Sp -0.29 1.000 0.17 1.000     
 Tb.N -0.03 1.000 -0.52 0.502 -0.91 <0.001   
 DA -0.69 0.015 -0.91 <0.001 -0.20 1.000 0.49 0.728 
Tibia Tb.Th 0.68 0.029       
 Tb.Sp -0.52 0.598 0.02 1.000     
 Tb.N 0.42 1.000 -0.18 1.000 -0.97 <0.001   
 DA 0.04 1.000 -0.04 1.000 -0.31 1.000 0.34 1.000 

 

 

  



Table 6. Spearman’s correlation between size proxies and trabecular structure in adult chimpanzees, 

with a post-hoc Bonferroni correction. 

Element Size proxy BV/TV Tb.Th Tb.Sp Tb.N DA 
  r p r p r p r p r p 

Humerus FHH -0.22 1.00 0.24 1.00 0.33 1.00 -0.35 1.00 -0.15 1.00 
 TJV -0.30 1.00 0.24 1.00 0.35 1.00 -0.36 1.00 -0.15 1.00 
Femur FHH -0.20 1.00 -0.06 1.00 0.40 1.00 -0.23 1.00 0.05 1.00 
 TJV -0.26 1.00 0.01 1.00 0.42 1.00 -0.27 1.00 -0.11 1.00 
Tibia FHH -0.41 1.00 -0.49 0.81 0.46 1.00 -0.34 1.00 -0.48 0.97 
 TJV 0.00 1.00 -0.12 1.00 0.21 1.00 -0.09 1.00 -0.29 1.00 

FHH: Femoral head height 

TJV: Total joint volume 

  



Table 7. Trabecular variables from VOIs in immature chimpanzees. Age group mean and standard 

deviation, in parentheses, for each trabecular variable in the proximal humerus, proximal femur and 

distal tibia, with results of Kruskal-Wallace tests for differences between age groups. 

  
BV/TV  

(%) 

Tb.Th  

(mm) 

Tb.Sp 

(mm) 

Tb.N 

(mm-

1) 

DA 

 

Humerus       

 Baby 
18.87 

(3.50) 

0.13 

(0.02) 

0.39 

(0.02) 

1.94 

(0.15) 

0.48 

(0.02) 

 Infant 
23.53 

(4.52) 

0.15 

(0.02) 

0.45 

(0.08) 

1.70 

(0.26) 

0.46 

(0.06) 

 Juvenile 
25.84 

(4.62) 

0.16 

(0.01) 

0.47 

(0.07) 

1.60 

(0.18) 

0.40 

(0.06) 

 Adolescent 
26.89 

(9.74) 

0.18 

(0.04) 

0.47 

(0.08) 

1.55 

(0.15) 

0.39 

(0.05) 

 Significance 0.361 0.087 0.608 0.225 0.112 

Femur       

 Baby 
20.98 

(2.16) 

0.14 

(0.00) 

0.39 

(0.05) 

1.89 

(0.17) 

0.43 

(0.10) 

 Infant 
24.73 

(7.66) 

0.17 

(0.03) 

0.53 

(0.05) 

1.41 

(0.06) 

0.35 

(0.04) 

 Juvenile 
28.22 

(7.82) 

0.19 

(0.03) 

0.53 

(0.09) 

1.41 

(0.15) 

0.33 

(0.05) 

 Adolescent 
41.43 

(4.98) 

0.27 

(0.03) 

0.51 

(0.03) 

1.29 

(0.07) 

0.37 

(0.04) 

 Significance 0.041 0.005 0.151 0.031 0.141 

Tibia       

 
Baby 9.33 

(0.57) 

0.10 

(0.00) 

0.53 

(0.08) 

1.61 

(0.23) 

0.55 

(0.08) 

 
Infant 12.99 

(5.40) 

0.14 

(0.02) 

0.75 

(0.25) 

1.18 

(0.25) 

0.38 

(0.08) 

 
Juvenile 15.93 

(6.14) 

0.14 

(0.01) 

0.72 

(0.43) 

1.30 

(0.36) 

0.41 

(0.07) 

 
Adolescent 20.53 

(5.82) 

0.16 

(0.02) 

0.56 

(0.06) 

1.38 

(0.09) 

0.49 

(0.03) 

 Significance 0.177 0.070 0.227 0.109 0.078 

 

 

 



Table 8. Results of post-hoc Nemenyi test between age groups in immature chimpanzees with significant 

differences in bold. 

Element Variable  Baby Infant Juvenile 

Femur BV/TV Infant 0.972   
  Juvenile 0.804 0.911  
  Adolescent 0.096 0.053 0.175 
 Tb.Th Infant 0.559   
  Juvenile 0.208 0.810  
  Adolescent 0.006 0.030 0.171 
 Tb.N Infant 0.321   
  Juvenile 0.264 0.999  
  Adolescent 0.018 0.290 0.318 

 

 

  



Table 9. Results of OLS regression of age against trabecular variables with Bonferroni post-hoc 

correction in immature chimpanzees with signficant p-values in bold. 

 Variable Intercept Slope R2 p-value 

Humerus BV/TV 23.24 0.31 -0.01 1.000 

 Tb.Th 0.15 0.00 0.17 0.884 

 Tb.Sp 0.43 0.00 -0.04 1.000 

 Tb.N  1.77 -0.02 0.06 1.000 

 DA 0.45 -0.01 0.11 1.000 

Femur BV/TV 19.50 1.65 0.67 0.002 

 Tb.Th 0.14 0.01 0.85 <0.001 

 Tb.Sp 0.50 0.00 -0.05 1.000 

 Tb.N  1.61 -0.03 0.34 0.203 

 DA 0.35 0.00 -0.08 1.000 

Tibia BV/TV 9.26 0.99 0.63 0.011 

 Tb.Th 0.11 0.00 0.58 0.023 

 Tb.Sp 0.78 -0.02 0.04 1.000 

 Tb.N  1.28 0.01 -0.05 1.000 

 DA 0.44 0.00 -0.09 1.000 

 

  



Table 10. Results of Kruskal-Wallace tests to compare ratios of trabecular variables between age groups 

in immature chimpanzees. 

Ratio Variable p-value 

Femur/Humerus BV/TV 0.245 
 Tb.Th 0.085 
 Tb.Sp 0.501 
 Tb.N  0.210 
 DA 0.139 
Femur/Tibia BV/TV 0.745 
 Tb.Th 0.156 
 Tb.Sp 0.555 
 Tb.N  0.183 
 DA 0.459 
Tibia/Humerus BV/TV 0.433 
 Tb.Th 0.817 
 Tb.Sp 0.865 
 Tb.N  0.830 
 DA 0.210 

 



 

Figure 1. Processing stages for analysis of trabecular bone structure, shown here in the 

proximal humerus. a) Mid-plane images of the segmented bone (left) and the masked image 

(right), where trabecular bone, cortical bone, and internal region of the bone are assigned 

different grey values. b) Trabecular variables are quantified in a large ROI for adult 

individuals and a small spherical VOI for immature individuals. c) Trabecular bone is 

quantified using a spherical VOI at each node of a 3D grid (left), using a mesh of the internal 

region of the bone (middle), the values are interpolated to produce a 3D morphometric map 

of BV/TV (right). 

  



 

Figure 2. Definition of cubic ROIs in a) the proximal humerus, b) the proximal femur and c) 

the distal tibia of adult chimpanzees. Definition of 5mm spherical VOIs in d) the proximal 

humerus, e) the proximal femur and f) the distal tibia of immature chimpanzees. 

 

  



 

Figure 3. Trabecular bone quantified from ROIs in the humerus, femur and tibia of adult 

chimpanzees. 

 

  



 
Figure 4. Sex specific trabecular bone structure quantified from ROIs in the humerus, femur 

and tibia of adult chimpanzees. Females are shown in red, males in blue, and individuals of 

unknown sex in green. 

 

  



Figure 5. Trabecular bone structure in the humerus compared to the femur and tibia of adult 

chimpanzees. 

  



 

Figure 6. The relationship between total joint volume and trabecular bone structure in the 

humerus, femur and tibia of adult chimpanzees. 

  



 

Figure 7. Trabecular bone ontogeny in the proximal humerus, proximal femur and distal tibia 

in immature chimpanzees. Individuals of unknown age are shown in the shaded area to the 

right of each plot. 

  



 

Figure 8. Ratios of femoral to humeral (left), tibial to humeral (centre) and femoral to tibial 

(right) trabecular structure in each age category. B: Baby; I: Infant; J: Juvenile; A: 

Adolescent. 

  



 

Figure 9. Ontogenetic changes in BV/TV of the chimpanzee proximal humerus. Shown in the 

mid-coronal plane, segmented trabecular and cortical bone (left), trabecular structure scaled 

from 0-60% BV/TV (center) and scaled to the range of each specimen (right), with a 5mm 

scale bar. The age of each individual is shown in years and specimens from the right side are 

flipped for comparison.  



 

Figure 10. Ontogenetic changes in BV/TV of the chimpanzee proximal femur. Shown in the 

mid-coronal plane, segmented trabecular and cortical bone (left), trabecular structure scaled 

from 0-60% BV/TV (center) and scaled to the range of each specimen (right), with a 5mm 

scale bar. The age of each individual is shown in years and specimens from the right side are 

flipped for comparison.  



 

Figure 11. Ontogenetic changes in BV/TV of the chimpanzee distal tibia. Shown in the mid-

sagittal plane, segmented trabecular and cortical bone (left), trabecular structure scaled from 

0-60% BV/TV (center) and scaled to the range of each specimen (right), with a 5mm scale 

bar. The age of each individual is shown in years and specimens from the right side are 

flipped for comparison. 


