
Petricek, Tomas (2015) Against a Universal Definition of 'Type'. In: Onward!
2015 2015 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software. SPLASH Systems, Programming,
and Applications . ACM, New York, USA, pp. 254-266. ISBN 978-1-4503-3688-8.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/67144/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1145/2814228.2814249

This document version
Pre-print

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/67144/
https://doi.org/10.1145/2814228.2814249
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

1

Against a universal definition of ‘type’

Tomas Petricek

University of Cambridge, United Kingdom

tomas@tomasp.net

Abstract

What is the definition of ‘type’? Having a clear and precise

answer to this question would avoid many misunderstandings

and prevent meaningless discussions that arise from them. But

having such clear and precise answer to this question would

also hurt science, “hamper the growth of knowledge”1 and

“deflect the course of investigation into narrow channels of

things already understood”2.

In this essay, I argue that not everything we work with

needs to be precisely defined. There are many definitions used

by different communities, but none of them applies universally.

A brief excursion into philosophy of science shows that this is

not just tolerable, but necessary for progress. Philosophy also

suggests how we can think about this imprecise notion of type.

Science is much more ‘sloppy’ and ‘irrational’ than its
methodological image.

(Against Method, Paul Feyerabend)3

Introduction
Probably no other term in programming languages attracts as

much attention and arguments as ‘type’. Although there are

many formal definitions, in practice a ‘type’ it is often used as

a vaguely defined term with emotions attached to it.

Those with negative emotions towards types will blame

types for failures that may not be caused by any fundamental

property of types. For example, you could blame types for the

verbosity of Java, but an ML user familiar with type inference

will quickly object.

On the other hand, the proponents of types will often

praise types for properties that are not essential for types and

can be achieved in other ways. For example, editor support

1 Lakatos (1976), 74
2 Feyerabend (2010), 200
3 Feyerabend (2010), 160

(e.g. auto-completion) can be attributed to types, but there are

systems providing similar features not based on types.

We disagree even when we’re on the same side of the barri-

cade. For example, traditional arguments for types have been

language safety and more efficient compilation. The recent

TypeScript language adds ‘types’ to JavaScript, but its type

system is intentionally unsound (hence no language safety) and

types are erased when code is translated to JavaScript (hence

no increased efficiency). Is it still a ‘statically typed’ when it is

unsound? And has the purpose of types silently changed here?

If we review academic literature concerning types, we find

a number of formal definitions. But each definition comes with

a different intuition behind types, different tools for working

with then and also different motivation for using types4. Thus

those looking for a universal definition of a type that would

apply to all the uses are determined to fail. The meaning of a

type also changes over time (we usually do not notice) and

different uses require different properties (that often do not

share a common ground).

If we look past the aura of perfection surrounding science,

we’ll find that this is not an uncommon situation. And in fact,

many philosophers of science argue that it is healthy and

necessary state of affairs.

In this essay, I argue that we do not need a formal universal

definition of a type. I discuss the issue from the perspective of

philosophy of science, looking how similar issues have been

treated in mathematics, philosophy of language and sciences.

I first discuss how the meaning of types differs between

communities and how it changes over time. Then I look for

arguments supporting the idea that the notion of ‘type’ should

be left undefined. Finally, I discuss options for living in such

unsatisfying (but realistic) world without exact definitions.

4 The biggest divide, identified by Kell (2014), is between ‘expression types’

arising from the logical tradition and ‘data types’ following an engineering

tradition. In this essay, I look at some of the finer distinction within the

logical tradition. Even one side of this big divide is surprisingly complex!

2

How the meaning of types changes
Allow me to start with a personal anecdote. I was recently

supervising the Types course and the lecture notes describe the

uses of types and type systems as follows5:

1. Detecting errors via type-checking, statically or dynamically

2. Abstraction and support for structuring large systems

3. Documentation

4. Efficiency

5. Whole-language safety

My students were already indoctrinated and did not question

the list6. Indeed, past languages used types for all of the reasons

above. Nowadays, types are used for some of the reasons, but

rarely all of them. As already mentioned, TypeScript sacrifices

safety (5) and efficiency (4) and uses types for documentation

(3) and limited compile-time error detection (1). Julia7 goes

further and uses types, but not for rejecting programs8. Types

are still important for expressiveness (not on our list), system

structuring (2) and documentation (3).

Types can even be used for none of the above reasons

(consider proving mathematical theorems using Coq) and if we

look further in the history, types were invented by Russell to

avoid paradoxes in foundations of mathematics. No doubt, he

would be surprised by the list!

If we now follow the development of types from Russell

to modern programming, we’ll find different definitions leading

to different intuitions and use cases for types, even if we stay

just within the narrow ‘logical tradition’.

From foundations of mathematics to the lambda calculus

Types first appeared in Russell’s paper Mathematical logic as
based on the theory of types in 1908. He uses types to avoid

paradoxes of the kind “class of all classes that do not contain

themselves as elements.” Compared with types in program-

ming, Russell’s types have quite different definition and uses.

A type is defined as the range of significance of a propo-
sitional function, i.e., as the collection of arguments for
which the said function has values.10

First of all, Russell defines types of propositions based on their

inputs (what we would call domain). This contrasts with the

use in programming where types are often interpreted as the

sets of results of an expression, or the range. However, what

types are does not matter to Russell: “It is unnecessary, in

5 Pitts (2015)
6 What's really demanded in the Church of Reason is not ability, but

inability. Then you are considered teachable. A truly able person is always
a threat. Pirsig (1999), 392.

7 Julia documentation (2015)

practice, to know what objects belong to the lowest type (…). For in
practice, only the relative types of variables are relevant.” The

paper does not build on this definition and instead works with

a hierarchy of types such that propositions containing variables

of type 𝑛 are assigned type 𝑛 + 1. The theory of types then

avoids contradictions arising from self-reference as follows:

[W]hen a man says “I am lying”, we must interpret him
as meaning: “There is a proposition of order 𝑛 which I
affirm and which is false”. This is a proposition of order
𝑛 + 1; hence the man is not affirming any proposition of
order 𝑛; hence this statement is false and yet its falsehood
does not imply (…) that he is making a true statement. 11

Also note that Russell’s types do not rule out propositions as

invalid. Instead, they change their meaning to avoid the contra-

diction. We can still say “I am lying”, but it means a different

thing than without types. So, while there is a clear connection

between Russell’s types and types in programming, it would be

a mistake to think that they are really the same.

Russell’s types inspired Church’s work on λ-calculus. It is

important to understand that back then, the λ-calculus was not

understood as a simple programming language. It appeared

(together with Turing’s machines and the theory of recursive

functions) as an attempt to formalize ‘effective computability’,

that is a class of computations that can be carried out by

mechanically (by a human) following a set of rules.

Church’s paper is a contribution to the foundations of

mathematics. He discusses how to combine the formalism of λ-

calculus with the theory of types. However, Church does not

elaborate on possible uses of this system. In particular, he does

not link the system to Russell’s paradoxes and his original

paper does not discuss which λ-terms cannot be assigned a type

– a crucial use case for programming languages!

Church uses types as a purely formal construct. His system

includes two base types; 𝜊 for propositions and 𝜄 for indivi-

duals, but he does not define what his types denote:

We purposely refrain from making more definite the
nature of the types 𝜊 and 𝜄, the formal theory admitting of
a variety of interpretations in this regard.14

Although Church’s notion of types is formally close to types in

functional programming languages, the intuition behind types

was very different. Church did not see types as “sets of possible

8 A popular slogan is that Julia uses the type system in all the ways that don't
end with the programmer arguing with the compiler, Hanson (2013).

10 Russell (1908), 236
11 Russell (1908), 240
14 Church (1940)

3

values”, which is a more recent view discussed next. He also

does not introduce type systems in order to rule out certain

terms. In other words, none of the points from the list at the

beginning of this section applies to Church’s typed λ-calculus.

From expression types to computation types

The nowadays common interpretation of types as sets of values

appeared much later than types themselves. This development

is interesting because it is where the logical tradition (types in

λ-calculus) meets the engineering tradition (data storage in

computers). According to Priestley, the view appeared in early

1970s thanks to Hoare, building on the work of McCarthy:

[McCarthy’s theory] was further developed by Hoare,
who proposed that data types in programming language
could be understood as denoting sets of data values.15

The new theory of types influenced early programming langua-

ges like Pascal and ML. As Priestley points out, treating types

as sets had its issues, for example “there is no obvious set-theoretic
analogue to pointers”16.

Many people using programming languages nowadays

intuitively see types as sets. This is so fundamental idea that it

is hard to unsee. Indeed, we are tempted to interpret the types

in Church’s simply typed λ-calculus as sets too. However,

doing so is a misinterpretation of the original work. This is not

a problem for normal science, but it matters when we try to

get at the core of what types are. In other words, there is a

small subtle change in how we think about types and we might

not even notice it if we are not explicitly searching for it!

The subtle change in the meaning of types affects not just

what types are, but also what can be done with them. When

we see types as sets, it makes sense to prove that evaluating a

program of a certain type produces values that belong to the

set denoted by this type. This is the key principle behind the

syntactic approach to type soundness introduced by Wright

and Felleisen19 and taught in standard textbooks on types. In

summary, seeing types in a certain way leads to different

intuition behind them (things that do not fit the intuition well

will appear in later chapters of our textbooks, if at all) and it

also shapes what questions about types can be asked.

However, seeing types as sets of values is not the end of

the story. Another slight shift in the meaning of types comes

with the development of type and effect systems and monads21.

Here, the type captures not just the set of produced values, but

also information about other effects that the computation has.

15 Priestley (2011), 246
16 ibid. 247. We cannot see pointers as sets of addresses, because there is a

difference between a pointer to a record and a pointer to an integer. Treat-

ing pointers as sets of addresses would now require a model of memory!

Consider the following example, which uses two reference

cells 𝑟 and 𝑠 allocated in separate memory regions 𝜌 and 𝜎,

respectively, and assigns the value from 𝑠 (read using “!”) to 𝑟:

𝑟: ref𝜌, 𝑠: ref𝜎 ⊢ 𝑟 ≔ !𝑠 ∶ unit & {write 𝜌, read 𝜎}

Here, the type and effect of the expression tells us that the

computation returns a value of type unit (which is an uninte-

resting singleton set) and also writes to a memory region 𝜌 and

reads from a memory region 𝜎.

When we consider effect systems, thinking of types as sets

becomes difficult. If we ignore the effects, we are leaving out a

crucial part of the story. If we attempt to integrate effects into

the sets, our sets become extremely complex (a set of numbers

turns into a set of functions that take a model of the world and

produce an integer together with a new world). At this point,

it might be easier to find a different meaning for types that does

not lead to such complexity. What we are facing here is akin

to Kuhnian paradigm shift. When it becomes hard to solve

puzzles using the established methods, scientists adopt different

definitions and different methods. One such alternative view

that lets us talk about effects is to treat types as relations that

has been advocated by Benton in his 2014 talk:

Express meaning of high-level types as relational, exten-
sional constraints on the behaviour of compiled code22

In this view, the type of the above expression specifies that, for

all memory regions, the value after performing the compu-

tation is the same as the value before, with the exception of the

region 𝜌. This view also changes the purpose of types (Benton

claims that “Types are about abstractions not about errors”) and

perhaps more importantly, we also need to change our methods

for working with types. For example, the notion of syntactic

type safety becomes meaningless.

Dependent types and homotopy type theory

From the practical perspective, dependent types aim to make

types more precise. A type of an array might include the size

of the array, making it possible to verify the absence of out-of-

bounds accesses statically23. Here, we can think of types as sets,

but again, dependent types go further and allow specifying

more complex program properties that (like memory effects),

do not fit this view.

More interestingly, dependent types can be also seen as

going back to the logic and foundations of mathematics:

19 Wright, Felleisen (1994)
21 Lucassen, Gifford (1988)
22 Benton (2014)
23 This example follows Chlipala (2014), 8

4

Generalizing the [Curry-Howard] correspondence to first-
order predicate logic naturally leads to dependent types.24

Dependent types introduces two notable type constructors: de-
pendent functions and dependent pairs. Those correspond to

universal and existential quantifiers from predicate logic. Both

can be interpreted as sets, but again, we soon face issues that

are difficult to resolve using the set-based model. This might,

in part, be a reason for the recent interest in homotopy type

theory, which uses yet another interpretation of types:

The central new idea in homotopy type theory is that types
can be regarded as spaces in homotopy theory, or higher-
dimensional groupoids in category theory.26

Dependently typed programming and homotopy type theory

also change what types are good for. Rather than focusing on

programming (the list from the beginning of the section), types

are now used for theorem proving (through their connection

with logic) and for building foundations of mathematics.

Unsound and relatively sounds type systems

So far, we could think that there is an ultimate ideal notion of

type that we are slowly getting closer to. However, the

following two developments happen in parallel with the one

discussed last and they take very different directions.

TypeScript and Dart are two languages that both compile

to JavaScript and both have an unsound type system. They are

not unsafe27, because the execution engine checks types

dynamically. The focus of types is shifting from provable

correctness to documentation and tool support. According to

Bracha, types in Dart provide the following benefits:

- Documentation for humans. It is much easier for people to
read your code if it has judiciously placed type annotations.

- Documentation for machines. Tools can leverage type
annotations in various ways (…).

- Early error detection. Dart provides a static checker that can
warn you about potential problems (…)28

The first two points view types as documentation, either for

humans or for machines or to enable tooling such as navigation

and auto-completion. Types in Dart are not unlike types in

other modern programming languages, but we can see another

shift in their meaning. In the sense discussed by Hoare and

Benton, types in Dart and TypeScript do not “mean anything”.

Types are still used for (limited) error detection but their main

24 Aspinall, D., Hofmann (2005), 48
26 Univalent Foundations Program (2013), 62
27 In the usual sense, i.e. that a program could cause unchecked runtime error
28 Bracha (2011); performance become less important in later work on Dart

purpose shifts from safety to documentation and tool support.

This might be a small step for a programmer, but it is a giant

(and unacceptable) leap for a mathematician.

Finally, the third development comes with type providers

in F# and Idris29. Type providers extend the type system with

the ability to programmatically generate types based on exter-

nal data. For example, the World Bank type provider imports

countries as types with indicators as statically checked fields.

Does this change what types mean? When we have a type such

as “Czech Republic”, it is better seen as an individual of an

information science ontology30, then as a set!

Type providers are interesting, because they do not intro-

duce unsoundness per se (F# is very strict about types in many

ways). However, the soundness of programs becomes relative

with respect to some aspects of the external world. A program

accessing information about Czech Republic is sound as long as

the country does not disappear from the external data source.

Type providers are yet another development of both

meaning and purpose of types. Types serve for both error

checking (with a relativized twist) and as a documentation for

a human and a machine (to provide auto-complete), but at the

same time, they require quite different intuition.

A universal definition of type

This incomplete review shows that types are not a single well

defined concept. Sometimes, but not always, we can find a

precise definition, but none of the definitions can capture all

the uses that we find throughout the history of ‘types’.

A follower of a certain tradition can choose one definition

and extend it so that it covers other uses. But as I attempted to

show in this section, if we do so, we miss the point that other

users of ‘types’ consider crucial. We can see types as sets and

construct complex sets to model effectful programs, but we do

not learn what programs actually do. Or we can treat type

representing Czech Republic as a set, but it becomes vacuous

and loses important connection with the external world.

As we move between different traditions, the meaning and

the purpose of types changes and it is easy to imagine that this

will continue for future uses of types. So, what can we do if we

want to talk about types and still capture all of their rich and

diverse uses? I believe that we can explain many of those deve-

lopments and find interesting ideas for talking about types by

looking at philosophy of science.

29 Syme et al. (2013), and Christiansen (2013)
30 The work of Leinberger et al. (2014) who implement type provider for

semantic web ontologies makes the link with information theory explicit.

5

Is inconsistent and evolving meaning harmful?
From a rationalistic perspective, my presentation of types is

disappointing. How can science progress, if we cannot agree on

the meaning of basic terms? And how can our work improve,

if the purpose keeps changing without us even noticing?

Two theories of philosophy of science explore situations

very similar to those that we can see with types. First, research
programmes give a view of science where multiple inconsistent

approaches coexists. Secondly, concept stretching from explains

how our intuitive understanding of entities evolves.

Inconsistent theories and research programmes

Lakatos’s theory of research programmes gives us a perspective

that can explain inconsistencies between different definitions

of ‘type’32. In this view, a science consists of multiple comple-

ting research programmes. Each research programme is formed

by a hard core consisting of assumptions that are never doubted

and auxiliary protective belt that can be freely modified:

[Some laws or principles] are not to be blamed for any
apparent failure. Rather, the blame is to be placed on the
less fundamental components. A science can then be seen
as the pragmatic development of the implications of the
fundamental principles.33

This theory states that science proceeds in a rational way, but

only within a research programme. If we judge the work done

in one research programme through the perspective of another

one, we can find it inacceptable – work in another research

programme will often break fundamental assumptions that we

subscribe to and will use methods that we do not accept.

We can use the perspective of research programmes to

shed some light on types in programming language research.

Looking at the examples discussed in the previous section, we

can identify at least three different programmes:

- The textbook definition by Pierce34 captures the core

assumptions of one research programme. We can see types

as sets and come with sound, tractable type systems that

serve to detect errors. The programme also provides

standard tools such as syntactic soundness.

- According to the programme advocated by Benton, types

should have a meaning (as relations). The methods of the

programme include denotational approach to semantics.

- According to another research programme (including Dart,

TypeScript and, to some, extent F#), types should improve

32 Paradigms and paradigm shifts introduced by Kuhn are also related, but

they apply to the whole community and so are perhaps less directly

applicable here, although some developments resemble paradigm shifts.
33 Chalmers (1999)

the usability of a programming language, but its proponents

are willing to sacrifice properties like whole-language safe-

ty. The methods include e.g., using types for editor tooling.

Describing the research programmes precisely in detail is work

that I leave to the future historians of science. My main point

is that looking at our field through this perspective is useful

and can help us understand how concepts such as types are

used and why we often fail to find a shared understanding. It

is simply because we subscribe to different core principles.

A similar point has been made by Feyerabend who argues

against the consistency condition, which requires that scientific

theories should be consistent with previous work:

[T]he methodological unit to which we must refer [is] a
whole set of partly overlapping, factually adequate, but
mutually inconsistent theories.35

Are the different definitions of types discussed above mutually

inconsistent? I believe so. It is difficult to see how we could talk

about logical types from foundations of mathematics and

unsound types of Dart at the same time. Yet, it is still useful to

think about both of them as an instance of the same concept!

Types as sociological boundary objects

Should we then identify the distinct research programmes and

name the concept of type differently and unambiguously in

each of them to avoid confusion? There is more to types. In

particular, they are what sociologists call boundary objects:

Boundary objects are objects which are both plastic
enough to adapt to local needs and constraints of the
several parties employing them, yet robust enough to
maintain a common identity across sites.37

This definition fits well with how types are used in program-

ming. They are used differently by different communities (fol-

lowing different research programmes), but we are not talking

about completely different things! Hence, it makes sense to use

a common name for types across multiple research program-

mes. As boundary objects, types are very valuable entities:

They have different meanings in different social worlds
but their structure is common enough (…) to make them
recognizable, a means of translation. The creation and
management of boundary objects is key in developing and
maintaining coherence across intersecting social worlds.38

34 Pierce (2002)
35 Feyerabend (2010), 20
37 Star, Griesemer (1989)
38 Ibid

6

In other words, types let us translate interesting ideas between

different research programmes. Examples are easy to find.

Tooling that was developed based on types in Java (like auto-

completion) has been adapted and used for writing proofs in

dependently typed languages, despite having a very different

notion of type under the cover.

How meaning changes through concept stretching

To understand how the meaning of a type changes, we can find

inspiration in philosophy of mathematics. In Proofs and refuta-

tions, Imre Lakatos tells the story of Euler characteristic of

polyhedra (𝑉 − 𝐸 + 𝐹 = 2, where 𝑉, 𝐸, 𝐹 are the numbers of

vertices, edges and faces) and describes how mathematicians

face numerous counterexamples that were discovered (such as

nonconvex polyhedra, polyhedra with tunnels etc.).

Lakatos introduces the notion of concept stretching, which

happens when a new counterexample (of a previously incon-

ceivable form) is discovered:

Then came the refutationists. In their critical zeal they
stretched the concept of polyhedron, to cover objects that
were alien to the intended interpretation.39

Concept stretching takes a concept and extends it to include an

idea that is not explicitly ruled out by the formal definition, but

is of a novel form and has not been considered before.

Concept stretching also happens in the context of types. One

example is using types to capture effects of a computation. This

extends the idea of a type, but it also accidentally breaks

standard interpretations of types (types as sets of values) and

complicates the standard methods (syntactic soundness). Type

providers are another example. They relativize the notion of

safety and also suddenly provide thousands of types (or more)

and so some of the established methods for working with types

become unsuitable. (As a down-to-earth example, auto-comple-

tion lists become so long that they now need a search box!)

In Lakatos’s story, there are monster-barrers who try to

save the original interpretations and methods by labelling the

newly discovered counterexamples as monsters that should be

ruled out. However, this does not work:

The curious thing is that concept stretching goes on surre-
ptitiously: nobody is aware of it, and since everybody's
'coordinate-system' expands with the widening concept,
they fall prey to the (…) delusion that monster-barring
narrows concepts, while in fact, it keeps them invariant.40

39 Lakatos (1979), 84
40 Lakatos (1979), 86
41 Latour (1987)

The fact that concept stretching happens secretly is interesting

for our discussion about types too. For example, the shift from

Church’s simply typed lambda calculus to types in functional

languages is larger than generally understood. However, once

we see types as sets of values, it is very hard to go back and see

the world through Church’s original perspective.

The introduction of unsound type systems is another

example of concept stretching. Like adding a tunnel through a

polyhedra, it extends the concept of a type in a previously

inconceivable direction. In this case, a large part of the prog-

ramming language community reacts as monster-barrers from

Lakatos’s story. That is by labelling unsound type systems as

monsters and refusing to admit them into a well-behaved

society. It is not difficult to find modern variations on a quote

that appears in Charles Hermite’s letter from 1893:

I turn aside with a shudder of horror from this lamentable
plague of functions which have no derivatives.

Should we be precise about types?

Research programmes and concept stretching help us better

track how types are used. The reader might expect that I’ll

now say that we should take extra care when talking about

types, document our research programme and watch carefully

to avoid (or acknowledge) concept stretching.

Doing this is, indeed, a useful contribution to science, but

it can only be done in retrospect once we know all the facts.

As noted by Latour in Science in Action41, there are two sides:

on the left, we know all the facts and have many strong allies;

on the right, everything is in the making and under-determined.

The work on the right is not a black-boxed science (yet), but

once it becomes a black-box, it is as solid as anything else.

This explains why we cannot point a finger at interesting

work that has been unjustly rejected, e.g. for the lack of

formalism. The things on the right side are not science, because

they are not science42! Ubiquitous focus on formalism does not

rule out parts of science. It defines what a science is.

Against the definition of type
When discussing types, we should be flexible enough to accom-

modate people such as Phaedrus from Pirsig’s Zen and the Art

of Motorcycle Maintenance who identifies Aristotle as the

founder of the modern scientific approach and laments:

42 To avoid the tautology, just imagine that the statement on the left talks

about time 𝑡 and the statement on the right talks about time 𝑡 − 1.

7

Phaedrus saw Aristotle as tremendously satisfied with
this neat little stunt of naming and classifying everything.
(…) he saw him as a prototype for many millions of self-
satisfied and truly ignorant teachers throughout the
history who have smugly and callously killed the creative
spirit of their students with this dumb ritual of analysis,
this blind, rote, eternal naming of things.43

Pirsig’s wording might be a hyperbole, but there is some truth

in it. Creative uses of types and other concepts often break

some of the established rules and principles of the time and we

only find a way to reconcile them in retrospect. Paul Feyer-

abend’s philosophy presents a similar idea, but more seriously

and with historical grounding.

Epistemological anarchism and clarity of terms

Searching for clarity is worthwhile, especially in retrospect, but

we should not require it. The problem is that clarity means a

different thing in retrospect and when new ideas are created.

Paul Feyerabend explains how the requirement of clarity

restricts and changes our thinking:

[T]o 'clarify' the terms of a discussion does not mean to
study the additional and as yet unknown properties of the
domain in question which one needs to make them fully
understood, it means to fill them with existing notions
from the entirely different domain of logic and common
sense, (…) and to take care that the process of filling obeys
the accepted laws of logic.44

New notions of type may not perfectly fit with the established

understanding. Initially, this may not appear as a conceptual

shift, but perhaps as a technical fault (that could be corrected).

But this should not be a reason for rejecting them – we can

accommodate the new notions, but only later once the accepted
laws of logic evolve.

For example, when types were first used for the tracking

of effects the work was not rejected, despite the fact that it did

not clearly describe the structure of “set of values” that a type

with effect annotation denotes. One could invent an inelegant

answer, but this would shift the focus of the work in a much

less interesting direction. Feyerabend continues as follows:

So the course of an investigation is deflected into the
narrow channels of things already understood and the
possibility of fundamental conceptual discovery is signi-
ficantly reduced.45

43 Pirsig (1999), 360

44 Feyerabend (2010), 200

45 Ibid, 200

This Feyerabend’s point beautifully describes why we should

not strictly require clarity. Interesting developments (when

new research programmes are born) often change the meaning,

require the development of new methods and ways of thinking.

Yet, these ideas can only be expressed using imperfect terms

that are currently available.

We could argue for the claims made in this section based

on humanitarian grounds (and Feyerabend did that too), but

the more important point here is historical. If we look at the

past developments in science, we can see that Feyerabend’s

[epistemological anarchism] is more likely to encourage progress
than its law-and-order alternatives46.

How science actually works

Feyerabend’s position may be extreme for some readers, but he

is not alone. Both Lakatos (speaking of research programmes)

and also Kuhn (speaking of research paradigms) argue that

early developments start with vague concepts and even ignore

experimental failures:

Early work in a research program is portrayed as taking
place without heed or in spite of apparent falsifications by
observation47

A case could be made to the effect that the typical history
of a concept (…) involves the initial emergence of the
concept as a vague idea, followed by its gradual clarifi-
cation as the theory (…) takes a more precise (…) form48

In early development of a research programme, the focus is on

achieving something new (capturing effects of computations,

providing better developer tools in dynamic environment), but

other issues that are important for established science (what

Chalmers calls apparent falsifications) can be ignored. In

Kuhn’s research paradigms, the situation is similar – paradigms

emerge when current approaches start failing, but they emerge

in imperfect forms.

However, the difficulty is noticing when a new research

programme starts to emerge. This is possible to see in

retrospect, but not during the development itself. Feyerabend

summarizes this position with his famous slogan:

To those who look at the rich material provided by history
and who are not intent on impoverishing it in order to
please their lower instincts, their craving for intellectual
security in the form of clarity, precision, ‘objectivity’, ‘truth’,
it will become clear that there is only one principle that can

46 Feyerabend (2010)

47 Chalmers (1999), 135

48 Chalmers (1999), 106

8

be defended under all circumstances and in all stages of
human development. It is the principle: anything goes.49

As Feyerabend later said, ‘anything goes’ is not a principle, but

the terrified exclamation of a rationalist who takes a closer look at
history50. And I believe that the complex developments of the

notion of types outlined in the introduction also support this

position.

Now, this does not mean that we should abandon all prin-

ciples in all situations. This is not what Feyerabend advocates.

When working within a well-developed area, it makes sense

follow its principles and exact definitions that it provides:

We see that the principles of critical rationalism (…),
though practiced in special areas, give an inadequate
account of the past development of science as a whole and
are liable to hinder it in the future.51

Looking at the history of science supports the main idea of this

essay. That is, we should not require a precise definition of the

notion of ‘type’. Requiring clarity means that we can only talk

about things we already understand – perhaps in greater detail,

with more generality and in more elegant ways, but not about

fundamentally new ideas.

There are two areas where new ways of thinking about

types can be especially valuable. The first is in new and previ-

ously unexplored domains. When types are used in a new

domain, their meaning might change and it can take time before

we settle on a clear formal definition. The second area is when

we want to talk about types universally and include many of

the rich and diverse precise definitions.

Living with undefined types
A type is not a formal concept that can have a precise defini-

tion. This can be the case in some narrow areas and we can use

the precise definition within the narrow area, but how can we

work with types if we want to operate and think outside of a

particular research programme?

Philosophy of science describes a number of methods or

ways of thinking that do not require precise definitions. That

these provide a useful complement to the rigorous methods

that we use when operating within a narrow and formalized

areas of an established research programme.

49 Feyerabend (2010), 12
50 Ibid, vii
51 Ibid, 160

There are many theories to look at, but in this essay, I

explore three ways of thinking about types. These are based on

how we use types, what are conventional ideas associated with

types and what we can do with types.

Language games and how we use types

One way of understanding the meaning of a term without a

precise definition is to look at the context in which it is used.

Feyerabend suggested that this is how terms attain their mea-

ning in early stages of theory development:

The terms of the new language become clear only when
the process is fairly advanced, so that each single word is
the center of numerous lines connecting it with other
words, sentences, bits of reasoning, gestures which sound
absurd at first but which become perfectly reasonable
once the connections are made.52

The philosopher who first claimed that “meaning is use” is

Ludwig Wittgenstein. I believe that his ideas on language can

suggest ways of dealing with undefined terms in science too.

He describes the idea in Philosophical Investigations as follows:

For a large class of cases of the employment of the word
“meaning” – though not for all – this word can be explai-
ned in this way: the meaning of a word is its use in the
language.53

Similarly, the meaning of a scientific term can be explained by

its use in the scientific community. When discussing different

notions of types earlier, we looked at both what types are

(undefined hierarchy, sets, spaces), but also how they are used

(avoiding errors, providing documentation, etc.).

The idea here is that we focus just on how types are used,

because this is what types are. This may sound unorthodox,

but it resolves one of the key issues we face when looking for a

universal notion of type – studying the use does not require

consistent definitions.

To understand types, we can study how they are used in

different contexts. Wittgenstein calls these contexts language
games, but what are the language games surrounding types?

There are natural contexts that already exist and there are a

lot of them: proving program properties with types, documen-

ting developer intentions with types, improving performance

with types and so on. The language games also change in time.

For example, the “using types to build foundations of

mathematics” language game has been at the birth of types, but

52 Feyerabend (2010), 200
53 Wittgenstein (2009), no.43

9

has only regained prominence with the later developments of

Per Martin-Löf’s type theory and homotopy type theory.

However, documenting the existing language games is only

one part of our investigation:

It is not the business of philosophy to resolve a con-
tradiction (…), but to render surveyable the state of
mathematics that troubles us (…). [W]e lay down rules, a
technique, for playing a game and that then, when we
follow the rules, things don’t turn out as we had assumed.

To paraphrase the above quote, we do not need to resolve all

the inconsistencies between different understandings of types.

Instead, we can focus on creating interesting new contexts in

which the concept of a ‘type’ can be used and explored.

What would be such language games for exploring proper-

ties of types? One example I can think of is the well-known

puzzle referred to as the expression problem54. The problem is

extending a set of objects and functions in two directions – by

adding new kinds of objects and new functions.

For example, objects may represent numerical expressions

(constant, variable, addition) and functions operations over

them (pretty printing, evaluation). In some type systems, it is

easy to add new kinds of objects. In other type systems, we can

add functions, but adding new objects is hard.

The language game sets perhaps unreasonable constraints

(we should not require recompilation), but that is not a flaw.

Instead, it reveals the abstraction and error-checking capabi-

lities of a system. At the same time, it can be used for looking

at a large number of very diverse notions of type.

The expression problem gives a very specific perspective

(just like some of Wittgenstein’s language games), but it shows

how we can talk about types without requiring a clear defi-

nition. To my best knowledge, there are not many puzzles or

language games similar to the expression problem, and so con-

structing language games to explore other properties of types

is one interesting open question of this essay.

Stereotypes and the meaning of types

Seeing programming language research through the perspec-

tive of competing research programmes explains why different

communities view types differently, but it makes it difficult to

say what the meaning of type is outside of the individual re-

search programmes. Intuitively, we still have some overall idea

about types, so saying that there is no meaning seems wrong.

One philosopher who addresses this question in the con-

text of meaning of words is Hilary Putnam. However, the

54 Wadler (1998)
55 Hacking (1983), 75

following motivation from Ian Hacking’s book is a perfect fit

for the problem addressed in this essay too:

[W]e need an alternative account of meaning which
allows that people holding competing or successive theo-
ries may still be talking about the same thing.55

Putnam’s theory is interesting because it gives us a way to talk

about meaning in the real setting where different people talk

about types, but using different perspectives. I find it useful as

another example showing that we can think about things

without precise definitions.

Hacking introduces Putnam’s theory using an analogy

with a dictionary. What would a dictionary definition for a

programming language concept of type consist of?

A dictionary begins an entry with some pronounciation
and grammar, proceeds past etymology to a lot of inform-
ation, and may conclude with examples of usage.

Putnam’s meaning is specified by four components – syntactic

marker (type is a countable noun), semantic marker (a category

to which type belongs, i.e. computer science entity), stereotype

and extension (set of all things that are type).

The interesting part of the definition (and the part that is

interesting for this essay) is stereotype:

[A] standardized description of features of the kind that
are typical, or ‘normal’, or at any rate stereotypical. The
central features of the stereotype generally are criteria –
features which in normal situations constitute ways of
recognizing if a thing belongs to the kind (…).56

This is a down-to-earth notion of meaning, but I believe that

this is how many practitioners of the field think about types.

We know what features are generally associated with ‘types’

and we can, certainly, use those to recognize a type.

Putnam illustrates the idea using tigers as an example. One

such stereotype about tigers is that they are striped. But a

white albino tiger is still a tiger. Similarly, a type is a classifi-

cation of values that computations can produce. But a type that

represents behaviour of computation is also a type. A type is a

decidable syntactic program property, but a type that cannot

be effectively decided is still a type. A type can be used to rule out

errors, but a type that does not rule out all errors is still a type.

Another useful point made by Hacking is that illustrations

in children books illustrate the stripiness of tigers to build the

stereotype. Similarly, the Types lecture notes at the start of

this essay and computer science textbooks discuss properties of

56 Putnam, p230

10

type systems to build a stereotype about types. But this does

not necessarily mean that they give a full account of what a

type is. Indeed, stereotypes are not exact definitions:

The fact that a feature (e.g. stripes) is included in the ste-
reotype associated with a word X does not mean that it is
an analytical truth that all Xs have that feature, nor that
most Xs have that feature. (…) If tigers lost their stripes
they would not thereby cease to be tigers.57

Just like tigers can lose their stripes, types can lose some of their

stereotypes. The stereotypes associated with the early notion

of types included their use to avoid paradoxes, but also many

other things (such as categorization of terms in a formula). The

avoidance-of-paradoxes stereotype has been lost when types

started to be used in programming languages, but other stere-

otypes associated with them remained. Similarly, properties

that we ascribe to types now may not be representative stereo-

types of types in the future.

When discussing Wittgenstein’s language games in the pre-

vious section, I concluded with the suggestion that we should

construct new language games to explore properties of types.

Unlike language games, Putnam’s theory does not suggest any

new method of inquiry. However, I think that it is useful for

another reason – it is perhaps the closest explanation to how

computer scientists think about types. As such it makes explicit

some of the aspects of meanings of types.

We should also keep stereotypes in mind when reading

textbooks. A textbook description is two things – a formal defi-

nition within the context of a narrow research programme and

stereotypes for types in the broader sense. We should not be

confusing the two!

Scientific entities and doing things with types

So far, this essay was focused more on how we think about

types, but we can also take a practical attitude and look at doing

things with types. The idea underlying this section is that we

can do interesting things with types without having a full and

developed theory of what types are.

In the context of programming languages, a similar point

has been made by Richard P. Gabriel in his recent essay:

[I]n the pursuit of knowledge, at least in software and
programming languages, engineering typically precedes

57 Putnam (1979), 250
58 Gabriel (2012)
59 Hacking (1983), 158
60 Ibid, 175

science (…) even if science ultimately produces the most
reliable facts, the process often begins with engineering.58

I agree with Gabriel that many interesting ideas in program-

ming languages start with engineering or experimentation. This

might be because experimentation in computing is very cheap

compared to natural sciences – but, as a matter of fact, the same

has been said about science in general.

Ian Hacking defends a very similar position, which has

been labelled new experimentalism:

[I] make no claim that experimental work could exist
independently of theory. (…) It remains the case, however,
that much truly fundamental research precedes any
relevant theory whatsoever.59

I will not discuss the details in this essay. Hacking’s excellent

book provides a number of examples showing that there have
been important observations in the history of science, which have
included no theoretical assumptions at all60.

Another interesting point made by Hacking is that it is the

theoreticians who appear in the history books. This explains

why we can easily recall authors of famous theories, but hardly

remember any famous experiment and experimenters:

Before thinking about the philosophy of experiments we
should record a certain class or caste difference between
the theorizer and the experimenter. It has little to do with
philosophy. We find prejudices in favour of theory, as far
back as there is institutionalized science.61

Despite the prejudices against the experimentalist approach to

computer science (even the word engineering seems to have

negative connotations in some circles!), I believe that it is an

extremely valuable approach. And indeed, there are many

systems that involve types which were not preceded by a full-

scale theory, but provided useful and novel insights.

Type providers can be used as an example. They first

appeared in the F# 3.0 language in 2011, but without a full

theory that would be usual in theory-founded work. Yet, type

providers already influenced other languages63 and the theory

explaining them started appearing too.64

An important question about experimentalist work in

programming languages is, how do we observe the results of

our experiments? (Here, I intentionally avoided using the term

‘evaluate’, which suggests quantitative measurements; for

experiments, it is sufficient to observe interesting results.)

61 Ibid, 150
63 Christiansen (2013)
64 Petricek (2015)

11

Types as scientific entities and types in practice

According to new experimentalists, experimenting is not

stating or observing, but doing. What matters is how scientific

entities can be manipulated to cause other interesting effects.

Hacking uses electrons as an example, but we can similarly

think about types:

[F]rom the very beginning people were less testing the
existence of electrons than interacting with them. (…) The
more we come to understand some of the causal powers of
electrons, the more we can build devices that achieve well-
understood effects in other parts of nature.65

What can we cause with types? I think the new experimentalist

perspective suggests an important point about programming

language experiments. We can implement a compiler or a type

checker for a given type system, but this is merely a different

way of presenting the same theory.

When experimenting in programming languages, we need

to create experiments that somehow interact with the outside

world. Tools such as theorem provers are an interesting

example. They have types at their very core, but are used to

create other valuable things using them.

The other option is to observe how our experimental

system can be used in practice. I previously argued that one

way of presenting such computing experiments is in the form

of case studies66, but I believe that this is an underexplored area

with interesting possibilities. For example, the Future of

Programming workshop67 made it possible to submit (what I

would call) experiment reports in the form of webcasts.

There are two more points about new experimentalism

that I find relevant to work on programming languages and

types. To quote Chalmers’s introduction of the philosophy:

It is argued that experimentalists have a range of practi-
cal strategies for establishing the reality of experimental
effects without needing recourse to large-scale theory. (…)
[I]f scientific progress is seen as the steady build-up of the
stock of experimental knowledge, then the idea of cumu-
lative progress in science can be reinstated (…).68

In science, isolating a stable and repeatable experiment is hard

and experimentalists have practical ways for making repro-

ducible experiments. Quite similarly, programming language

experimenters or engineers have ways of producing systems

65 Hacking (1983), 262
66 Petricek (2014)
67 Available at: http://www.future-programming.org/
68 Chalmers (1999), 194
69 For example, F# type providers can be parameterized by values of

primitive types (integers, strings, etc.), but not by arbitrary types and, in

that work in practice (now you can again see the prejudices

against experimentalism; even the phrase works in practice is

frowned upon). This is an important point – for example, some

of the practical limitations of type providers limit their scope

to an area where the mechanism works well69. But in theory-

oriented work, such limitations would remove much of the

complexities and subtleties that theoreticians find interesting.

The second important point that Chalmers makes is that

new experimentalism makes it possible to recover the idea of

cumulative growth of knowledge. As can be seen from my

introduction, the notion of type is changing and so we cannot

claim we are getting closer to a ‘perfect’ type. However, if we

accumulate the experiments – practical problems that can be

solved with types – we have a way of talking about growth of

scientific knowledge.

To conclude this section, another way of working with

types is to experiment and see what we can do with types. The

history of science shows that this experimentalist approach is

fruitful method. I also believe that we have a unique chance to

find new and better ways of presenting experimental observa-

tions. The webcast format pioneered at the Future of Program-

ming workshop is a good example.

Despite the prejudices against experimentalism in both

science and computing, doing experiments is an important part

of science and experiment have a life of its own70:

One can conduct experiment simply out of curiosity to see
what will happen. (…) The physicist George Darwin used
to say that every once in a while one should do a comple-
tely crazy experiment (…).71

Conclusions
This essay was inspired by the frequent misunderstandings

when discussing types. Although we have good understanding

of types in narrow domains, I argued that it is impossible to

give a formal and universal definition of what a type is. Rather

than seeking the elusive definition that does not exist, we

should instead look for innovative ways to think about and

work with types that do not require an exact formal definition.

To motivate the essay, I started with a brief and incomple-

te history of types. As the examples demonstrate, the meaning

particular, not by other user-defined types. This would extend the focus of

the feature from data-access to meta-programming – this is equally

interesting problem, but very different and more theoretically complex.
70 Hacking (1983), xiii
71 Hacking (1983), 154

12

and the purpose of types is continuously changing and different

communities have different core beliefs of what a type is. In

philosophy of science, this is known as concept stretching and

research programmes. If we look at the history, we find some

structure and precise definitions locally, but this can never

capture the full complexity of scientific reality and requiring

such precision can even harm scientific progress.

It we want to talk about types outside of a narrow research

programme, we need to find ways of dealing with types

without a precise definition. I proposed three alternatives –

those are based on how we use types (inspired by Wittgen-

stein’s language games), what is the conventional idea of type

(based on Putnam’s stereotypes) and what we can do with types
(inspired by Hacking’s new experimentalism). I believe that

these provide worthwhile methods of inquiry that can provide

interesting insights into what types are outside of a narrow

boundary delimited by a particular formal definition.

References
Aspinall, D., Hofmann, M. (2005). Dependent Types. In Pierce,

B. C. (ed.) Advanced topics in types and programming
languages. MIT press, 2005.

Benton, N. (2014). What We Talk About When We Talk
About Types (talk). Talk slides retrieved from:

http://research.microsoft.com/en-us/um/people/nick

Bracha, G. (2011). Optional Types in Dart. Available online at:

https://www.dartlang.org/articles/optional-types/

Chalmers, A. F. (1999). What is this thing called science? Open

University Press. ISBN 0335201091.

Christiansen, D. R. (2013) Dependent type providers.
Proceedings WGP Workshop.

Chlipala, A. (2013). Certified Programming with Dependent
Types. MIT Press, ISBN: 9780262026659

Church, A. (1940). A Formulation of the Simple Theory of
Types. The Journal of Symbolic Logic, vol. 5, no. 2, pp. 56-68

Feyerabend, P. (2010). Against method. Verso (4th edition).

ISBN 1844674428.

Gabriel, R. P. (2012). The Structure of a Programming
Language Revolution. In Proceedings of Onward! 2012.

Hacking, I. (1983). Representing and Intervening: Introductory
Topics in the Philosophy of Natural Science. Cambridge Univer-

sity Press. ISBN 0521282462.

Hanson, L (2013). Quoted in Function Argument Intent, julia-

users mailing list: https://groups.google.com/forum/#!msg/julia-

users/qJa2EyUXJfo/W3bfHeXhuHEJ

Julia documentation (retrieved, 2015). Types. Available at:

http://julia.readthedocs.org/en/latest/manual/types/

Kell, S. (2014). In Search of Types.
In Proceedings of Onward! Essays 2014.

Lakatos, I. (1976). Proofs and Refutations. Cambridge

University Press. ISBN: 0-521-29038-4.

Latour, B. (1987). Science in Action. Harvard University Press.

ISBN 978-0-674-79291-3

Leinberger, M., et al. (2014). Semantic Web Application
development with LITEQ. Proceedings of ISWC, Springer.

Lucassen, J. M., Gifford, D. K. (1988). Polymorphic effect
systems. In Proceedings of POPL.

Pierce, B. C., (2002). Types and Programming Languages. MIT

Press, ISBN 0-262-16209-1

Pirsig, R. M. (1999). Zen and the Art of Motorcycle
Maintenance. HarperCollins Publishers, ISBN 978-0-06-167373-3.

Pitts, A. M. (retrieved, 2015). Lecture notes on types. University

of Cambridge. Available at:

http://www.cl.cam.ac.uk/teaching/1314/Types/

Priestley, M. (2011). A Science of Operations: Machines, Logic
and the Invention of Programming. Springer. ISBN: 978-

1848825543.

Petricek, T. (2014). What can Programming Language
Research Learn from the Philosophy of Science? In AISB 50.

Putnam, H. (1979). Philosophical Papers, Vol. 2: Mind,
Language and Reality. Cambridge University Press. ISBN: 978-

0521295512

Russell, B. (1908). Mathematical logic as based on the Theory of
Types. American Journal of Mathematics, Vol.30, N0.3, 222-262.

Star, S., Griesemer, J. (1989). Institutional Ecology,
'Translations' and Boundary Objects: Amateurs and
Professionals in Berkeley's Museum of Vertebrate Zoology, Social

Studies of Science, vol. 19, no. 3, pp.387–420

Syme, D., et al. (2013). Themes in information-rich functional
programming for internet-scale data sources. In Proceedings of

DDFP workshop.

Univalent Foundations Program (2013). Homotopy Type Theory:
Univalent Foundations of Mathematics. Institute for Advanced

Study. Available at: http://homotopytypetheory.org/book

Wadler, P. (1998). The expression problem. Sent to the Java-

genericity mailing list.

Wittgenstein, L. (2009). Philosophical Investigations (4th ed.)

Blackwell Publishing Ltd. ISBN: 978-0024288103

Wright, A., Felleisen, M. (1994). A syntactic approach to type
soundness. J. Inf. Comput. vol. 115, n. 1

