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Abstract 

What is the definition of ‘type’? Having a clear and precise 

answer to this question would avoid many misunderstandings 

and prevent meaningless discussions that arise from them. But 

having such clear and precise answer to this question would 

also hurt science, “hamper the growth of knowledge”1 and 

“deflect the course of investigation into narrow channels of 

things already understood”2.  

In this essay, I argue that not everything we work with 

needs to be precisely defined. There are many definitions used 

by different communities, but none of them applies universally. 

A brief excursion into philosophy of science shows that this is 

not just tolerable, but necessary for progress. Philosophy also 

suggests how we can think about this imprecise notion of type.  

 

Science is much more ‘sloppy’ and ‘irrational’ than its 
methodological image. 

(Against Method, Paul Feyerabend)3 

Introduction 
Probably no other term in programming languages attracts as 

much attention and arguments as ‘type’. Although there are 

many formal definitions, in practice a ‘type’ it is often used as 

a vaguely defined term with emotions attached to it. 

Those with negative emotions towards types will blame 

types for failures that may not be caused by any fundamental 

property of types. For example, you could blame types for the 

verbosity of Java, but an ML user familiar with type inference 

will quickly object.  

On the other hand, the proponents of types will often 

praise types for properties that are not essential for types and 

can be achieved in other ways. For example, editor support 

 
1 Lakatos (1976), 74 
2 Feyerabend (2010), 200 
3 Feyerabend (2010), 160 

(e.g. auto-completion) can be attributed to types, but there are 

systems providing similar features not based on types. 

We disagree even when we’re on the same side of the barri-

cade. For example, traditional arguments for types have been 

language safety and more efficient compilation. The recent 

TypeScript language adds ‘types’ to JavaScript, but its type 

system is intentionally unsound (hence no language safety) and 

types are erased when code is translated to JavaScript (hence 

no increased efficiency). Is it still a ‘statically typed’ when it is 

unsound? And has the purpose of types silently changed here?  

If we review academic literature concerning types, we find 

a number of formal definitions. But each definition comes with 

a different intuition behind types, different tools for working 

with then and also different motivation for using types4. Thus 

those looking for a universal definition of a type that would 

apply to all the uses are determined to fail. The meaning of a 

type also changes over time (we usually do not notice) and 

different uses require different properties (that often do not 

share a common ground). 

If we look past the aura of perfection surrounding science, 

we’ll find that this is not an uncommon situation. And in fact, 

many philosophers of science argue that it is healthy and 

necessary state of affairs. 

In this essay, I argue that we do not need a formal universal 

definition of a type. I discuss the issue from the perspective of 

philosophy of science, looking how similar issues have been 

treated in mathematics, philosophy of language and sciences.  

I first discuss how the meaning of types differs between 

communities and how it changes over time. Then I look for 

arguments supporting the idea that the notion of ‘type’ should 

be left undefined. Finally, I discuss options for living in such 

unsatisfying (but realistic) world without exact definitions. 

 

4 The biggest divide, identified by Kell (2014), is between ‘expression types’ 

arising from the logical tradition and ‘data types’ following an engineering 

tradition. In this essay, I look at some of the finer distinction within the 

logical tradition. Even one side of this big divide is surprisingly complex! 
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How the meaning of types changes 
Allow me to start with a personal anecdote. I was recently 

supervising the Types course and the lecture notes describe the 

uses of types and type systems as follows5: 

1. Detecting errors via type-checking, statically or dynamically 

2. Abstraction and support for structuring large systems 

3. Documentation 

4. Efficiency 

5. Whole-language safety 

My students were already indoctrinated and did not question 

the list6. Indeed, past languages used types for all of the reasons 

above. Nowadays, types are used for some of the reasons, but 

rarely all of them. As already mentioned, TypeScript sacrifices 

safety (5) and efficiency (4) and uses types for documentation 

(3) and limited compile-time error detection (1). Julia7 goes 

further and uses types, but not for rejecting programs8. Types 

are still important for expressiveness (not on our list), system 

structuring (2) and documentation (3). 

Types can even be used for none of the above reasons 

(consider proving mathematical theorems using Coq) and if we 

look further in the history, types were invented by Russell to 

avoid paradoxes in foundations of mathematics. No doubt, he 

would be surprised by the list! 

If we now follow the development of types from Russell 

to modern programming, we’ll find different definitions leading 

to different intuitions and use cases for types, even if we stay 

just within the narrow ‘logical tradition’. 

From foundations of mathematics to the lambda calculus 

Types first appeared in Russell’s paper Mathematical logic as 
based on the theory of types in 1908. He uses types to avoid 

paradoxes of the kind “class of all classes that do not contain 

themselves as elements.” Compared with types in program-

ming, Russell’s types have quite different definition and uses.  

A type is defined as the range of significance of a propo-
sitional function, i.e., as the collection of arguments for 
which the said function has values.10 

First of all, Russell defines types of propositions based on their 

inputs (what we would call domain). This contrasts with the 

use in programming where types are often interpreted as the 

sets of results of an expression, or the range. However, what 

types are does not matter to Russell: “It is unnecessary, in 
 
5 Pitts (2015) 
6 What's really demanded in the Church of Reason is not ability, but 

inability. Then you are considered teachable. A truly able person is always 
a threat. Pirsig (1999), 392. 

7 Julia documentation (2015) 

practice, to know what objects belong to the lowest type (…). For in 
practice, only the relative types of variables are relevant.” The 

paper does not build on this definition and instead works with 

a hierarchy of types such that propositions containing variables 

of type 𝑛 are assigned type 𝑛 + 1. The theory of types then 

avoids contradictions arising from self-reference as follows: 

[W]hen a man says “I am lying”, we must interpret him 
as meaning: “There is a proposition of order 𝑛 which I 
affirm and which is false”. This is a proposition of order 
𝑛 + 1; hence the man is not affirming any proposition of 
order 𝑛; hence this statement is false and yet its falsehood 
does not imply (…) that he is making a true statement. 11 

Also note that Russell’s types do not rule out propositions as 

invalid. Instead, they change their meaning to avoid the contra-

diction. We can still say “I am lying”, but it means a different 

thing than without types. So, while there is a clear connection 

between Russell’s types and types in programming, it would be 

a mistake to think that they are really the same. 

Russell’s types inspired Church’s work on λ-calculus. It is 

important to understand that back then, the λ-calculus was not 

understood as a simple programming language. It appeared 

(together with Turing’s machines and the theory of recursive 

functions) as an attempt to formalize ‘effective computability’, 

that is a class of computations that can be carried out by 

mechanically (by a human) following a set of rules. 

Church’s paper is a contribution to the foundations of 

mathematics. He discusses how to combine the formalism of λ-

calculus with the theory of types. However, Church does not 

elaborate on possible uses of this system. In particular, he does 

not link the system to Russell’s paradoxes and his original 

paper does not discuss which λ-terms cannot be assigned a type 

– a crucial use case for programming languages! 

Church uses types as a purely formal construct. His system 

includes two base types; 𝜊 for propositions and 𝜄 for indivi-

duals, but he does not define what his types denote: 

We purposely refrain from making more definite the 
nature of the types 𝜊 and 𝜄, the formal theory admitting of 
a variety of interpretations in this regard.14 

Although Church’s notion of types is formally close to types in 

functional programming languages, the intuition behind types 

was very different. Church did not see types as “sets of possible 

8 A popular slogan is that Julia uses the type system in all the ways that don't 
end with the programmer arguing with the compiler, Hanson (2013). 

10 Russell (1908), 236 
11 Russell (1908), 240 
14 Church (1940) 
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values”, which is a more recent view discussed next. He also 

does not introduce type systems in order to rule out certain 

terms. In other words, none of the points from the list at the 

beginning of this section applies to Church’s typed λ-calculus. 

From expression types to computation types 

The nowadays common interpretation of types as sets of values 

appeared much later than types themselves. This development 

is interesting because it is where the logical tradition (types in 

λ-calculus) meets the engineering tradition (data storage in 

computers). According to Priestley, the view appeared in early 

1970s thanks to Hoare, building on the work of McCarthy:  

[McCarthy’s theory] was further developed by Hoare, 
who proposed that data types in programming language 
could be understood as denoting sets of data values.15 

The new theory of types influenced early programming langua-

ges like Pascal and ML. As Priestley points out, treating types 

as sets had its issues, for example “there is no obvious set-theoretic 
analogue to pointers”16.  

Many people using programming languages nowadays 

intuitively see types as sets. This is so fundamental idea that it 

is hard to unsee. Indeed, we are tempted to interpret the types 

in Church’s simply typed λ-calculus as sets too. However, 

doing so is a misinterpretation of the original work. This is not 

a problem for normal science, but it matters when we try to 

get at the core of what types are. In other words, there is a 

small subtle change in how we think about types and we might 

not even notice it if we are not explicitly searching for it! 

The subtle change in the meaning of types affects not just 

what types are, but also what can be done with them. When 

we see types as sets, it makes sense to prove that evaluating a 

program of a certain type produces values that belong to the 

set denoted by this type. This is the key principle behind the 

syntactic approach to type soundness introduced by Wright 

and Felleisen19 and taught in standard textbooks on types. In 

summary, seeing types in a certain way leads to different 

intuition behind them (things that do not fit the intuition well 

will appear in later chapters of our textbooks, if at all) and it 

also shapes what questions about types can be asked. 

However, seeing types as sets of values is not the end of 

the story. Another slight shift in the meaning of types comes 

with the development of type and effect systems and monads21. 

Here, the type captures not just the set of produced values, but 

also information about other effects that the computation has.  

 
15 Priestley (2011), 246 
16 ibid. 247. We cannot see pointers as sets of addresses, because there is a 

difference between a pointer to a record and a pointer to an integer. Treat-

ing pointers as sets of addresses would now require a model of memory! 

Consider the following example, which uses two reference 

cells 𝑟 and 𝑠 allocated in separate memory regions 𝜌 and 𝜎, 

respectively, and assigns the value from 𝑠 (read using “!”) to 𝑟: 

𝑟: ref𝜌, 𝑠: ref𝜎 ⊢ 𝑟 ≔ !𝑠 ∶ unit & {write 𝜌, read 𝜎} 

Here, the type and effect of the expression tells us that the 

computation returns a value of type unit (which is an uninte-

resting singleton set) and also writes to a memory region 𝜌 and 

reads from a memory region 𝜎. 

When we consider effect systems, thinking of types as sets 

becomes difficult. If we ignore the effects, we are leaving out a 

crucial part of the story. If we attempt to integrate effects into 

the sets, our sets become extremely complex (a set of numbers 

turns into a set of functions that take a model of the world and 

produce an integer together with a new world). At this point, 

it might be easier to find a different meaning for types that does 

not lead to such complexity. What we are facing here is akin 

to Kuhnian paradigm shift. When it becomes hard to solve 

puzzles using the established methods, scientists adopt different 

definitions and different methods. One such alternative view 

that lets us talk about effects is to treat types as relations that 

has been advocated by Benton in his 2014 talk: 

Express meaning of high-level types as relational, exten-
sional constraints on the behaviour of compiled code22 

In this view, the type of the above expression specifies that, for 

all memory regions, the value after performing the compu-

tation is the same as the value before, with the exception of the 

region 𝜌. This view also changes the purpose of types (Benton 

claims that “Types are about abstractions not about errors”) and 

perhaps more importantly, we also need to change our methods 

for working with types. For example, the notion of syntactic 

type safety becomes meaningless.  

Dependent types and homotopy type theory 

From the practical perspective, dependent types aim to make 

types more precise. A type of an array might include the size 

of the array, making it possible to verify the absence of out-of-

bounds accesses statically23. Here, we can think of types as sets, 

but again, dependent types go further and allow specifying 

more complex program properties that (like memory effects), 

do not fit this view.  

More interestingly, dependent types can be also seen as 

going back to the logic and foundations of mathematics:  

19 Wright, Felleisen (1994) 
21 Lucassen, Gifford (1988) 
22 Benton (2014) 
23 This example follows Chlipala (2014), 8  
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Generalizing the [Curry-Howard] correspondence to first-
order predicate logic naturally leads to dependent types.24   

Dependent types introduces two notable type constructors: de-
pendent functions and dependent pairs. Those correspond to 

universal and existential quantifiers from predicate logic. Both 

can be interpreted as sets, but again, we soon face issues that 

are difficult to resolve using the set-based model. This might, 

in part, be a reason for the recent interest in homotopy type 

theory, which uses yet another interpretation of types:  

The central new idea in homotopy type theory is that types 
can be regarded as spaces in homotopy theory, or higher-
dimensional groupoids in category theory.26 

Dependently typed programming and homotopy type theory 

also change what types are good for. Rather than focusing on 

programming (the list from the beginning of the section), types 

are now used for theorem proving (through their connection 

with logic) and for building foundations of mathematics.  

Unsound and relatively sounds type systems 

So far, we could think that there is an ultimate ideal notion of 

type that we are slowly getting closer to. However, the 

following two developments happen in parallel with the one 

discussed last and they take very different directions.  

TypeScript and Dart are two languages that both compile 

to JavaScript and both have an unsound type system. They are 

not unsafe27, because the execution engine checks types 

dynamically. The focus of types is shifting from provable 

correctness to documentation and tool support. According to 

Bracha, types in Dart provide the following benefits: 

- Documentation for humans. It is much easier for people to 
read your code if it has judiciously placed type annotations. 

- Documentation for machines. Tools can leverage type 
annotations in various ways (…).  

- Early error detection. Dart provides a static checker that can 
warn you about potential problems (…)28 

The first two points view types as documentation, either for 

humans or for machines or to enable tooling such as navigation 

and auto-completion. Types in Dart are not unlike types in 

other modern programming languages, but we can see another 

shift in their meaning. In the sense discussed by Hoare and 

Benton, types in Dart and TypeScript do not “mean anything”. 

Types are still used for (limited) error detection but their main 

 
24 Aspinall, D., Hofmann (2005), 48 
26 Univalent Foundations Program (2013), 62 
27 In the usual sense, i.e. that a program could cause unchecked runtime error 
28 Bracha (2011); performance become less important in later work on Dart 

purpose shifts from safety to documentation and tool support. 

This might be a small step for a programmer, but it is a giant 

(and unacceptable) leap for a mathematician.  

Finally, the third development comes with type providers 

in F# and Idris29. Type providers extend the type system with 

the ability to programmatically generate types based on exter-

nal data. For example, the World Bank type provider imports 

countries as types with indicators as statically checked fields. 

Does this change what types mean? When we have a type such 

as “Czech Republic”, it is better seen as an individual of an 

information science ontology30, then as a set! 

Type providers are interesting, because they do not intro-

duce unsoundness per se (F# is very strict about types in many 

ways). However, the soundness of programs becomes relative 

with respect to some aspects of the external world. A program 

accessing information about Czech Republic is sound as long as 

the country does not disappear from the external data source.  

Type providers are yet another development of both 

meaning and purpose of types. Types serve for both error 

checking (with a relativized twist) and as a documentation for 

a human and a machine (to provide auto-complete), but at the 

same time, they require quite different intuition.  

A universal definition of type 

This incomplete review shows that types are not a single well 

defined concept. Sometimes, but not always, we can find a 

precise definition, but none of the definitions can capture all 

the uses that we find throughout the history of ‘types’. 

A follower of a certain tradition can choose one definition 

and extend it so that it covers other uses. But as I attempted to 

show in this section, if we do so, we miss the point that other 

users of ‘types’ consider crucial. We can see types as sets and 

construct complex sets to model effectful programs, but we do 

not learn what programs actually do. Or we can treat type 

representing Czech Republic as a set, but it becomes vacuous 

and loses important connection with the external world.  

As we move between different traditions, the meaning and 

the purpose of types changes and it is easy to imagine that this 

will continue for future uses of types. So, what can we do if we 

want to talk about types and still capture all of their rich and 

diverse uses? I believe that we can explain many of those deve-

lopments and find interesting ideas for talking about types by 

looking at philosophy of science. 

 

29 Syme et al. (2013), and Christiansen (2013) 
30 The work of Leinberger et al. (2014) who implement type provider for 

semantic web ontologies makes the link with information theory explicit. 
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Is inconsistent and evolving meaning harmful? 
From a rationalistic perspective, my presentation of types is 

disappointing. How can science progress, if we cannot agree on 

the meaning of basic terms? And how can our work improve, 

if the purpose keeps changing without us even noticing? 

Two theories of philosophy of science explore situations 

very similar to those that we can see with types. First, research 
programmes give a view of science where multiple inconsistent 

approaches coexists. Secondly, concept stretching from explains 

how our intuitive understanding of entities evolves. 

Inconsistent theories and research programmes  

Lakatos’s theory of research programmes gives us a perspective 

that can explain inconsistencies between different definitions 

of ‘type’32. In this view, a science consists of multiple comple-

ting research programmes. Each research programme is formed 

by a hard core consisting of assumptions that are never doubted 

and auxiliary protective belt that can be freely modified: 

[Some laws or principles] are not to be blamed for any 
apparent failure. Rather, the blame is to be placed on the 
less fundamental components. A science can then be seen 
as the pragmatic development of the implications of the 
fundamental principles.33 

This theory states that science proceeds in a rational way, but 

only within a research programme. If we judge the work done 

in one research programme through the perspective of another 

one, we can find it inacceptable – work in another research 

programme will often break fundamental assumptions that we 

subscribe to and will use methods that we do not accept. 

We can use the perspective of research programmes to 

shed some light on types in programming language research. 

Looking at the examples discussed in the previous section, we 

can identify at least three different programmes: 

- The textbook definition by Pierce34 captures the core 

assumptions of one research programme. We can see types 

as sets and come with sound, tractable type systems that 

serve to detect errors. The programme also provides 

standard tools such as syntactic soundness. 

- According to the programme advocated by Benton, types 

should have a meaning (as relations). The methods of the 

programme include denotational approach to semantics. 

- According to another research programme (including Dart, 

TypeScript and, to some, extent F#), types should improve 

 
32 Paradigms and paradigm shifts introduced by Kuhn are also related, but 

they apply to the whole community and so are perhaps less directly 

applicable here, although some developments resemble paradigm shifts. 
33 Chalmers (1999) 

the usability of a programming language, but its proponents 

are willing to sacrifice properties like whole-language safe-

ty. The methods include e.g., using types for editor tooling. 

Describing the research programmes precisely in detail is work 

that I leave to the future historians of science. My main point 

is that looking at our field through this perspective is useful 

and can help us understand how concepts such as types are 

used and why we often fail to find a shared understanding. It 

is simply because we subscribe to different core principles. 

A similar point has been made by Feyerabend who argues 

against the consistency condition, which requires that scientific 

theories should be consistent with previous work:  

[T]he methodological unit to which we must refer [is] a 
whole set of partly overlapping, factually adequate, but 
mutually inconsistent theories.35 

Are the different definitions of types discussed above mutually 

inconsistent? I believe so. It is difficult to see how we could talk 

about logical types from foundations of mathematics and 

unsound types of Dart at the same time. Yet, it is still useful to 

think about both of them as an instance of the same concept! 

Types as sociological boundary objects 

Should we then identify the distinct research programmes and 

name the concept of type differently and unambiguously in 

each of them to avoid confusion? There is more to types. In 

particular, they are what sociologists call boundary objects: 

Boundary objects are objects which are both plastic 
enough to adapt to local needs and constraints of the 
several parties employing them, yet robust enough to 
maintain a common identity across sites.37  

This definition fits well with how types are used in program-

ming. They are used differently by different communities (fol-

lowing different research programmes), but we are not talking 

about completely different things! Hence, it makes sense to use 

a common name for types across multiple research program-

mes. As boundary objects, types are very valuable entities: 

They have different meanings in different social worlds 
but their structure is common enough (…) to make them 
recognizable, a means of translation. The creation and 
management of boundary objects is key in developing and 
maintaining coherence across intersecting social worlds.38 

34 Pierce (2002) 
35 Feyerabend (2010), 20 
37 Star, Griesemer (1989) 
38 Ibid 
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In other words, types let us translate interesting ideas between 

different research programmes. Examples are easy to find. 

Tooling that was developed based on types in Java (like auto-

completion) has been adapted and used for writing proofs in 

dependently typed languages, despite having a very different 

notion of type under the cover.  

How meaning changes through concept stretching 

To understand how the meaning of a type changes, we can find 

inspiration in philosophy of mathematics. In Proofs and refuta-

tions, Imre Lakatos tells the story of Euler characteristic of 

polyhedra (𝑉 − 𝐸 + 𝐹 = 2, where 𝑉, 𝐸, 𝐹 are the numbers of 

vertices, edges and faces) and describes how mathematicians 

face numerous counterexamples that were discovered (such as 

nonconvex polyhedra, polyhedra with tunnels etc.). 

Lakatos introduces the notion of concept stretching, which 

happens when a new counterexample (of a previously incon-

ceivable form) is discovered: 

Then came the refutationists. In their critical zeal they 
stretched the concept of polyhedron, to cover objects that 
were alien to the intended interpretation.39 

Concept stretching takes a concept and extends it to include an 

idea that is not explicitly ruled out by the formal definition, but 

is of a novel form and has not been considered before. 

Concept stretching also happens in the context of types. One 

example is using types to capture effects of a computation. This 

extends the idea of a type, but it also accidentally breaks 

standard interpretations of types (types as sets of values) and 

complicates the standard methods (syntactic soundness). Type 

providers are another example. They relativize the notion of 

safety and also suddenly provide thousands of types (or more) 

and so some of the established methods for working with types 

become unsuitable. (As a down-to-earth example, auto-comple-

tion lists become so long that they now need a search box!) 

In Lakatos’s story, there are monster-barrers who try to 

save the original interpretations and methods by labelling the 

newly discovered counterexamples as monsters that should be 

ruled out. However, this does not work: 

The curious thing is that concept stretching goes on surre-
ptitiously: nobody is aware of it, and since everybody's 
'coordinate-system' expands with the widening concept, 
they fall prey to the (…) delusion that monster-barring 
narrows concepts, while in fact, it keeps them invariant.40 

 
39 Lakatos (1979), 84 
40 Lakatos (1979), 86 
41 Latour (1987) 

The fact that concept stretching happens secretly is interesting 

for our discussion about types too. For example, the shift from 

Church’s simply typed lambda calculus to types in functional 

languages is larger than generally understood. However, once 

we see types as sets of values, it is very hard to go back and see 

the world through Church’s original perspective. 

The introduction of unsound type systems is another 

example of concept stretching. Like adding a tunnel through a 

polyhedra, it extends the concept of a type in a previously 

inconceivable direction. In this case, a large part of the prog-

ramming language community reacts as monster-barrers from 

Lakatos’s story. That is by labelling unsound type systems as 

monsters and refusing to admit them into a well-behaved 

society. It is not difficult to find modern variations on a quote 

that appears in Charles Hermite’s letter from 1893: 

I turn aside with a shudder of horror from this lamentable 
plague of functions which have no derivatives.  

Should we be precise about types? 

Research programmes and concept stretching help us better 

track how types are used. The reader might expect that I’ll 

now say that we should take extra care when talking about 

types, document our research programme and watch carefully 

to avoid (or acknowledge) concept stretching.  

Doing this is, indeed, a useful contribution to science, but 

it can only be done in retrospect once we know all the facts. 

As noted by Latour in Science in Action41, there are two sides: 

on the left, we know all the facts and have many strong allies; 

on the right, everything is in the making and under-determined. 

The work on the right is not a black-boxed science (yet), but 

once it becomes a black-box, it is as solid as anything else.  

This explains why we cannot point a finger at interesting 

work that has been unjustly rejected, e.g. for the lack of 

formalism. The things on the right side are not science, because 

they are not science42! Ubiquitous focus on formalism does not 

rule out parts of science. It defines what a science is.  

 

Against the definition of type 
When discussing types, we should be flexible enough to accom-

modate people such as Phaedrus from Pirsig’s Zen and the Art 

of Motorcycle Maintenance who identifies Aristotle as the 

founder of the modern scientific approach and laments:  

42 To avoid the tautology, just imagine that the statement on the left talks 

about time 𝑡 and the statement on the right talks about time 𝑡 − 1. 
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Phaedrus saw Aristotle as tremendously satisfied with 
this neat little stunt of naming and classifying everything. 
(…) he saw him as a prototype for many millions of self-
satisfied and truly ignorant teachers throughout the 
history who have smugly and callously killed the creative 
spirit of their students with this dumb ritual of analysis, 
this blind, rote, eternal naming of things.43 

Pirsig’s wording might be a hyperbole, but there is some truth 

in it. Creative uses of types and other concepts often break 

some of the established rules and principles of the time and we 

only find a way to reconcile them in retrospect. Paul Feyer-

abend’s philosophy presents a similar idea, but more seriously 

and with historical grounding.  

Epistemological anarchism and clarity of terms 

Searching for clarity is worthwhile, especially in retrospect, but 

we should not require it. The problem is that clarity means a 

different thing in retrospect and when new ideas are created. 

Paul Feyerabend explains how the requirement of clarity 

restricts and changes our thinking: 

[T]o 'clarify' the terms of a discussion does not mean to 
study the additional and as yet unknown properties of the 
domain in question which one needs to make them fully 
understood, it means to fill them with existing notions 
from the entirely different domain of logic and common 
sense, (…) and to take care that the process of filling obeys 
the accepted laws of logic.44 

New notions of type may not perfectly fit with the established 

understanding. Initially, this may not appear as a conceptual 

shift, but perhaps as a technical fault (that could be corrected). 

But this should not be a reason for rejecting them – we can 

accommodate the new notions, but only later once the accepted 
laws of logic evolve.  

For example, when types were first used for the tracking 

of effects the work was not rejected, despite the fact that it did 

not clearly describe the structure of “set of values” that a type 

with effect annotation denotes. One could invent an inelegant 

answer, but this would shift the focus of the work in a much 

less interesting direction. Feyerabend continues as follows: 

So the course of an investigation is deflected into the 
narrow channels of things already understood and the 
possibility of fundamental conceptual discovery is signi-
ficantly reduced.45 

 
43 Pirsig (1999), 360 

44 Feyerabend (2010), 200 

45 Ibid, 200 

This Feyerabend’s point beautifully describes why we should 

not strictly require clarity. Interesting developments (when 

new research programmes are born) often change the meaning, 

require the development of new methods and ways of thinking. 

Yet, these ideas can only be expressed using imperfect terms 

that are currently available. 

We could argue for the claims made in this section based 

on humanitarian grounds (and Feyerabend did that too), but 

the more important point here is historical. If we look at the 

past developments in science, we can see that Feyerabend’s 

[epistemological anarchism] is more likely to encourage progress 
than its law-and-order alternatives46. 

How science actually works 

Feyerabend’s position may be extreme for some readers, but he 

is not alone. Both Lakatos (speaking of research programmes) 

and also Kuhn (speaking of research paradigms) argue that 

early developments start with vague concepts and even ignore 

experimental failures: 

Early work in a research program is portrayed as taking 
place without heed or in spite of apparent falsifications by 
observation47  

A case could be made to the effect that the typical history 
of a concept (…) involves the initial emergence of the 
concept as a vague idea, followed by its gradual clarifi-
cation as the theory (…) takes a more precise (…) form48 

In early development of a research programme, the focus is on 

achieving something new (capturing effects of computations, 

providing better developer tools in dynamic environment), but 

other issues that are important for established science (what 

Chalmers calls apparent falsifications) can be ignored. In 

Kuhn’s research paradigms, the situation is similar – paradigms 

emerge when current approaches start failing, but they emerge 

in imperfect forms. 

However, the difficulty is noticing when a new research 

programme starts to emerge. This is possible to see in 

retrospect, but not during the development itself. Feyerabend 

summarizes this position with his famous slogan: 

To those who look at the rich material provided by history 
and who are not intent on impoverishing it in order to 
please their lower instincts, their craving for intellectual 
security in the form of clarity, precision, ‘objectivity’, ‘truth’, 
it will become clear that there is only one principle that can 

46 Feyerabend (2010) 

47 Chalmers (1999), 135 

48 Chalmers (1999), 106 



8 

 

be defended under all circumstances and in all stages of 
human development. It is the principle: anything goes.49 

As Feyerabend later said, ‘anything goes’ is not a principle, but 

the terrified exclamation of a rationalist who takes a closer look at 
history50. And I believe that the complex developments of the 

notion of types outlined in the introduction also support this 

position.  

Now, this does not mean that we should abandon all prin-

ciples in all situations. This is not what Feyerabend advocates. 

When working within a well-developed area, it makes sense 

follow its principles and exact definitions that it provides: 

We see that the principles of critical rationalism (…), 
though practiced in special areas, give an inadequate 
account of the past development of science as a whole and 
are liable to hinder it in the future.51 

Looking at the history of science supports the main idea of this 

essay. That is, we should not require a precise definition of the 

notion of ‘type’. Requiring clarity means that we can only talk 

about things we already understand – perhaps in greater detail, 

with more generality and in more elegant ways, but not about 

fundamentally new ideas. 

There are two areas where new ways of thinking about 

types can be especially valuable. The first is in new and previ-

ously unexplored domains. When types are used in a new 

domain, their meaning might change and it can take time before 

we settle on a clear formal definition. The second area is when 

we want to talk about types universally and include many of 

the rich and diverse precise definitions.  

 

Living with undefined types 
A type is not a formal concept that can have a precise defini-

tion. This can be the case in some narrow areas and we can use 

the precise definition within the narrow area, but how can we 

work with types if we want to operate and think outside of a 

particular research programme? 

Philosophy of science describes a number of methods or 

ways of thinking that do not require precise definitions. That 

these provide a useful complement to the rigorous methods 

that we use when operating within a narrow and formalized 

areas of an established research programme.  

 

 
49 Feyerabend (2010), 12 
50 Ibid, vii 
51 Ibid, 160 

There are many theories to look at, but in this essay, I 

explore three ways of thinking about types. These are based on 

how we use types, what are conventional ideas associated with 

types and what we can do with types.  

Language games and how we use types 

One way of understanding the meaning of a term without a 

precise definition is to look at the context in which it is used. 

Feyerabend suggested that this is how terms attain their mea-

ning in early stages of theory development: 

The terms of the new language become clear only when 
the process is fairly advanced, so that each single word is 
the center of numerous lines connecting it with other 
words, sentences, bits of reasoning, gestures which sound 
absurd at first but which become perfectly reasonable 
once the connections are made.52 

The philosopher who first claimed that “meaning is use” is 

Ludwig Wittgenstein. I believe that his ideas on language can 

suggest ways of dealing with undefined terms in science too. 

He describes the idea in Philosophical Investigations as follows: 

For a large class of cases of the employment of the word 
“meaning” – though not for all – this word can be explai-
ned in this way: the meaning of a word is its use in the 
language.53 

Similarly, the meaning of a scientific term can be explained by 

its use in the scientific community. When discussing different 

notions of types earlier, we looked at both what types are 

(undefined hierarchy, sets, spaces), but also how they are used 

(avoiding errors, providing documentation, etc.).  

The idea here is that we focus just on how types are used, 

because this is what types are. This may sound unorthodox, 

but it resolves one of the key issues we face when looking for a 

universal notion of type – studying the use does not require 

consistent definitions.  

To understand types, we can study how they are used in 

different contexts. Wittgenstein calls these contexts language 
games, but what are the language games surrounding types? 

There are natural contexts that already exist and there are a 

lot of them: proving program properties with types, documen-

ting developer intentions with types, improving performance 

with types and so on. The language games also change in time. 

For example, the “using types to build foundations of 

mathematics” language game has been at the birth of types, but 

52 Feyerabend (2010), 200  
53 Wittgenstein (2009), no.43 
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has only regained prominence with the later developments of 

Per Martin-Löf’s type theory and homotopy type theory.  

However, documenting the existing language games is only 

one part of our investigation: 

It is not the business of philosophy to resolve a con-
tradiction (…), but to render surveyable the state of 
mathematics that troubles us (…). [W]e lay down rules, a 
technique, for playing a game and that then, when we 
follow the rules, things don’t turn out as we had assumed. 

To paraphrase the above quote, we do not need to resolve all 

the inconsistencies between different understandings of types. 

Instead, we can focus on creating interesting new contexts in 

which the concept of a ‘type’ can be used and explored.  

What would be such language games for exploring proper-

ties of types? One example I can think of is the well-known 

puzzle referred to as the expression problem54. The problem is 

extending a set of objects and functions in two directions – by 

adding new kinds of objects and new functions. 

For example, objects may represent numerical expressions 

(constant, variable, addition) and functions operations over 

them (pretty printing, evaluation). In some type systems, it is 

easy to add new kinds of objects. In other type systems, we can 

add functions, but adding new objects is hard. 

The language game sets perhaps unreasonable constraints 

(we should not require recompilation), but that is not a flaw. 

Instead, it reveals the abstraction and error-checking capabi-

lities of a system. At the same time, it  can be used for looking 

at a large number of very diverse notions of type. 

The expression problem gives a very specific perspective 

(just like some of Wittgenstein’s language games), but it shows 

how we can talk about types without requiring a clear defi-

nition. To my best knowledge, there are not many puzzles or 

language games similar to the expression problem, and so con-

structing language games to explore other properties of types 

is one interesting open question of this essay.  

Stereotypes and the meaning of types 

Seeing programming language research through the perspec-

tive of competing research programmes explains why different 

communities view types differently, but it makes it difficult to 

say what the meaning of type is outside of the individual re-

search programmes. Intuitively, we still have some overall idea 

about types, so saying that there is no meaning seems wrong. 

One philosopher who addresses this question in the con-

text of meaning of words is Hilary Putnam. However, the 

 
54 Wadler (1998) 
55 Hacking (1983), 75 

following motivation from Ian Hacking’s book is a perfect fit 

for the problem addressed in this essay too: 

[W]e need an alternative account of meaning which 
allows that people holding competing or successive theo-
ries may still be talking about the same thing.55 

Putnam’s theory is interesting because it gives us a way to talk 

about meaning in the real setting where different people talk 

about types, but using different perspectives. I find it useful as 

another example showing that we can think about things 

without precise definitions. 

Hacking introduces Putnam’s theory using an analogy 

with a dictionary. What would a dictionary definition for a 

programming language concept of type consist of? 

A dictionary begins an entry with some pronounciation 
and grammar, proceeds past etymology to a lot of inform-
ation, and may conclude with examples of usage. 

Putnam’s meaning is specified by four components – syntactic 

marker (type is a countable noun), semantic marker (a category 

to which type belongs, i.e. computer science entity), stereotype 

and extension (set of all things that are type). 

The interesting part of the definition (and the part that is 

interesting for this essay) is stereotype: 

[A] standardized description of features of the kind that 
are typical, or ‘normal’, or at any rate stereotypical. The 
central features of the stereotype generally are criteria – 
features which in normal situations constitute ways of 
recognizing if a thing belongs to the kind (…).56 

This is a down-to-earth notion of meaning, but I believe that 

this is how many practitioners of the field think about types. 

We know what features are generally associated with ‘types’ 

and we can, certainly, use those to recognize a type. 

Putnam illustrates the idea using tigers as an example. One 

such stereotype about tigers is that they are striped. But a 

white albino tiger is still a tiger. Similarly, a type is a classifi-

cation of values that computations can produce. But a type that 

represents behaviour of computation is also a type. A type is a 

decidable syntactic program property, but a type that cannot 

be effectively decided is still a type. A type can be used to rule out 

errors, but a type that does not rule out all errors is still a type. 

Another useful point made by Hacking is that illustrations 

in children books illustrate the stripiness of tigers to build the 

stereotype. Similarly, the Types lecture notes at the start of 

this essay and computer science textbooks discuss properties of 

56 Putnam, p230 
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type systems to build a stereotype about types. But this does 

not necessarily mean that they give a full account of what a 

type is. Indeed, stereotypes are not exact definitions:  

The fact that a feature (e.g. stripes) is included in the ste-
reotype associated with a word X does not mean that it is 
an analytical truth that all Xs have that feature, nor that 
most Xs have that feature. (…) If tigers lost their stripes 
they would not thereby cease to be tigers.57 

Just like tigers can lose their stripes, types can lose some of their 

stereotypes. The stereotypes associated with the early notion 

of types included their use to avoid paradoxes, but also many 

other things (such as categorization of terms in a formula). The 

avoidance-of-paradoxes stereotype has been lost when types 

started to be used in programming languages, but other stere-

otypes associated with them remained. Similarly, properties 

that we ascribe to types now may not be representative stereo-

types of types in the future. 

When discussing Wittgenstein’s language games in the pre-

vious section, I concluded with the suggestion that we should 

construct new language games to explore properties of types. 

Unlike language games, Putnam’s theory does not suggest any 

new method of inquiry. However, I think that it is useful for 

another reason – it is perhaps the closest explanation to how 

computer scientists think about types. As such it makes explicit 

some of the aspects of meanings of types. 

We should also keep stereotypes in mind when reading 

textbooks. A textbook description is two things – a formal defi-

nition within the context of a narrow research programme and 

stereotypes for types in the broader sense. We should not be 

confusing the two! 

Scientific entities and doing things with types 

So far, this essay was focused more on how we think about 

types, but we can also take a practical attitude and look at doing 

things with types. The idea underlying this section is that we 

can do interesting things with types without having a full and 

developed theory of what types are. 

In the context of programming languages, a similar point 

has been made by Richard P. Gabriel in his recent essay: 

[I]n the pursuit of knowledge, at least in software and 
programming languages, engineering typically precedes 

 
57 Putnam (1979), 250 
58 Gabriel (2012) 
59 Hacking (1983), 158 
60 Ibid, 175 

science (…) even if science ultimately produces the most 
reliable facts, the process often begins with engineering.58 

I agree with Gabriel that many interesting ideas in program-

ming languages start with engineering or experimentation. This 

might be because experimentation in computing is very cheap 

compared to natural sciences – but, as a matter of fact, the same 

has been said about science in general. 

Ian Hacking defends a very similar position, which has 

been labelled new experimentalism: 

[I] make no claim that experimental work could exist 
independently of theory. (…) It remains the case, however, 
that much truly fundamental research precedes any 
relevant theory whatsoever.59 

I will not discuss the details in this essay. Hacking’s excellent 

book provides a number of examples showing that there have 
been important observations in the history of science, which have 
included no theoretical assumptions at all60. 

Another interesting point made by Hacking is that it is the 

theoreticians who appear in the history books. This explains 

why we can easily recall authors of famous theories, but hardly 

remember any famous experiment and experimenters:   

Before thinking about the philosophy of experiments we 
should record a certain class or caste difference between 
the theorizer and the experimenter. It has little to do with 
philosophy. We find prejudices in favour of theory, as far 
back as there is institutionalized science.61 

Despite the prejudices against the experimentalist approach to 

computer science (even the word engineering seems to have 

negative connotations in some circles!), I believe that it is an 

extremely valuable approach. And indeed, there are many 

systems that involve types which were not preceded by a full-

scale theory, but provided useful and novel insights. 

Type providers can be used as an example. They first 

appeared in the F# 3.0 language in 2011, but without a full 

theory that would be usual in theory-founded work. Yet, type 

providers already influenced other languages63 and the theory 

explaining them started appearing too.64 

An important question about experimentalist work in 

programming languages is, how do we observe the results of 

our experiments? (Here, I intentionally avoided using the term 

‘evaluate’, which suggests quantitative measurements; for 

experiments, it is sufficient to observe interesting results.) 

61 Ibid, 150 
63 Christiansen (2013) 
64 Petricek (2015) 
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Types as scientific entities and types in practice 

According to new experimentalists, experimenting is not 

stating or observing, but doing. What matters is how scientific 

entities can be manipulated to cause other interesting effects. 

Hacking uses electrons as an example, but we can similarly 

think about types: 

[F]rom the very beginning people were less testing the 
existence of electrons than interacting with them. (…) The 
more we come to understand some of the causal powers of 
electrons, the more we can build devices that achieve well-
understood effects in other parts of nature.65 

What can we cause with types? I think the new experimentalist 

perspective suggests an important point about programming 

language experiments. We can implement a compiler or a type 

checker for a given type system, but this is merely a different 

way of presenting the same theory. 

When experimenting in programming languages, we need 

to create experiments that somehow interact with the outside 

world. Tools such as theorem provers are an interesting 

example. They have types at their very core, but are used to 

create other valuable things using them. 

The other option is to observe how our experimental 

system can be used in practice. I previously argued that one 

way of presenting such computing experiments is in the form 

of case studies66, but I believe that this is an underexplored area 

with interesting possibilities. For example, the Future of 

Programming workshop67 made it possible to submit (what I 

would call) experiment reports in the form of webcasts. 

There are two more points about new experimentalism 

that I find relevant to work on programming languages and 

types. To quote Chalmers’s introduction of the philosophy: 

It is argued that experimentalists have a range of practi-
cal strategies for establishing the reality of experimental 
effects without needing recourse to large-scale theory. (…) 
[I]f scientific progress is seen as the steady build-up of the 
stock of experimental knowledge, then the idea of cumu-
lative progress in science can be reinstated (…).68 

In science, isolating a stable and repeatable experiment is hard 

and experimentalists have practical ways for making repro-

ducible experiments. Quite similarly, programming language 

experimenters or engineers have ways of producing systems 

 
65 Hacking (1983), 262 
66 Petricek (2014) 
67 Available at: http://www.future-programming.org/ 
68 Chalmers (1999), 194 
69 For example, F# type providers can be parameterized by values of 

primitive types (integers, strings, etc.), but not by arbitrary types and, in 

that work in practice (now you can again see the prejudices 

against experimentalism; even the phrase works in practice is 

frowned upon). This is an important point – for example, some 

of the practical limitations of type providers limit their scope 

to an area where the mechanism works well69. But in theory-

oriented work, such limitations would remove much of the 

complexities and subtleties that theoreticians find interesting. 

The second important point that Chalmers makes is that 

new experimentalism makes it possible to recover the idea of 

cumulative growth of knowledge. As can be seen from my 

introduction, the notion of type is changing and so we cannot 

claim we are getting closer to a ‘perfect’ type. However, if we 

accumulate the experiments – practical problems that can be 

solved with types – we have a way of talking about growth of 

scientific knowledge. 

To conclude this section, another way of working with 

types is to experiment and see what we can do with types. The 

history of science shows that this experimentalist approach is 

fruitful method. I also believe that we have a unique chance to 

find new and better ways of presenting experimental observa-

tions. The webcast format pioneered at the Future of Program-

ming workshop is a good example.  

Despite the prejudices against experimentalism in both 

science and computing, doing experiments is an important part 

of science and experiment have a life of its own70: 

One can conduct experiment simply out of curiosity to see 
what will happen. (…) The physicist George Darwin used 
to say that every once in a while one should do a comple-
tely crazy experiment (…).71 

 

Conclusions 
This essay was inspired by the frequent misunderstandings 

when discussing types. Although we have good understanding 

of types in narrow domains, I argued that it is impossible to 

give a formal and universal definition of what a type is. Rather 

than seeking the elusive definition that does not exist, we 

should instead look for innovative ways to think about and 

work with types that do not require an exact formal definition. 

To motivate the essay, I started with a brief and incomple-

te history of types. As the examples demonstrate, the meaning 

particular, not by other user-defined types. This would extend the focus of 

the feature from data-access to meta-programming – this is equally 

interesting problem, but very different and more theoretically complex. 
70 Hacking (1983), xiii 
71 Hacking (1983), 154 
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and the purpose of types is continuously changing and different 

communities have different core beliefs of what a type is. In 

philosophy of science, this is known as concept stretching and 

research programmes. If we look at the history, we find some 

structure and precise definitions locally, but this can never 

capture the full complexity of scientific reality and requiring 

such precision can even harm scientific progress. 

It we want to talk about types outside of a narrow research 

programme, we need to find ways of dealing with types 

without a precise definition. I proposed three alternatives – 

those are based on how we use types (inspired by Wittgen-

stein’s language games), what is the conventional idea of type 

(based on Putnam’s stereotypes) and what we can do with types 
(inspired by Hacking’s new experimentalism). I believe that 

these provide worthwhile methods of inquiry that can provide 

interesting insights into what types are outside of a narrow 

boundary delimited by a particular formal definition. 
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