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and ( , )y b  in V (so ,x y H!  and , R!a b ) 
one defines a Jordan product by

( , ) ( , ) ( , , ) .x y x y x y: G Ha b b a ab= + +

Finally we should also  mention the space 
( )C K  of continuous functions on a compact 

Hausdorff space K with Jordan product 
f g fg: = , which is an associative Jordan 
algebra. 

In a famous paper Jordan, von Neumann 
and Wigner classified the finite dimension-
al formally real Jordan algebras [6]. They 
showed, in finite dimensions, that every 
formally real Jordan algebra can be writ-
ten as a direct sum of simple ones of 
which there are only five types: the space 
of symmetric n n#  real matrices, ( )RSn , 
with n 3$ , the space of n n#  Hermitian 
matrices, ( )FHn , over the fields C and 
H with n 3$ , the spin factors with H an 
n-dimensional real inner-product space 
with n 0$ , and an exceptional one ( )OH3 , 
where O are the octonians. This is a 27- 
dimensional formally real Jordan algebra 
which is also known as the Albert algebra.   
In all but the spin factors the Jordan prod-
uct is as in (1).

Symmetric cones
A deep connection between finite dimen-
sional formally real Jordan algebras and 
the geometry of cones was independently 
discovered by Koecher [8] and Vinberg [16].

Here a cone C is a convex subset of a real 
vector space V such that ( ) { }C C 0+ - =  

More generally one can consider the 
space of bounded self-adjoint operators 
on a Hilbert space H, denoted ( )B H sa, and 
define a Jordan product A B:  as in (1). An-
other interesting class of examples are the 
so called spin factors which are defined as 
follows. Let H be a Hilbert space with inner 
product ,$ $G H and let V H R5= . For ( , )x a  

The notion of a Jordan algebra has a long 
and rich history in mathematics. It was 
originally introduced by Pascual Jordan in 
a quest to find alternative algebraic set-
tings for quantum mechanics. Although 
this program failed, Jordan algebras turned 
out to have deep connections with diverse 
areas of mathematics including Lie theo-
ry, differential geometry and mathematical 
analysis.

A real Jordan algebra is a real vector 
space A with a bilinear product ( , )a b ! 

a bA A A7# : !  satisfying

1. a b b a: := ,
2. ( ) ( )a a b a a b2 2: : : :=  (Jordan Identity).

So, Jordan algebras are commutative, but 
in general fail to be associative — the Jor-
dan Identity only gives power associativity.

Throughout this article we will assume 
that the Jordan algebra has a unit, denoted e. 
A Jordan algebra is said to be formally 
real if a b 02 2+ =  implies a 0=  and b 0= . 
A prime example of a formally real Jordan 
algebra is the space of n n#  Hermitian ma-
trices, ( )CHn , with Jordan product

A B AB BA
2: = + (1)

for , ( )A B CHn! .
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It is known that if a A!  is invertible, then 
Aut( )Q Aa ! + , see [5, Proposition III.2.2].

Using these results we can now make 
the connection with Riemannian symmetric 
spaces. Indeed, if A is a finite-dimensional 
formally real Jordan algebra, then the  sym-
metric cone A+%  can be equipped with a 
Riemannian metric,

( , )

( ),

log

log

a b Q b

Q b

a

i ai
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d
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= =
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/
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where the ( )Q bi am /1 2-  are the eigenvalues 
of Q ba /1 2-  including multiplicities. Indeed, 
d is a length metric, i.e.,

( , ) ( ),infa b Ld c=
c

where the infimum is taken over all (piece-
wise) smooth paths : [ , ] A"c a b %

+ from a 
to b, and the length of c is given by

( ) '( ) d .L Q t t( )t 2
/1 2c c= c

a

b
-#

The Riemannian manifold ( , )A d%+  is a sym-
metric space. In fact, at each a C! % the 
map :S A Aa "+ +

% %  given by

( ) ,S b Q b bfor Aa a
1 != -

+
%

is a symmetry at a, i.e., a d-isometry that 
has a as an isolated fixed point and satis-
fies IdSa

2 =  on A+% .

Infinite-dimensional symmetric cones
There exists no analogue of the Koecher–
Vinberg characterisation of formally real 
Jordan algebras in terms of the geometry of 
cones in infinite dimensions. One obvious 
obstruction is the fact that most infinite- 
dimensional formally real Jordan algebras 
are not realised in an inner-product space, 
so there is no natural notion of self-duality, 
nor, can one define a Riemannian metric 
on the interior of the cone of squares. Re-
cent works [3, 4, 10, 17], however,  indicate 
that there may exist alternative notions of 
‘symmetric’ cones that would allow one to 
characterise the formally real Jordan alge-
bras in arbitrary dimensions and thereby 
extending the Koecher–Vinberg result. The 
main purpose of the workshop was to ex-
plore these possibilities. In the remainder 
of this article we will outline some of the 
promising approaches that were discussed.

To set up the problem in infinite dimen-
sions it is natural to consider a beautiful 
infinite-dimensional generalisation of the 
formally real Jordan algebras due to Alfsen, 
Schultz and Stormer [1] which are called 

An element c of A is called an idempo-
tent if c c2 = , and it is said to be primitive 
idempotent if it cannot be written as the 
sum of two non-zero idempotents. 

Now suppose that A is a finite-dimen-
sional Euclidean Jordan algebra. A set 
{ , , }c c Ak1 f 3  of primitive idempotents 
is called a complete system of orthogonal 
primitive idempotents, or, a Jordan frame if

1. c c 0i j: =  for all i j! ,
2. c c ek1 g+ + = .

The Spectral Theorem [5, Theorem III.1.2] 
says that for each a in a finite-dimen-
sional Euclidean Jordan algebra A there 
exists a Jordan frame { , , }c ck1 f  and 
unique real numbers k1 g# #m m  such 
that a c ck k1 1 gm m= + + . In fact, ( )av = 
{ , , }k1 fm m . Note that some of the im  may 
be equal. Thus, any element has a spec-
tral decomposition in terms of orthogonal 
primitive idempotents. Using this fact it 
can be shown that the interior, A+% , of the 
cone of squares satisfies

{ : ( ) ( , )}

{ : } .

x x

x x

0

invertible

A A

A2

3! 3

!

v=

=

+
%

We also have a functional calculus. For 
example, for a c ck k1 1 gm m= + +  we can 
define

( ) ( )log log loga c ck k1 1 gm m= + +

and

.a c c/ / /
k k

1 2
1
1 2

1
1 2gm m= + +- - -

Given a A! , the linear map :Q A Aa "  
given by

( ( ))Q b a a b a b2a
2: : := -

for b V!  is called the quadratic rep-
resentation of a. In case of ( )CHn  it is 
easy to check that Q B ABAA =  for all B.

and C C3m  for all 0$m . Koecher and 
Vinberg showed that the interior, A+% , of 
the cone of squares { : }x xA A2 !=+  in 
a finite-dimensional formally real Jordan 
algebra is a symmetric cone. Recall that 
the interior, C%, of a cone C in a finite di-
mensional vector space V is a symmetric 
cone if

1. there exists an inner product ( )$ $;  on V 
such that C is self-dual, i.e.,

2. 

{ : ( ) },

C C

y V y x x C0 for all! ; $ !

=

=

*

C% is homogeneous, that is to say, the 
group of (linear) automorphisms of C, 

Aut( ) { GL( ): ( ) },C A V A C C!= =

acts transitively on C%.

Conversely, any symmetric cone in a finite- 
dimensional vector space V can be realised 
as the interior of the cone of squares of 
a formally real Jordan algebra on V. For 
example, the Lorentz cone,

{( , , , ) :

},

x x x

x x x

Rn n
n

n n
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K =

+ +
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is the cone of squares in the spin factor 
R Rn5 .

This characterisation of finite-dimen-
sional Euclidean Jordan algebras provides 
a connection with the geometry of real 
manifolds. Indeed, symmetric cones are 
prime examples of Riemannian symmetric 
spaces. To explain this connection in more 
detail we need to recall some basic results 
from the Jordan theory. Let A be a real 
Jordan algebra with unit e. The spectrum of 
a A!  is given by 

( ) { : } .a a e is not invertibleR!v m m= -

Max Koecher Ernest Vinberg
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( , ) Length( ),infd v wT c=
c

where the infimum is taken over all piece-
wise smooth paths : [ ], C"c a b % from v to 
w, and

Length( ) ( ) d .' t t( )tc c= c

a

b

#

Here ( )t$ c  is the order-unit norm with re-
spect to the order-unit ( )t C!c %. So, ( , )C d%  
is a Finsler manifold.

As in finite-dimensional Euclidean Jordan 
algebras the group Aut( )A+  acts transi-
tively on the interior of the cone of squares 
in a JB-algebra. Indeed, given ,a b A! +

% , 
the automorphism Q Qb a/ /1 2 1 2-%  maps a to b. 
So, ( , )dA T+

%  is a homogeneous Finsler 
manifold.

In analogy to the Riemannian case we 
call a Finsler manifold ( , )M d  symmetric if 
for each x M!  there exists a d-isometry 
:S M Mx "  which has x as an isolated 

fixed point and satisfies IdSx
2 =  on M. 

This definition is motivated by the fact 
that if A is a JB-algebra, the Finsler man-
ifold ( , )dA T+

%  is symmetric. In fact, in that 
case, the symmetries coincide with the 
Riemannian symmetries in finite dimen-
sions. So for each a C! % the symmetry at 
a is given by

( ) .S b Q b b Cfora a
1 != %-

To see that Sa is indeed a dT- isometry 
we first note that if :T C C"  is an auto-
morphism of the cone C in an order-unit 
space, then for each ,x y C! % we have that 
x y# b  if and only if Tx Ty# b , and hence 
( / ) ( / )M x y M Tx Ty= . Thus, every automor-

phism of A+ is a dT-isometry. The symme-
try Sa is the composition of the automor-
phism Qa of A and the map : b b 17k - .

Now note that b a1 1# b- -  is equivalent 
to e Q ab

1/1 2# b - . As ( )Q y Q yx x
1 11=- --  for 

all ,x y C! %, we deduce that b a1 1# b- -  
if and only if ( )e Q ab

1/1 2# b -- , which is 
equivalent to 

.Q a Q e e( )b Q a/ /
b

1 2 1 2/1 2 # b=- -

This implies that b a1 1# b- -  is equiva-
lent to a b# b , and hence ( ( )/ ( ))M b ak k = 
( / ) ( / )M b a M a b1 1 =- -  for all ,a b A! +

% . This 
proves  that k is a dT-isometry as well.

Using the notion of a symmetric Finsler 
manifold a natural way to answer Question 
1 would be by establishing the following 
conjecture.

There appear to be several natural ap-
proaches to establish such a characterisa-
tion.

A Finsler geometric approach
The first one takes a Finsler geometric 
point of view. It relies on the fact that the 
interior of the cone in an order-unit space 
( , , )V C u  can be equipped with a natural 
Finsler metric, namely Thompson’s metric. 
This metric connects the order structure of 
the cone with its metric geometry in the 
following way. On C%, Thompson’s metric 
is defined by

( , ) { ( / ), ( / )}max log logd v w M v w M w vT =

for ,v w C! %,where

( / ) { : }infM x y x y0> #b b=

for ,x y C! %. For example, in the case of 
the JB-algebra ( )B H sa we have for A and 
B in the interior of the cone ( )B H sa

+  that 
A B# b  if and only if

,B AB Q A I/ /
B

1 2 1 2 /1 2 # b=- - -

as QB /1 2-  is an automorphism of the cone. 
Thus, 

( / )

{ : ( )}

( ) .

log

sup log

sup log

M A B

B AB

B AB

/ /

/ /

1 2 1 2

1 2 1 2

!m m v
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=

- -

- -

On the other hand, B A# a  if and only if

,I B AB Q A/ /
B

1 1 2 1 2 /1 2#a =- - - -

as QB /1 2-  is in automorphism of the cone. 
Thus,

( / )

{ : ( )}

( ) .

log

sup log

inf log

M B A

B AB

B AB

/ /

/ /

1 2 1 2

1 2 1 2

!m m v
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= -

=-
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So, we get that

( , )

{| | : ( )}

.

max log

log

d A B

B AB

B AB

/ /

/ /

T

1 2 1 2

1 2 1 2

!n n v=

=

- -

- -

In fact, on the interior of the cone in a 
JB-algebra A, Thompson’s metric satisfies

( , ) {| | : ( )}max log

log

d a b Q a

Q a
T b

b

/

/

1 2

1 2

!n n v=

=

-

-

for all ,a b A! +
% . In an order-unit space 

Thompson’s metric is a length metric on 
C% with a Finsler structure [14]. Indeed, if v 
and w are points in C%, then

JB-algebras. A JB-algebra is a real Jordan 
algebra A, which is equipped with a norm 
$  making it a Banach space, where the 

norm satisfies:

1. a b a b: #  (Banach algebra con-
dition),

2. a a2 2=  (C*-algebra condition),
3. a a b2 2 2# +  (positivity condition),

for all ,a b A! . Note that condition 3 en-
sures that the Jordan algebra is formally 
real. Moreover, the JB-algebra norm satis-
fies e e e2 2= = , so that e 1= .

The JB-algebras naturally belong to 
category of so called complete order-unit 
spaces. Recall that a cone C in a real vec-
tor space V induces a partial ordering # on 
V by v w#  if w v C!- . An element u C!  
is called an order-unit if for each v V!  
there exists [ , )0 3!m  such that

.u v u# #m m-

The triple ( , , )V C u  is called an order-unit 
space if, in addition, C is Archimedean,  
meaning that if v V!  and w C!  are such 
that nv w#  for all , , ,n 1 2 f=  then v 0# . 
An order-unit space has a natural norm, 

{ : },infv u v u0>u # #m m m= -

which is called the order-unit norm. With 
respect to this norm the cone C is closed 
and has a non-empty interior. In fact, 
u C! %. We call the order-unit space com-
plete if it is complete with respect to the 
order-unit norm. 

If A is JB-algebra with cone of squares  
A+ and unit e, then the triple ( , , )eA A+  is 
a complete order-unit space and the JB-al-
gebra norm $  coincides with the order 
unit norm e$ . We should mention that 
in finite dimensions the JB-algebra norm 
is different from the norm induced by the 
inner-product  under which  the cone of 
squares is self-dual.

As each finite-dimensional vector space 
V with a closed cone C that has a non-empty 
interior, is a complete order-unit space, the 
Koecher–Vinberg characterisation can be 
recast as saying that a finite dimensional 
order-unit space ( , , )V C u  is a JB-algebra if 
and only if the interior of the cone is sym-
metric. So, it is natural to ask the following 
question.

Question 1. Can we characterise the JB-al-
gebras among the complete order-unit 
spaces in terms of the geometry of the 
cone in arbitrary dimensions?
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In fact, this conjecture is known to 
hold for finite-dimensional order-unit 
spaces by recent work of Walsh [17]. Ad-
ditional supporting evidence was provid-
ed by Lemmens, Roelands and van Im-
hoff in [10], where it was shown that if 
( , , )V C u  is a complete order-unit  space 
with a strictly convex cone, then there 
exists a bijective anti-homogeneous or-
der-antimorphism :g C C"% % if and only if 
V is a spin factor.

During the workshop various related 
problems and approaches were discussed. 
Overall it was a very fruitful meeting, 
which provided an ideal opportunity for 
researchers with diverse mathematical 
backgrounds to meet. The format of the 
workshop worked well with four hours of 
lectures each day: a two-hour introduc-
tory talk introducing the main theme of 
the day and two one-hour talks that were 
more specialised. There was plenty of time 
for discussion and small group collabora-
tions. We also had two stand-up sessions 
for which people could sign up to present 
further thoughts, or lead a discussion, on 
the problems and results. These sessions 
worked well and quickly became very lively 
with a lot of audience participation. The 
workshop has already stimulated new work 
in this area, see for example the recent pa-
per by Bertram [2], and will undoubtedly 
have further impact in years to come. s
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are in one-one correspondence with JB*-al-
gebras. Since JB*-algebras are exactly the 
complexification of JB-algebras, the one-
one correspondence would  provide a way 
to establish Conjecture 2.

Alternatively, one could start by making 
additional assumptions on the symmetries 
in the Finsler manifold ( , )C dT

% . Inspired by 
Loos’s definition of symmetric spaces [13] 
one could for example assume in addition 
that the symmetries Sx are smooth and 
satisfy

( ( ( ))) ( ) , , .S S S z S z x y z Cfor all( )x y x S yx
!= %

Both these assumptions hold in the case 
of a JB-algebra.

An order theoretic approach
The second approach to answering Ques-
tion 1 takes a purely order theoretic point 
of view and is more ambitious. If we con-
sider  the symmetry Se at the unit e  in 
a JB-algebra A, we get the inverse map 
: a a 17k -  on A+% . This map has a special 

order theoretic property; namely, it is an 
order-antimorphism, i.e.,

( ) ( ) .a b b aif and only if# #k k

Moreover, k is anti-homogeneous in the 
sense that ( ) ( )a a1k m m k= -  for all 0>m  and 
a A! +

% .
There is some evidence indicating that 

the following striking order theoretic char-
acterisation of JB-algebras holds.

Conjecture 2. If ( , , )V C u  is a complete order- 
unit space, then there exists a bijective 
anti-homogeneous order-antimorphism :g  
C C"% % if and only if V is a JB-algebra 
with unit u, cone of squares C, and JB-al-
gebra norm u$ .

Conjecture 1. If ( , , )V C u  is a complete order- 
unit space, then ( , )C dT

%  is a symmetric 
Finsler manifold if and only if V is a JB-al-
gebra with unit u, cone of squares C, and 
JB-algebra norm u$ .

A significant complication to solve Con-
jecture 1 arises through the fact that geo-
desics are in general not unique for Thomp-
son’s metric [9], which is a key difference 
with the finite-dimensional Riemannian 
case. However, if the order-unit space is a 
JB-algebra A, then there are distinguished 
geodesics between points ,a b A! +

%  for 
Thompson’s metric, which are given by 
( ) ( )t Q Q bab a a

t/ /1 2 1 2|c = - , see [12]. In finite- 
dimensional formally real Jordan algebras 
these distinguished geodesics are precisely 
the geodesics for the Riemannian metric. 
It turns out that in a JB-algebra, the sym-
metries Sa map distinguished geodesics to 
distinguished geodesics [11]. Thus, in the 
JB-algebra setting the Finsler geometry of 
Thompson’s metric  shares certain geomet-
ric features with the Riemannian geometry 
in finite dimensions.

One way to establishing Conjecture 1 
would be by connecting it with existing re-
sults for complex Jordan algebras, known 
as JB*-algebras, see [15]. If ( , , )V C u  is an 
order unit space, then we can consider its 
complexification iV V VC 5= . The set

{ : Im }T z V z CC C! != %

is called a tube domain if it is biholomor-
phic to a bounded domain in VC. A tube 
domain TC is called symmetric if at each 
z TC!  there exists a holomorphic involu-
tion :S T Tz C C"  which has z as an isolated 
fixed point. In [7] Braun, Kaup and Upmeier 
showed that the symmetric tube domains 
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