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Circular dichroism studies of low molecular weight hydrogelators: 
addressing practical issues. 

 Efstratios D. Sitsanidis,[a] Carmen C. Piras,[a] Bruce D. Alexander,[b] Giuliano Siligardi,[c] Tamas 
Javorfi,[c] Andrew J. Hall,[a] and Alison A. Edwards*[a] 

Keywords: Supramolecular hydrogels, self-assembly, circular dichroism, spectral profile.

INTRODUCTION 
 
Low molecular weight (LMW) hydrogels are semi-solid 
viscoelastic materials composed of at least 99% water. Recently, 
the development of such materials has gained significant 
prominence due to their desirable physical properties and 
tuneable characteristics,1 leading to potential applications in areas 
such as catalysis,2,3 nanofabrication,4 sensing,5 tissue 
engineering,6–8 cell culture,9–11 wound healing12,13 and drug 
delivery.14–16 These soft materials arise from the self-assembly of 
small molecules in water via a number of intermolecular non-
covalent interactions, such as hydrogen bonding, ʌ-ʌ stacking, 
CH-ʌ bonds,17,18 metal coordination, van der Waals forces and 
solvophobic effects. It is these interactions that are responsible for 
the self-assembly which results in the gelation process and the 
encapsulation of solvent molecules within a three-dimensional 
fibrous network.19 There are several reports that describe the 
diverse nature of hydrogelators that can give rise to LMW 
hydrogels, where many have chiral components in their 
structure.20–24 The most common sources of intrinsic chirality are 
from amino acids and carbohydrates. 

It is the molecular packing of the building blocks (self-assembly) 
to create a gel that gives rise to a circular dichroism (CD) 
spectrum which is characteristic for the gel (Figure 1). This is due 
to the configurational alignment of the formed fibres, leading to 
higher order architectures (matrix). For example, the gelator in 
solution often has a slightly higher absorbance (since it is a true 
solution) compared to its corresponding gel. This is because the 
gelator typically forms a very weak solution/suspension due to 
its poorer solubility in the solvent that it gels.  By contrast, the 
CD spectrum of the solution is typically much weaker (or 
negligible) compared to that of the gel where the signals arise 
from the interaction of the chromophores in their self-assembled 
state. In solution, where the molecules are moving freely, the 
overall exciton coupling between the chromophores is 

significantly lower. This is in marked contrast to the organisation 
of the higher order architecture of the gel. Therefore, CD is 
commonly used to observe the process of gel formation by 
supramolecular assembly, where researchers tend to speak 
about the solution (or sol) to gel process, i.e. sol-gel or gelation 
process. Since LMW hydrogels assemble via non-covalent 
interactions, the sol-gel process can be readily reversed, e.g. by 
thermal destruction to create the corresponding 
solution/suspension (i.e. gel-sol process). 
 
INSERT FIGURE ONE HERE 
FIGURE 1 The utilisation of CD for the study of LMW gels.  

Examination of literature to establish appropriate protocols for 
the study of LMW hydrogels by  CD revealed a limited number 
of protocols and a wide variation of methods.25–27 We undertook 
a “bottom up” approach to measure the CD spectra of LMW 
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Abstract: Circular dichroism (CD) spectroscopy has been 
used extensively for the investigation of the conformation 
and configuration of chiral molecules, but its use for 
evaluating the mode of self-assembly in soft materials has 
been limited. Herein, we report a protocol for the study of 
such materials by electronic circular dichroism (CD) 
spectroscopy using commercial/benchtop instruments and 
synchrotron radiation (SR) using the B23 beamline available 
at Diamond Light Source. A set of low molecular weight 
(LMW) hydrogelators, comprising two Fmoc-protected 

enantiomeric monosaccharides and one Fmoc-
diphenylalanine derivative, were studied. The research 
focused on the optimization of sample preparation and 
handling, which then enabled the characterisation of sample 
conformational homogeneity and thermal stability. CD 
spectroscopy, in combination with other spectroscopic 
techniques and microscopy, enables a better insight into the 
self-assembly of chiral building blocks into higher order 
structural architectures. 
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hydrogels. In this study, previously reported structurally related 
Fmoc hydrogelators 1, 2 and 3 (Figure 2) were used for the 
development of a robust protocol to investigate molecular 
alignment in soft materials17,28,29 based on CD spectroscopy.  For 
measurements of samples in solution, CD spectroscopy 
characterises the anisotropy and the intrinsic chirality of the 
chiral sample, whereas for hydrogels there is also the 
contribution of the anisotropy of the achiral media that is 
generated by circular birefringence (CB), linear dichroism (LD) 
and linear birefringence (LB).  The CD measured with 
commercial instruments, due to the large beamlight cross 
section, can measure only the average of the chirality of the 
sample. To assess whether LD, LB and CB contributions were 
negligible or dominant, synchrotron radiation circular dichroism 
(SRCD) measurements can be conducted for several small 
spots, 0.5 mm in diameter, along the hydrogel specimens. The 
use of the vertical sample chamber of the B23 beamline30 made 
it possible to measure a hydrogel laid horizontally, without the 
complication of thickness change due to gravity (Figure 3). The 
gravity effect was also assessed using the beamline horizontal 
sample chamber equipped with an XY-stage.31 
 
INSERT FIGURE TWO HERE 
FIGURE 2 Structurally related hydrogelators Fmoc-Gal 1, Fmoc-Glc 2 
and Fmoc-FF 3. 

INSERT FIGURE THREE HERE 
FIGURE 3 Sample positioning in the sample chamber of module A, 
with a rotating platform and cylindrical cell holder, facilitated the 
acquisition of spectral data at three different sites of the hydrogel 
sample to allow evaluation of sample homogeneity as “spots”. 

Extensive optimization of both the sample preparation and 
handling enabled the development of a series of experiments to: 
(i) identify the presence of optical artefacts (LD and LB); (ii) 
observe the homogeneity of the samples; and (iii) monitor both 
the thermal disruption and reformation of the hydrogels (sol-gel 
reversibility). Due to time constraints of beamtime for this study, 
spectra were only acquired at rotations of 0ஈ and 90ஈ therefore 
only LD and LB were evaluated for these samples. CB ran be 
readily evaluated by comparison of spectra at 0ஈ and 180ஈ 
rotation of a given sample. This paper should provide a practical 
method for both experienced CD users and soft materials 
researchers for the study of chiral hydrogel materials. 
 
MATERIALS AND METHODS 
 
Sample preparation 
Compounds 1 and 2 were synthesized as reported previously.17 
Compound 3 was purchased from Biogelx (Newhouse, UK) and 
used as supplied. For the preparation of hydrogels, the following 
solvents were used: purified water (Romil, Super Purity) and 
phosphate buffered saline (PBS) solution which was prepared by 
dissolving PBS tablets (Sigma Aldrich, UK) in purified water. 
Solutions of the gelator were prepared using methanol (Romil, 
Super Purity). 
 
Solution samples 
Solution samples of hydrogelators 1-3 were obtained using 
methanol to allow a true solution to be obtained and suitable UV 
transparency as shown in Figure 7 and SI. 

 
Gel samples 
The gelation process and handling of the prepared hydrogels was 
optimised prior to any CD measurement, as was the method to 
obtain the hydrogel within the cuvette cell (see SI). To avoid CD 
signal saturation, quartz cylindrical non-demountable cells 
(Hellma, style 121) with a range of path lengths were used (0.5, 
0.2 or 0.1 mm). This was achieved by judicious choice of path 
length to give an optimal absorbance intensity (about 0.9). For the 
reduction of absorbance intensity, dilution of the hydrogels was 
not possible, as this would disrupt their self-assembly, therefore 
for each sample the minimum gelation concentration was kept 
constant. 
For the sample preparation, two gelation methods were employed, 
namely sonication triggered gelation and thermally triggered 
gelation. All samples were gelled within cylindrical cells at a 
similar time (i.e. typically 24 hours before data acquisition) and in 
situ (e.g. at the Diamond Light Source premises) to minimize any 
manipulation that could affect the self-assembly. Hydrogels of 1 
and 2 (A-D) were prepared, as described in Table 1, under 
conditions known to pass the gravitational tube inversion test. The 
four conditions employed were also utilised for Fmoc-FF 3 but 
only gelation by sonication in PBS was successful, thus providing 
hydrogel E.  
2.0 mg of the hydrogelator (1, 2 or 3) was weighed into a vial and 
1.0 mL of water or PBS solution was added. The resulting 
suspension was then sonicated and transferred to a cell with a 
pipette. 
 
Method for sonication triggered gelation 
The cells were then left undisturbed overnight before the 
acquisition of SRCD and CD spectra. 
 
Method for thermally triggered gelation (heating and cooling 
cycles) 
The cells were placed in a block heater at 55°C.  T he temperature 
was raised by 10 °C at ten-minute intervals until 95 °C was 
obtained. The cooling process was performed in a controlled 
manner by reducing the temperature by 20 °C every hou r until 
room temperature was reached. Cells were then left undisturbed 
(in the block heater) overnight before acquisition of SRCD and CD 
spectra. 
 
Method for thermal disruption of hydrogels A, B and E and their 
reformation 
After the CD spectrum of the hydrogel was obtained, the sample 
was heated at 85 °C for approximately 30 minutes using  a Peltier 
temperature controlled cell holder to reverse the self-assembly (i.e. 
destroy the gel) and a corresponding CD spectrum obtained at 
room temperature. The sample was then left at room temperature 
overnight (to allow gelation to re-occur) and the CD spectrum 
obtained to evaluate the reversibility of gelation, i.e. the gel-sol-
gel cycle. 

 

INSERT TABLE ONE HERE 
TABLE 1 Gelation conditions. The concentration of all samples was 
2.0 mg/mL (*The hydrogelator also gels under these conditions but 
was not included in this study). 
 

Data acquisition 
CD spectra were firstly obtained using a Chirascan 
spectrophotometer for the evaluation of the absorbance intensity 
of the samples and gelation success, i.e. by visual inspection of 
the cell and the CD intensity. Module A at Diamond Light Source 



 

"This is the pre-peer reviewed version of the following article:“Circular dichroism studies of low molecular 
weight hydrogelators: the use of SRCD and addressing practical issues“, which has been published in final 
form at DOI: 10.1002/chir.22850.This article may be used for non-commercial purposes in accordance with 
Wiley Terms and Conditions for Self-Archiving." 

 

3 

was used to acquire the SRCD spectra. A rotating platform 
combined with a cylindrical cell holder was used in module A 
(Figure 3) to allow sampling of a selected area of the hydrogel in 
different orientations (i.e. 0° and 90°) for the de termination of the 
presence of optical artefacts, such as linear dichroism and linear 
birefringence. This sampling arrangement also enabled spectra to 
be recorded at three different hydrogel sites (“spots”) of the same 
sample to allow evaluation of the homogeneity of the hydrogel 
(Figure 3). Where time allowed, the hydrogel sample was then 
finally heated at 85 °C for approximately 30 minutes u sing a 
Peltier temperature-controlled cell holder to reverse the self-
assembly (i.e. break the gel) and allow a corresponding CD 
spectrum to be obtained. This facilitated interpretation of the CD 
and SRCD spectra of the corresponding hydrogel. Comparison of 
the CD and SRCD spectra obtained for the same hydrogel sample 
also facilitated the evaluation of any spectral differences due to 
the differing cross-sectional area of the light. A baseline spectrum 
was recorded for every hydrogel and solution sample in each 
instrument by the recording a spectrum of the solvent in the same 
cuvette cell, i.e. water or PBS for hydrogels and methanol for 
solutions as appropriate. All spectra were recorded at room 
temperature.  
 
Processing of the acquired spectra 
The absorbance spectrum (and thus CD spectrum) was truncated 
where the absorbance exceeded 1.0 AU, thus necessitating the 
use of short path lengths. Subtraction of water or PBS baseline 
spectra from the corresponding hydrogel spectra gave the 
corresponding baseline corrected spectra that are presented 
herein.  For the methanolic solutions of the gelator, the 
corresponding methanol baseline spectrum was subtracted. 

RESULTS AND DISCUSSION 
 
The initial approach of the SRCD study targeted the optimization 
of sample preparation and data acquisition procedures to allow 
CD to support the characterization of the self-assembly of the 
synthesized hydrogelators 1 and 2. After much optimisation, it was 
found that the best procedure was to form the hydrogels within the 
cells and that non-demountable cylindrical cells were most 
advantageous due to the range of path lengths available (see SI). 
In this manner, the hydrogel was not perturbed upon transfer. The 
hydrogels formed from 1 and 2 in both PBS solution and in water 
are summarised in Table 1. The judicious use of both CD and 
SRCD experiments enabled the characterization of their gelation 
behaviour. 
Similar experiments were also undertaken on the dipeptide 
hydrogelator 3 (Fmoc-FF). Although studied by CD,29,32 to the best 
of our knowledge, no SRCD information has been reported for 
hydrogels of 3. Comparison between the Fmoc-sugar hydrogels 
(1 and 2) and the Fmoc-dipeptide (3) is of interest since 3 has 
ionic character (from a –COOH moiety) and is known to hydrogel 
by a combination of ʌ-ʌ and hydrogen bonding interactions. The 
sugar-containing hydrogels 1 and 2 have no ionic character and 
self-assemble by CH-ʌ interactions.17 Any difference in the 
spectral features or behaviour may be characteristic of (i) the 
structural difference after due consideration of the contribution of 
the additional aromatic and carbonyl chromophores of the 
dipeptide motif and/or (ii) the differing self-assembly mechanisms. 
Based on the obtained CD information for the hydrogelators and 
corresponding hydrogels, the data is discussed first with respect 
to the evaluation of linear dichroism/birefringence, followed by the 
homogeneity of the sample, comparison of the effect of the 
differing light source (conventional versus SR) and, finally, 
thermal reversibility (gel-sol-gel). 
 

Linear dichroism/birefringence evaluation for SRCD 
Due to the small cross-sectional area of the beam (thus 
decreased averaging of sample compared to conventional CD) 
and the potential for alignment in the sample due to self-assembly, 
it was necessary to ascertain if any linear dichroism (LD) or 
birefringence was present. After visual inspection of the samples, 
the first SRCD experiment was therefore to evaluate the presence 
of any optical artefacts. To achieve this, the spectrum of the 
sample “spot” was acquired at two different orientations (0° and 
90°), which was facilitated by a rotating platform in the sample 
compartment of Module A (Figure 3). 
For the hydrogels A-C of the sugar-containing hydrogelator 1, no 
significant LD or birefringence features were observed after the 
SRCD spectra were recorded at this single spot in the two 
orientations (Figure 4 (i)-(iii)). Hydrogel A in water showed 
identical SRCD spectra in both orientations, demonstrating the 
usefulness of the method.  For hydrogel A in water, which is 
orientation independent (Figure 4 (i)), the SRCD data therefore 
indicated negligible artefacts and any spectral differences 
between the spots will indicate solely differences in chiral 
architecture.  For hydrogels B and C in PBS, however, as the 
SRCD spectra were orientation dependent (Figure 4 (ii) and 4 
(iii)), it was observed that chirality and/or optical artefacts were 
different upon rotation of the sample. The multiplication of the 
spectra by a scaling factor to obtain very similar spectra indicated 
differences in sample concentration in the matrix, as the thickness 
should remain constant inside the cell pathlength. Therefore, the 
SRCD spectra of hydrogels A-C, as a function of rotation normal 
to the propagation of incident light (0° and 90°), indicated no LD 
and LB artefacts.   

In contrast, the CD spectrum of hydrogel D (from 2 when 

thermally triggered in water) was much weaker in intensity 

and had a poor signal-to-noise ratio (Figure 4 (iv)). This was 

unsurprising as, of the two sugar-based hydrogelators, 2 

gives the weaker hydrogels and, thus, a lesser extent of 

assembly (hence the weak CD signal) relative to Fmoc-Gal 1. 

For this reason, only one of the four conditions to form 

hydrogels of 2 was studied (Table 1). The hydrogel E (from 

Fmoc-FF 3 when triggered by sonication in PBS) had 

superimposable spectra obtained at two orientations (Figure 

4 (v)). The spectra of hydrogel E were consistent with 

previously reported CD spectra for hydrogels formed from 3 

via a different gelation method.29,32
 Therefore, with the 

exception of hydrogel D (from 2, a very soft dynamic gel), the 

hydrogels had no significant CD artefacts. 

 
INSERT FIGURE FOUR HERE 
FIGURE 4 Evaluation of linear dichroism and birefringence artefacts 
by comparison of SRCD spectra obtained at two orientations (0° and 
90°). (i) Fmoc-Gal hydrogel A in water triggered thermally (0.1 mm 
PL cell); (ii) Fmoc-Gal hydrogel B in PBS triggered by sonication (0.2 
mm PL cell); (iii) Fmoc-Gal hydrogel C in PBS triggered thermally 
(0.1 mm PL cell); (iv) Fmoc-Glc hydrogel D in water (triggered 
thermally (0.2 mm PL cell); (v) Fmoc-FF hydrogel E in PBS triggered 
by sonication (0.1 mm PL cell). All samples were gelled in the cell of 
the path length (PL) stated at a concentration of 2.0 mg/mL. 
 
Chiral homogeneity of hydrogels 
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SRCD spectra of the hydrogel specimens showed very similar 
homogeneity across spots 1-3 (as indicated in Figure 3). The 
general trend, with the exception of hydrogel D formed from 2 
(Figure 5 (iv)), was that the first two sampling sites (spots 1 and 
2) gave comparable spectra, whereas the third sampling site (spot 
3) gave a different spectrum (Figure 5 (i)-(iii)). It is noted that the 
difference between the spots 1 and 2 versus spot 3 for hydrogel 
E (from 3) appears to be consistent with a matrix concentration 
difference (Figure 5 (v)).  
For the Fmoc-Gal hydrogel A in H2O, the SRCD spectra of spot 1 
and 2 were identical, indicating that that area of the hydrogel has 
the same gel matrix topology (Figure 5 (i)).  The spectrum of spot 
3 differs slightly quantitatively after the spectrum is offset to 
superimpose in the 290-310 nm range with the other two spots.  
However, it is qualitatively quite similar to the other two spots, 
indicating good homogeneity. For the Fmoc-Gal hydrogel B in 
PBS, only spot 1 and 2 were identical (Figure 5 (ii)). However, the 
spectrum of spot 3 was rather distorted around 260 nm. For the 
Fmoc-Gal hydrogel C in PBS, only spot 1 and 2 were very similar 
(Figure 5 (iii)). Spot 3 was distorted in a similar manner to that of 
Fmoc-Gal hydrogel B. For the Fmoc-Glc hydrogel D in H2O, the 
spectra were only qualitatively similar in the near UV region 
(Figure 5 (iv)). For the Fmoc-FF hydrogel E in PBS, the SRCD 
spectra of spot 1 and 2 were identical, indicating that that area of 
the hydrogel had the same gel matrix topology (Figure 5 (v)).  Spot 
3, after offset, gave a similar spectrum to the other 2 spots. 
The shape, volume and material of the vessel in which the 
hydrogel is formed can alter the features of the hydrogel matrix 
topology. This is, in part, due to the dynamic nature of the self-
assembly, which can be altered by local features, such as the wall 
of the cell. The altered behaviour of the hydrogel near the wall of 
the vessel is colloquially described as a “wall effect”.  However, it 
is not feasible to study the wall separately to the bulk of the 
hydrogel by standard characterization techniques.  This 
demonstrates the power of the smaller cross section of the SRCD 
beamlight for such analysis. If the hydrogel and corresponding 
preparation method can be optimized to minimize/avoid such wall 
effects, then it will result in improved application, e.g. a consistent 
material across the full diameter of a cell culture well. This is of 
great significance, as changes to the hydrogel (such as its 
rheology) are known to be critical to cell culture.33,34 The recent 
CD imaging (CDi) facility developed at B23 can now achieve  
spatial resolution of 200-250 µm. 
In contrast to all the other hydrogels studied, hydrogel D (from 2 
triggered thermally in water) showed no consistency between 
the SRCD spectra obtained from three sites (Figure 5 (iv)). 
Therefore, the difference between the galactose and glucose 
motifs in the sugar-containing hydrogelators is profound, with the 
galactose residues promoting a greater extent and ability to self-
assemble in both water and PBS (Figure 5).  This is presumably 
due to the differing extent of self-assembly in the hydrogels 
matrix topology, i.e. hydrogels from Fmoc-Gal 1 have a greater 
extent of self-assembly than those of Fmoc-Glc 2, which is 
evidenced by the CD intensity. 
 
INSERT FIGURE FIVE HERE 
FIGURE 5 Comparison of SRCD spectra obtained from different 
sites/spots in a hydrogel sample. (i) Fmoc-Gal hydrogel A in water 
triggered thermally (0.1 mm PL cell); (ii) Fmoc-Gal hydrogel B in PBS 
triggered by sonication (0.2 mm PL cell); (iii) Fmoc-Gal hydrogel C 
in PBS triggered thermally (0.1 mm PL cell); (iv) Fmoc-Glc hydrogel 
D in water triggered thermally (0.2 mm PL cell); (v) Fmoc-FF 
hydrogel E in PBS triggered by sonication (0.1 mm PL cell). All 

samples were gelled in the cell of the path length (PL) stated at a 
concentration of 2.0 mg/mL. 
 
Comparison of CD and SRCD spectra 
The homogeneity of the hydrogel within the cell can also be 
evaluated by comparison of the CD spectrum of a small area of 
the hydrogel by SRCD with that of a larger area of hydrogel by 
conventional CD. This is due to the different cross-sectional 
beamlight dimensions e.g. Chirascan on average has a 16 mm 
diameter area whereas SRCD has 0.5 mm diameter area. The 
assumption is that SRCD and CD spectra showing similar 
spectral features in terms of intensity and sign will be consistent 
with similar hydrogel matrix homogeneity.  The SRCD and CD of 
the hydrogels appear very similar in terms of spectral features 
and relative intensity magnitude, indicating overall uniform and 
homogeneous hydrogel sample preparations (Figure 6). The 
absorbance spectra were also qualitatively similar (see SI). The 
greatest difference between CD and SRCD was observed for 
hydrogel C (from 1 in PBS triggered thermally, Figure 6 (iii)) and 
hydrogel D (from 2 in water triggered thermally, Figure 6(iv)). 
 
INSERT FIGURE SIX HERE 
FIGURE 6 Comparison of CD (Chirascan, ECD) and SRCD spectral 
differences arising from differing cross sectional areas of the beam. 
(i) Fmoc-Gal hydrogel A in water triggered thermally (0.1 mm PL 
cell); (ii) Fmoc-Gal hydrogel B in PBS triggered by sonication (0.2 
mm PL cell); (iii) Fmoc-Gal hydrogel C in PBS triggered thermally 
(0.1 mm PL cell); (iv) Fmoc-Glc hydrogel D in water triggered 
thermally (0.2 mm PL cell); (v) Fmoc-FF hydrogel E in PBS triggered 
by sonication (0.1 mm PL cell). All samples were gelled in the cell of 
the path length (PL) stated at a concentration of 2.0 mg/mL. All given 
SRCD spectra are of spot 2 at 0° orientation. The corresp onding 
absorbance spectra are provided in the SI. 
 
Thermal studies 
The self-assembled hydrogels (A, B and E) were studied as a 
function of temperature by obtaining a spectrum after heating at 
85 °C and then again at room temperature to assess th ermal 
reversibility. The UV absorbance spectrum (215-300 nm) of the 
gel should be similar to the “broken gel” (due to thermal 
disruption) with no major intensity changes. If this is the case, 
then the collapse of the CD spectrum indicates the presence of 
cancellation, either due to opposite chirality or different sample 
orientation, with the electronic transitions perpendicular to the 
direction of the propagation of incident light.  The spectrum 
becomes like an oriented CD spectrum compared to its CD 
spectrum in solution. The heating of the hydrogel is referred to 
as thermal disruption as, upon heating, the non-covalent 
interactions which give rise to the matrix of the gel are broken, 
thus disrupting the gel network. Practically, as illustrated for 
hydrogel A, it is found that the CD spectrum of the hydrogel 
collapses on heating in a similar way to that observed for the 
solution spectrum, where the spectral feautres are lost (Figure 7, 
left).17 However, the absorbance spectra increase in intensity for 
the thermally destroyed gel and the solution when compared to 
the hydrogel (Figure 7, right).  It is reasonable to assume, for the 
thermally disrupted gel, that at elevated temperature the 
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solubility of the hydrogelator is enhanced increasing its 
concentration in solution. 
 
INSERT FIGURE SEVEN HERE 
FIGURE 7 CD (left) and absorbance (right) spectra of Fmoc-Gal 1 
as a MeOH solution and as a hydrogel before and after heating in a 
cylindrical non-demountable cell (PL 0.1 mm): (i) solution in MeOH 
(3.0 mg/mL); (ii) hydrogel A in water (2.0 mg/mL), thermally triggered 
- initial gel; (iii) hydrogel A in water (2.0 mg/mL), thermally triggered 
– after thermal destruction. 
 
Given that the sol-gel process is reversible, it can be cycled to (i) 
confirm that the CD signal arises from the self-assembly, and (ii) 
explore the extent of self-assembly that can occur when the 
hydrogel is reformed. Hydrogels (A, B and E) were heated and 
their spectra acquired by CD, then recorded again after the 
hydrogel was allowed to reform (Figure 8).  It was found that 
monitoring the reformation of the hydrogel was best by CD 
(rather than SRCD) due to the different cross-sectional 
beamlight dimensions. The sugar-containing hydrogels analysed 
were able to revert to a negligible CD signal after 30 minutes of 
heating (Figure 8 (i) and 8 (ii)) and were therefore comparable to 
their solution spectrum (see SI). However, the hydrogel of Fmoc-
FF 3 (E) did not revert to a negligible CD spectrum after this time 
(Figure 8 (iii)). Comparison to the corresponding methanolic 
solution of 3, which does give a negligible CD spectrum (see SI), 
suggests that self-assembly persists to some extent after the 
period of heating. 
 
INSERT FIGURE EIGHT HERE 
FIGURE 8 Thermal studies of hydrogels to ascertain the contribution 
of the self-assembly to the CD spectrum and the reversibility of 
gelation. (i) Fmoc-Gal hydrogel A in water triggered thermally (0.1 
mm PL cell); (ii) Fmoc-Gal hydrogel B in PBS triggered by sonication 
(0.2 mm PL cell); (iii) Fmoc-FF hydrogel E in PBS triggered by 
sonication (0.1 mm PL cell). All samples were gelled in the cell of the 
path length (PL) stated at a concentration of 2.0 mg/mL. The 
corresponding absorbance spectra are provided in the SI. 
 
Further to this, several samples were found to have altered CD 
intensities for their gels after the gel-sol-gel process, where the 
hydrogels either decreased (A and E, Figure 8 (i) and 8 (iii)) or 
increased (B, Figure 8 (ii)) intensity by CD. An increased 
intensity (assuming no change has occurred to the self-
assembly mechanism) would suggest that either (i) the hydrogel 
had not been fully self-assembled within the cell after the first 
sol-gel cycle and/or (ii) the extent of self-assembly increased 
after a second sol-gel cycle. It is clear that the hydrogels formed 
by sugar-containing structures (1 and 2), which are devoid of the 
-COOH moiety, have very different behaviour compared to that 
of dipeptide 3. This is presumably due to the lack of ionic 
interactions, the ability of the sugar motif to mutarotate and the 
ability of hydrogels of 1 and 2 (A-D) to form CH-ʌ interactions 
(as previously evidenced for Fmoc-Gal 1 and Fmoc-Glc 2).17 
 
Discussion 
For most compounds, analysis of the SRCD data showed no 
significant contribution from linear dichroism or birefringence. 

The hydrogel of Fmoc-Glc 2 was the exception to this which was 
presumably due to its softer nature (which was observed by the 
tube inversion method). Comparison between CD and SRCD 
spectra for each hydrogel sample also gave further information 
with regard to homogeneity. The CD spectra were generally 
higher in intensity than the SRCD spectra, which could be 
interpreted as being due to a greater extent of self-assembly 
relative to the area sampled. This study demonstrates that the 
nature and extent of chiral homogeneity of hydrogel materials 
was better assessed with the combined use of SRCD multi-site 
sampling and the larger sampling area of benchtop CD 
instruments. Thermal studies conducted using CD identified that 
(i) the self-assembly of the Fmoc-FF hydrogel (E) was not fully 
disrupted after 30 minutes of heating and (ii) different samples 
had altered CD intensities after completion of sol-gel cycling.  
These observations will inform preparation and thus guide 
application of these materials. The Fmoc-peptide-based 
hydrogel E showed differences in chiral homogeneity compared 
to the hydrogels A-D of the sugar-based hydrogelators.  This is 
in part due to its ionic nature, which arises from the –COOH motif 
and, thus, a different mode of assembly. It is clear that the 
different hydrogelators have different tolerances for gelation 
triggers, as well as their corresponding environments, with 
Fmoc-Gal 1 being the more robust and versatile hydrogelator. 
This can be shown clearly for Fmoc-Gal 1, since it can form a 
hydrogel in both PBS and water, as well as by both sonication 
and thermal triggers (Figure 9).  Although the corresponding 
spectra are qualitatively similar (i.e. the same two positive CD 
bands ca. 220 and 270 nm), the Fmoc-Gal hydrogel B in PBS 
triggered by sonication is slightly red shifted and has an altered 
absorbance profile. These differences in spectral features 
suggest that there may be differences in the corresponding 
mode of self-assembly for different gelation methods. Such 
differences in gelation behaviour can therefore be introduced by 
relatively simple modifications to (i) structure, as 1 and 2 only 
differ in stereochemistry at one chiral centre, and (ii) the gelation 
method, as evidenced for hydrogels of 1 (Figures 8 (i), 8 (ii), 9). 
 
INSERT FIGURE NINE HERE 
FIGURE 9 CD (left) and absorbance (right) spectra of hydrogels of 
Fmoc-Gal 1 prepared by different conditions. (Gel A) Fmoc-Gal 
hydrogel in water triggered thermally (0.1 mm PL cell); (Gel B) Fmoc-
Gal hydrogel in PBS triggered by sonication (0.2 mm PL cell); (Gel 
C) Fmoc-Gal hydrogel in PBS triggered thermally (0.1 mm PL cell). 
All samples were gelled in the cell of the path length (PL) stated at a 
concentration of 2.0 mg/mL. 

 
 
 
CONCLUSION 
 
The results and discussion presented herein explore how CD, and 
even SRCD, can be used to obtain a wealth of information about LMW 
hydrogels as long as suitable sample optimisation is undertaken and 
a series of experiments are planned in a cohesive manner.  By use of 
SRCD, after checking for spectral artefacts, valuable information can 
be obtained with regard to homogeneity of the sample and how the 
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SRCD spectra relate to the corresponding CD spectrum.  The use of 
temperature studies also enables the reversibility of the gelation 
process to be characterised. There are clear advantages to the use of 
SRCD over conventional CD for analysis of LMW hydrogels (e.g. for 
study of homogeneity) but, from the work undertaken, it is the 
combined approach that is most powerful. 
 
Supporting information 

Additional supporting information may be found in the online 
version of this article at the publisher’s website and includes a 
detailed description of the approach for optimisation of sample 
preparation to obtain the spectra, the absorbance data that 
corresponds to Figures 6 and 8, and the solution CD and 
absorbance spectra of hydrogelators 1-3 in methanol. 
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FIGURE 1 
 

 
FIGURE 2 
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FIGURE 3 
 
 
 

TABLE 1 Gelation conditions. The concentration of all samples was 2.0 mg/mL. (*The 
hydrogelator also gels under these conditions but was not included in this study.) 

Hydrogelator Solvent Method Hydrogel 

GalNHFmoc 1 

Water Sonication * 

Water Thermal A 
PBS Sonication B 
PBS Thermal C 

GlcNHFmoc 2 

Water Sonication * 

Water Thermal D 
PBS Sonication * 

PBS Thermal * 

Fmoc-FF 3 PBS Sonication E 
 
TABLE 1 
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FIGURE 4 
 

FIGURE 5 
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FIGURE 6 
 

FIGURE 7 
 

FIGURE 8 
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FIGURE 9  
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Contains: 
 
Optimisation of approach to obtain hydrogel within the spectroscopic cell. 
 
The absorbance spectra for the SRCD and CD spectra shown in Figure 6 of the manuscript. 

 
The absorbance spectra for the CD spectra shown in Figure 8 of the manuscript. 

 
Solution spectra of hydrogelators 1-3 in methanol to facilitate interpretation of the thermal studies. 
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Optimisation of approach to obtain hydrogel within the spectroscopic cell 
 
A number of approaches were employed to optimise gelation to obtain a hydrogel in a suitable 
spectroscopic cell. The success of each approach was evaluated by the intensity of the resulting 
conventional CD spectrum where a greater intensity indicated a greater extent of gelation obtained.  
 
Preparation of the hydrogels in a vial with subsequent transfer to a demountable cell resulted in 

disruption of the hydrogel on transfer and further disruption on assembly of the cell (compression 

between cell faces) such that the gelation was not uniform throughout the cell. Similarly, transfer of the 

hydrogel (formed in a vial) by pipette into the cell also affected the resulting hydrogel in the cell. It was 

also found that when the hydrogelators were pre-treated (sonication and/or thermally) in a vial and 

then transferred as a solution to the cell, that the gelation was most reproducible in cylindrical cells 

rather than rectangular cells ʹ presumably due to volume and/or shape. Cylindrical cells are 

advantageous as there is a greater range of shorter path lengths available without the need for the cells 

to be demountable.  Final optimisation of gelation approach inside the cell found that, after sonication 

of the hydrogelator suspension in a vial, the most reproducible gelation inside the cell was obtained 

when the thermal heating/cooling was undertaken within the cell with the use of a thermostated hot 

block. The cells were placed in the hot block such that the face of the cell was placed next to the hot 

block and any voids in the hot block were packed with aluminium foil to minimise heat loss during the 

process. 

It is noted that the above optimisation process applied to the hydrogels of 1, 2 and 3 (A-E) and that, for 

different hydrogelators, a different optimisation outcome may occur i.e. one of the earlier approaches 

attempted may give reproducible results for a different hydrogel given the differing chemical nature of 

hydrogelators and corresponding self-assembly. 
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The absorbance spectra for the SRCD and CD spectra shown in Figure 6 of the manuscript. 

 

 

FIGURE A Comparison of the absorbance spectra from CD (Chirascan) and SRCD instruments 
showing the spectral differences arising from differing cross sectional areas of the beam. (i) Fmoc-
Gal hydrogel A in water triggered thermally (0.1 mm PL cell); (ii ) Fmoc-Gal hydrogel B in PBS 
triggered by sonication (0.2 mm PL cell); (iii) Fmoc-Gal hydrogel C in PBS triggered thermally 
(0.1 mm PL cell); (iv) Fmoc-Glc hydrogel D in water triggered thermally (0.2 mm PL cell); (v) 
Fmoc-FF hydrogel E in PBS triggered by sonication (0.1 mm PL cell). All samples were gelled in 
the cell of the path length (PL) stated at a concentration of 2.0 mg/mL. 

The absorbance spectra for the CD spectra shown in Figure 8 of the manuscript. 

 

FIGURE B The absorbance spectra for the thermal studies of hydrogels to ascertain the 
contribution of the self-assembly to the spectrum and the reversibility of gelation. (i) Fmoc-Gal 
hydrogel A in water triggered thermally (0.1 mm PL cell); (ii) Fmoc-Gal hydrogel B in PBS 
triggered by sonication (0.2 mm PL cell); (iii) Fmoc-FF hydrogel E in PBS triggered by sonication 
(0.1 mm PL cell). All samples were gelled in the cell of the path length (PL) stated at a 
concentration of 2.0 mg/mL. 
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Solution spectra of hydrogelators 1-3 in methanol to facilitate interpretation of the thermal 
studies. 

 

FIGURE C CD spectra of hydrogelators 1-3 in methanol. (i) Fmoc-Gal 1; (ii) Fmoc-Glc 2; (iii) 
Fmoc-FF 3. All samples were recorded in a cylindrical non-demountable cell of the path length 
0.1 mm at a concentration of 0.2 mg/mL. 

 

 

FIGURE D Absorbance spectra of hydrogelators 1-3 in methanol. (i) Fmoc-Gal 1; (ii) Fmoc-Glc 
2; (iii) Fmoc-FF 3. All samples were recorded in a cylindrical non-demountable cell of the path 
length 0.1 mm at a concentration of 0.2 mg/mL. 
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