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Abstract

The integration of cooperative transmission into satellite networks is regarded as an effective

strategy to increase the energy efficiency as well as the coverage of satellite communications. This paper

investigates the performance of an amplify-and-forward (AF) hybrid satellite-terrestrial relay network

(HSTRN), where the links of the two hops undergo Shadowed-Rician and Rayleigh fading distributions,

respectively. By assuming that a single antenna relay is used to assist the signal transmission between

the multi-antenna satellite and multi-antenna mobile terminal, and multiple interferers corrupt both the

relay and destination, we first obtain the equivalent end-to-end signal-to-interference-plus-noise ratio

(SINR) of the system. Then, an approximate yet very accurate closed-form expression for the ergodic

capacity of the HSTRN is derived. The analytical lower bound expressions are also obtained to efficiently

evaluate the outage probability (OP) and average symbol error rate (ASER) of the system. Furthermore,

the asymptotic OP and ASER expressions are developed at high signal-to-noise ratio (SNR) to reveal

the achievable diversity order and array gain of the considered HSTRN. Finally, simulation results are

provided to demonstrate the validity of the analytical results, and show the impact of various parameters

on the system performance.

Index Terms

Hybrid satellite-terrestrial network, amplify-and-forward relay, co-channel interference.
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I. INTRODUCTION

The land mobile satellite (LMS) systems have been widely applied in scenarios, such as

navigation, broadcasting, rescue, and disaster relief, due to its potential in providing wide

coverage and achieving high data rate transmission. However, the obstacles and shadowing

between the satellite and terrestrial user may result in the masking effect, which makes a line

of sight (LOS) communication difficult to be maintained [1]. The relay transmission, in which

the relay forwards the received signal from a source to a intended destination, has attracted a lot

of attention in various wireless communication systems, since it can increase the reliability and

throughput with a given power or bandwidth [2]. A novel network architecture, referred as the

hybrid satellite terrestrial relay network (HSTRN), has been proposed to exploit both advantages

to significantly enhance the system performance (e.g. [3]).

A. Background and Motivation

A lot of effort has been devoted to investigating the performance of HSTRNs by employing

various relay protocols, such as amplify-and-forward (AF) and decode-and-forward (DF). By

assuming maximal ratio combining (MRC) at the destination, the authors of [4] studied the

average symbol error rate (ASER) of HSTRN with AF relaying protocol of a variable gain

, and an extended work to the AF-based hybrid satellite-terrestrial free space optical (FSO)

cooperative systems was given in [5], where the asymptotic ASER behaviors have also been

investigated. In [6], the authors presented the exact outage probability (OP) expression of a

HSTRN with best relay selection scheme operating in DF protocol. The authors of [7] have

considered the applicability of multi-satellite multiple-input multiple-output (MIMO) to satellite

communications by employing a dual-satellite 2×2 MIMO channels with each satellite equipped

with a single antenna. Moreover, the OP performance comparison of HSTRNs with fixed relaying

(FR) and selection relaying (SR) protocols was presented in [8]-[9].

The researches in [4]-[9] were mainly focused on the scenarios where all the nodes are

equipped with a single antenna. However, since the multi-antenna technique exhibits a significant

advantage in achieving high system capacity and energy efficiency [10]-[12], the case of satellite

having multiple antennas has received significantly attention more recently. When channel state

information (CSI) is available, a practical strategy among a variety of multi-antenna techniques

is beamforming (BF) due to its low implementation complexity, which has been well studied in
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[10]. The work [13] has analyzed the performance of multiple antenna satellite communication

systems in one-hop scenarios, where the ergodic capacity, OP and ASER have been derived.

The extended works of [13] to cases with estimation errors at the destination can be found in

[14]. Since the relaying transmission has been proved as an effective approach to enhance the

throughput and coverage of satellite communication, the authors of [15]-[20] have investigated

the performance of relay-based multiple antenna HSTRNs with beamforming (BF). Specifically,

in [15], the performance of multiple antenna HSTRN with both AF and DF protocols have

been analyzed by deriving the exact closed-form expressions of OP and ASER. In [16], the

performance of beamforming in AF-based HSTRNs with multiple antenna terrestrial relay and

destination has been studied, where both the analytical and asymptotic ASER expressions have

been derived. Moreover, [17] have investigated the DF-based satellite relaying with multi-antenna

terrestrial source and destination, and an extended work to the AF-based scenarios can be found

in [18]. By considering a two-way HSTRNs with multiple antennas at the relay, an approximate

ASER expression based on moment generating function (MGF) was presented in [19]. The

work [20] investigated the effect of antenna correlation on the performance of multiple antenna

HSTRNs and gave the analytical expressions for OP, ASER, and ergodic capacity.

Although the aforementioned researches have significantly improved the performance and

benefits of HSTRNs, they have assumed the ideal case of no co-channel interference (CCI), which

is unrealistic in practical wireless systems. In recent years, a great deal of researches have focused

on the performance of conventional terrestrial systems in the presence of CCI over Rayleigh or

Nakagami-m fading channels [21]-[23]. Due to the reuse of spectrum resources in practice, the

major challenges facing the hybrid satellite-terrestrial networks is the problem of interference

from inter-component and/or intra-component [24]. While [25] has firstly investigated the ASER

performance of the HSTRNs with CCIs at the destination for the single antenna scenario, the

ergodic capacity, OP, and ASER have not been studied in the case that the satellite and terrestrial

user have multi-antenna and CCIs corrupting both the relay and destination nodes. It is crucial

to study this problem.

B. Contributions and Novelty

In this paper, we consider a multi-antenna AF HSTRN with multiple interferers at both

terrestrial relay and destination, where the source-relay link undergoes Shadowed-Rician fading
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while the relay-destination link experiences Rayleigh fading. By applying the maximal ratio

transmission (MRT) at the source and maximal ratio combining (MRC) at the destination, the

equivalent end-to-end output signal-to-interference-plus-noise ratio (SINR) of the system is first

obtained, then analytical expressions as well as asymptotic results are derived to evaluate the

system performance. The detailed contributions of this paper are outlined as follows:

• We present a new analytical expression for the ergodic capacity of the hybrid system, which

is applicable for the cases of arbitrary number of interferers and antennas.

• The tight analytical expressions for the OP and ASER are derived, which can efficiently

evaluate the system performance. This paper considers the multiple antenna scenarios with

the presence of CCI, while [4]-[6] only considered single antenna scenario without the

presence of CCI. Although [14] considered the multiple antenna case, it ignored the CCI

in the system performance analysis.

• To gain further insight, the simple asymptotic expressions of OP and ASER at high SNR

regime are developed to show the asymptotic behavior of the dual-hop AF relay network,

in terms of two key parameters: diversity order and array gain.

Notations: (·)H denotes the Hermitian transpose, ‖ · ‖F denotes the Frobenius norm of a

matrix, | · | stands for the absolute value, E [·] is the expectation, exp (·) is the exponential

function, and NC (μ,Σ) stands for the complex Gaussian distribution with mean μ and covariance

matrix Σ. 1F1 (a; b; c) denotes the confluent Hypergeometric function [26, eq. (9.210.1)], Ma,b (·)
is the Whittaker function [26, eq. (9.221)], Gm,n

p,q [· |· ] is the Meijer-G functions with single

variable [26, eq. (9.301)], G2,1,1,3,2
2,[2:1],1,[3:2] [ ·| ·] and G1,1,1,1,1

1,[1:1],0,[1:1] [ ·| ·] denote the Meijer-G functions

of two variables [27].

II. SYSTEM MODEL

Consider an AF HSTRN, where a geostationary satellite (S) communicates with a terrestrial

destination (D) via a terrestrial relay (R). Here, the direct link between S and D is assumed to

be unavailable due to heavy shadowing. Without loss of generality, the overall communication

occurs during two time phases. During the first time phase, the satellite carries out transmit

BF with weight vector w1 (Ns × 1) and sends the signal x (t) to R through the fading channel

h1 (Ns × 1). Meanwhile, R is corrupted by I1 co-channel interferers {s1,i (t)}I1
i=1 with an average

power of {P1,i}I1
i=1. As such, the received signal at the R can be written as
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Fig. 1: System model of HSTRN with CCI at the relay and destination.

yr (t)=
√

Psw
H
1 h1x (t)+

∑I1

i=1

√
P1,ig1,is1,i (t)+n1 (t) , (1)

where Ps denotes the transmit power at S, x (t) is the transmit signal with E
[
|x (t)|2

]
= 1 and

n1 (t) is the zero mean additive white Gaussian noise (AWGN) at R satisfying E
[
|n1 (t)|2

]
= σ2

1 .

In addition, g1,i is the channel coefficient for the i-th interference-relay link, which is subject to

independently and identically distributed (i.i.d) complex Gaussian distribution.

During the second time phase, R first amplifies the received signal by a variable gain factor

G as

G2
(
Ps

∥∥∥wH
1 h1

∥∥∥2

F
+
∑I1

i=1
P1,i |g1,i|2 + σ2

1

)
= 1, (2)

and then sends it to D through the fading channel h2 (Nd × 1). Under the condition that the

destination is corrupted by I2 interferers with the average powers of {P2,j}I2
j=1, and received BF

with weight vector w2 (Nd × 1) is exploited, the output signal at D is given by

yd (t)=wH
2

[√
PrGh2yr (t)+

∑I2

j=1

√
P2,jg2,js2,j (t)+n2 (t)

]
, (3)

where Pr is the transmit power at R, and n2 (t) the AWGN at D obeying n2 (t) ∼ NC

(
0, σ2

2IN
d

)
.

{s2,j (t)}I2
j=1 represents the interference signal with each obeying E

[
|s2,j (t)|2

]
= 1, and g2,j is

the channel vector for the j-th interference-destination link satisfying g2,j ∼ NC

(
0, INd

)
.
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Assuming that perfect CSI is available at either S or D, MRT and MRC can be adopted1,

respectively, namely, w1 = h1/‖h1‖F and w2 = h2/‖h2‖F . By using (1) and (2) for (3), after

some algebraic manipulations, the output SINR at D can be expressed as

γd =
γ1γ2

γ1 (γ3+1)+γ2 (γ4+1)+(γ3+1) (γ4+1)
=

Γ1Γ2

Γ1+Γ2+1
, (4)

where Γ1 = γ1/(γ3+1) with γ1 = Ps ‖h1‖2
F

/
σ2

1
Δ
= γ̄1 ‖h1‖2

F and γ3 =
∑I1

i=1 P1,i

∣∣∣g1,i

∣∣∣2/σ2
1

Δ
=∑I1

i=1 γ̄3,i

∣∣∣g1,i

∣∣∣2, Γ2 =γ2/(γ4+1) with γ2 =Pr ‖h2‖2
F

/
σ2

2
Δ
= γ̄2 ‖h2‖2

F and γ4 =
∑I2

j=1 P2,j

∥∥∥wH
2 g2,j

∥∥∥2

F

/
σ2

2

Δ
=
∑I2

j=1 γ̄4,j

∥∥∥wH
2 g2,j

∥∥∥2

F
. Here, γ̄1, γ̄2, γ̄3,i, and γ̄4,j denote the average SNRs of each link.

In order to analyze the performance of a HSTRN, we first introduce some known results about

the statistical properties of wireless fading channels, and then provide detailed derivation of the

theoretical formulas of the ergodic capacity, OP, and ASER of the considered system.

III. PRELIMINARY RESULTS

Satellite-terrestrial links are usually modeled by composite fading distributions to describe

more accurately the amplitude fluctuation of the signal envelope [18]. Although some math-

ematical models, such as Loo, Barts-Stutzman, and Karasawa et al., have been presented to

describe the satellite channel, the Shadowed-Rician model proposed in [28] is a popular one,

which provides a significantly less computational burden than other channel models. The channel

vector h1 with i.i.d Shadowed-Rician fading distribution is described as h1 = h̄1 + h̃1, where

the LOS component h̄1 can be modeled as i.i.d Nakagami-m random variables and the entries

of scattering component h̃1 follow the i.i.d Rayleigh fading distribution [28]. According to [29],

by using the inverse Laplace transformation of the MGF, a well-approximated expression for the

probability density function (PDF) and cumulative distributiuon function (CDF) of γ1 = γ̄1 ‖h1‖2
F

are, respectively, given by

fγ1 (x)=αNs

c∑
l=0

⎛
⎜⎝ c

l

⎞
⎟⎠ βc−l

(
xd−l−1

γ̄d−l
1 Γ (d−l)

1F1

(
d; d−l;−(β−δ)x

γ̄1

)

1In the presence of co-channel interference, the zero-forcing (ZF) or minimum mean-square error (MMSE) schemes may

achieve a better performance. However, they require the CSI of the interfering links, which result in heavy implementation

complexity. On the contrary, the MRC scheme adopted in this paper only requires the CSI of the satellite-relay link, which is

easier to implement.
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+
εδxd−l

γ̄d−l+1
1 Γ (d−l+1)

1F1

(
d+1; d−l+1;−(β−δ) x

γ̄1

))
, (5)

and

Fγ1 (x) = αNs

c∑
l=0

⎛
⎜⎝ c

l

⎞
⎟⎠βc−l

⎛
⎝ (β − δ)

l−d−1
2

γ̄
d−l−1

2
1 Γ (d − l + 1)

x
d−l−1

2 e
−β−δ

2γ̄1
x
M d+l−1

2
, d−l

2

(
β − δ

γ̄1

xz

)

+
εδ(β − δ)

l−d
2

γ̄
d−l
2

1 Γ (d − l + 2)
x

d−l
2 e

−β−δ
2γ̄1

x
M d+l

2
, d−l+1

2

(
β − δ

γ̄1
xz

)⎞⎠ , (6)

where α=2bm/(2bm+Ω)m/2b, β =1/2b, δ=Ω/2b (2bm + Ω) with Ω being the average power

of LOS component, 2b is the average power of multipath component and mi is the Nakagami-m

parameter ranging from 0 to ∞, c=(d−Ns)
+, ε=mNs−d, d=max {Ns, �mNs�}, where �z�

is the largest integer not greater than z, and (z)+ indicates that if z<0, then let z=0.

Since R and D are two terrestrial nodes, the relay-destination link is often assumed to

undergo Rayleigh or Nakagami-m fading distribution distribution [8], [16], [25]. Without loss

of generality, we consider the terrestrial link h2 follows the Rayleigh fading and, the PDF and

CDF of γ2 = γ̄2 ‖h2‖2
F are given by [21]

fγ2 (x) =
xNd−1

(Nd − 1)!γ̄
N

d
2

e
− x

γ̄2 , (7)

and

Fγ2 (x) = 1 − e
− x

γ̄2

N
d
−1∑

i=0

1

i!

(
x

γ̄2

)i

. (8)

Moreover, the PDF of γ3 =
∑I1

i=1 γ̄3,i

∣∣∣g1,i

∣∣∣2 can be expressed as [21]

fγ3 (x) =
I1∑

i=1

ρi

γ̄3,i
e
− x

γ̄3,i , (9)

with the coefficients ρi being given by

ρi =

[∏I1

k=1,k �=i

1

(1 + sγ̄3,k)

]∣∣∣∣∣
s=−γ̄−1

3,i

. (10)

According to [23], since each entry of g2,j is i.i.d complex Gaussian Random Variable (RV),

by defining fj = wH
2 g2,j, it can be easily shown that |fj|2 follows the Rayleigh distribution.

Thus, the PDF of γ4 =
∑I2

j=1 γ̄4,j

∥∥∥wH
2 g2,j

∥∥∥2

F
=
∑I2

j=1 γ̄4,j |fj |2 can be written as

fγ4 (x) =
I2∑

j=1

ωj

γ̄4,j

e
− x

γ̄4,j , (11)
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where the coefficients ωj are given by

ωj =

[∏I2

l=1,l �=j

1

(1 + sγ̄4,l)

]∣∣∣∣∣
s=−γ̄−1

4j

. (12)

IV. PERFORMANCE ANALYSIS

In this section, by using the method of Meijer-G functions, we derive analytical expression

of the ergodic capacity, OP, and ASER of the considered HSTRN.

A. Ergodic Capacity

The average ergodic capacity is defined as the expected value of instantaneous mutual infor-

mation of the end-to-end SINR, namely

Cerg =
1

2
E [log2 (1 + γd)] , (13)

where the coefficient 1/2 accounts for the fact that the entire communication occurs during two

time phases. By substituting γd along with (4), (13) can be derived as

Cerg =
1

2
E

[
log2

(
(1+Γ1) (1+Γ2)

Γ1+Γ2+1

)]
=

1

2

2∑
i=1

E [log2 (1+Γi)]−
1

2
E [log2 (1+Γ3)]=

2∑
i=1

Ci−C3,

(14)

where Γ3 = Γ1 + Γ2, and Ci = (1/2) E [log2 (1 + Γi)] (i = 1, 2, 3). The key procedure to obtain

(14) is to find the first two terms Ci (i = 1, 2) and the third term C3, respectively.

For i = 1, 2, Ci can be expressed in terms of the PDF of Γi as

Ci =
1

2 ln 2

∫ ∞

0
ln (1 + x) fΓi

(x) dx. (15)

When the CCI dominates the noise, we can obtain the approximations Γ1 = γ1/(γ3+1)≈γ1/γ3

and Γ2 = γ2/(γ4+1)≈γ2/γ4 so that fΓi
(x) (i = 1, 2) can be, respectively, approximated as

fΓ1 (x) ≈
∫ ∞

0
zfγ1 (xz) fγ3 (z) dz, (16)

fΓ2 (x) ≈
∫ ∞

0
zfγ2 (xz) fγ4 (z) dz. (17)

Theorem 1. The closed-form expressions of C1 and C2 are given by (18) and (19), respectively.

C1 =
αNs

2 ln 2

c∑
l=0

⎛
⎜⎝ c

l

⎞
⎟⎠βc−l

I1∑
i=1

ρi

⎛
⎜⎝ γ̄d−l

3,i

γ̄d−l
1 Γ (d)

G3,3
4,4

⎡
⎢⎣(β−δ) γ̄3,i

γ̄1

∣∣∣∣∣∣∣
−d+l, 1−d,−d+l, 1−d+l

0,−d+l,−d+l, 1−d+l

⎤
⎥⎦
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+
εδγ̄d−l+1

3,i

γ̄d−l+1
1 Γ (d+1)

G3,3
4,4

⎡
⎢⎣(β−δ) γ̄3,i

γ̄1

∣∣∣∣∣∣∣
−d+l−1,−d,−d+l−1,−d+l

0,−d+l−1,−d+l−1,−d+l

⎤
⎥⎦
⎞
⎟⎠ , (18)

C2 =
1

2 ln 2 (Nd − 1)!γ̄Nd
2

I2∑
j=1

ωjγ̄
Nd
4,j G3,2

3,3

⎡
⎢⎣ γ̄4,j

γ̄2

∣∣∣∣∣∣∣
−Nd,−Nd,−Nd + 1

0,−Nd,−Nd

⎤
⎥⎦ , (19)

where Gm,n
p,q [· |· ] is the Meijer-G functions with single variable.

Proof. See Appendix A.

Due to the fact that the closed-form PDF expression of Γ3 = Γ1 + Γ2 is mathematically

intractable, C3 can not be calculated with the similar methods to C1 and C2. By using the

definition of MGF, MΓi
(s) (i = 1, 2) can be expressed with respect to the PDF of Γi as

MΓi
(s) = E

[
e−sΓi

]
=
∫ ∞

0
e−sxfΓi

(x) dx. (20)

Then, according to [30], C3 in (14) is given by

C3 =
1

ln 2

∫ ∞

0
Ei (−s)M

(1)
Γ3

(s) ds, (21)

where Ei (−s) is the exponential integral function [26], M
(1)
Γ3

(s) represents the first-order

derivation of the MGF of Γ3 with MΓ3
(s) = MΓ1

(s) MΓ2
(s). Furthermore, using Meijer-G

functions, the analytical expression of (21) can be obtained through Theorem 2.

Theorem 2. The closed-form expression of C3 is given by (22) with I (·, ·, ·, ·) and J (·, ·, ·, ·)
given by (23) and (24)

C3 =
αNs

2 ln 2

c∑
l=0

⎛
⎜⎝ c

l

⎞
⎟⎠βc−l

I1∑
i=1

ρi

I2∑
j=1

ωjγ̄
N

d
4,j

(Nd − 1)!γ̄
N

d
2

(
γ̄d−l

3,i

Γ (d) γ̄d−l
1

[I (i, j, d, l) + J (i, j, d, l)]

+
εδγ̄d−l+1

3.i

Γ (d + 1) γ̄d−l+1
1

[I (i, j, d + 1, l) + J (i, j, d + 1, l)]

)
, (22)

where

I (i, j, d, l) = G2,1,1,3,2
2,[2:1],1,[3:2]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ̄1

(β−δ)γ̄3,i

γ̄2

γ̄4,j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−Nd − d + l,−Nd − d + l

1, d − l, 1

−d + l − Nd

1 + d − l, 1 + d − l, d, Nd, Nd + 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (23)
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J (i, j, d, l) = G2,1,1,3,2
2,[2:1],1,[3:2]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ̄1

(β−δ)γ̄3,i

γ̄2

γ̄4,j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−Nd − d + l,−Nd − d + l

1, d − l, 1

−d + l − Nd

d − l, 1 + d − l, d, Nd + 1, Nd + 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (24)

with G2,1,1,3,2
2,[2:1],1,[3:2] [· |· ] being the Meijer-G functions with two variables.

Proof. See Appendix B.

Finally, by substituting (18), (19) and (22) into (14), one can directly calculate the ergodic

capacity of the considered hybrid network.

Remark 1. Note that the Meijer-G function of single variable can be efficiently calculated by

some computing softwares, such as Matlab and Mathematic, and the Meijer-G functions of two

variables can be alternatively computed by using an efficient approach proposed in [31]-[32],

thus our theoretical formula provides an efficient method to evaluate the performance of the

HSTRNs.

B. Outage Probability

The OP is an important quality-of-service (QoS) measure in wireless systems and is defined

as the probability that the output instantaneous SNR γd falls below an acceptable SNR threshold

γth, namely, [7]-[8]

Pr (γd ≤ γth) = Fγ
d
(γth) . (25)

The CDF Fγ
d
(γth) of γd in (4) is mathematically intractable. To overcome this problem, we

consider the upper bound of the instantaneous end-to-end SINR in (4) as [23]

γd ≤ γup = min (Γ1, Γ2) . (26)

Then, the CDF of γup can be obtained as

Fγup
(x) = 1 − [1 − FΓ1 (x)] [1 − FΓ2 (x)] , (27)

where the CDFs, FΓ1 (x) and FΓ2 (x), can be approximated as

FΓ1 (x) ≈
∫ ∞

0
Fγ1 (xz) fγ3 (z) dz, (28)

FΓ2 (x) ≈
∫ ∞

0
Fγ2 (xz) fγ4 (z) dz, (29)
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In (28) and (29), we have exploited the fact that the considered system is interference limited,

and the noise term is omitted in (16) and (17). It will be demonstrated in Section IV through the

computer simulations that although there exist a small deviation at low SNR, the approximated

approach in (26) can provide sufficient accuracy.

By substituting (6) and (9) into (28), FΓ1 (x) can be computed as

FΓ1 (x) = αNs

c∑
l=0

⎛
⎜⎝ c

l

⎞
⎟⎠βc−l

I1∑
i=1

ρi

γ̄3,i

⎛
⎝ (β − δ)

l−d−1
2 x

d−l−1
2

γ̄
d−l−1

2
1 Γ (d − l + 1)

×
∫ ∞

0
z

d−l−1
2 e

−
(

(β−δ)x
2γ̄1

+ 1
γ̄3,i

)
z
M d+l−1

2
, d−l

2

(
β − δ

γ̄1

xz

)
dz

+
εδ(β − δ)

l−d
2 x

d−l
2

γ̄
d−l
2

1 Γ (d − l + 2)

∫ ∞

0
z

d−l
2 e

−
(

(β−δ)x
2γ̄1

+ 1
γ̄3,i

)
z
M d+l

2
, d−l+1

2

(
β − δ

γ̄1

xz

)
dz

⎞
⎠ . (30)

Then, by utilizing [26, eq. (7.621.2)] and [33, eq. (10)], (30) can be obtained as

FΓ1 (x) = αNs

c∑
l=0

⎛
⎜⎝ c

l

⎞
⎟⎠βc−l

I1∑
i=1

ρi

⎛
⎝ 1

Γ (d)

(
γ̄3,ix

γ̄1

)d−l

G1,1
1,1

⎡
⎢⎣(β − δ) γ̄3,i

γ̄1
x

∣∣∣∣∣∣∣
1 − d

0

⎤
⎥⎦

+
εδ (β − δ)

Γ (d + 1)

(
γ̄3,ix

γ̄1

)d−l+1

G1,1
1,1

⎡
⎢⎣(β − δ) γ̄3,i

γ̄1
x

∣∣∣∣∣∣∣
−d

0

⎤
⎥⎦
⎞
⎟⎠ . (31)

Similarly, by substituting (8) and (11) into (29) yields

FΓ2 (x) = 1 −
N

d
−1∑

i=0

1

i!

(
x

γ̄2

)i I2∑
j=1

ωj

γ̄4,j

∫ ∞

0
zie

−
(

x
γ̄2

+ 1
γ̄4,j

)
z
dz. (32)

Thus, with the help of [26, eq. (3.351.3)] and [33, eq. (10)], FΓ2 (x) can be calculated as

FΓ2 (x) = 1 −
Nd−1∑
i=0

1

i!

(
x

γ̄2

)i I2∑
j=1

ωjγ̄
i
4,jG

1,1
1,1

⎡
⎢⎣ γ̄4,jx

γ̄2

∣∣∣∣∣∣∣
−i

0

⎤
⎥⎦ . (33)

Finally, by substituting (31) and (33) into (27), after some algebraic manipulations, Fγup
(x)

can be expressed as

Fγup
(x)=1−

Nd−1∑
k=0

1

k!

(
x

γ̄2

)k I2∑
j=1

ωj γ̄
i
4,jG

1,1
1,1

⎡
⎢⎣ γ̄4,jx

γ̄2

∣∣∣∣∣∣∣
−k

0

⎤
⎥⎦+αN

s

c∑
l=0

⎛
⎜⎝ c

l

⎞
⎟⎠βc−l

I1∑
i=1

ρi

Nd−1∑
i=0

1

i!

(
x

γ̄2

)k

×
I2∑

j=1

ρj γ̄
i
4,jG

1,1
1,1

⎡
⎢⎣ γ̄4,jx

γ̄2

∣∣∣∣∣∣∣
−k

0

⎤
⎥⎦
⎛
⎝ 1

Γ (d)

(
γ̄3,ix

γ̄1

)d−l

G1,1
1,1

⎡
⎢⎣(β − δ) γ̄3,i

γ̄1
x

∣∣∣∣∣∣∣
1 − d

0

⎤
⎥⎦

+
εδ (β − δ)

Γ (d + 1)

(
γ̄3,ix

γ̄1

)d−l+1

G1,1
1,1

⎡
⎢⎣(β − δ) γ̄3,i

γ̄1
x

∣∣∣∣∣∣∣
−d

0

⎤
⎥⎦
⎞
⎟⎠ . (34)
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To this end, by replacing x with γth in (34), it is straightforward to calculate the approximated

yet accurate OP of the considered HSTRH in the presence of CCIs.

C. Average Symbol Error Rate

According to [34], by using the MGF, the ASER expression of wireless systems over fading

channels can be expressed as

Pe =
∑∫ θ

0
aMγd

(
b

sin2φ

)
dφ, (35)

where a, b and θ are the modulation specific parameters, such as (a = 1, b = 1) for binary phase

shift keying (BPSK),
(
a = 2, b = sin2 (π/M)

)
for M-ary phase shift keying (M-PSK) (M ≥ 4),

and (a = 2 (M − 1)/M, b = 3/(M2 − 1)) for M-ary pulse amplitude modulation (M-PAM).

Using (34) and (21), Mγd
(x) can be computed as [36]

Mγd
(s) ≈

∫ ∞

0
se−sxFγup

(x) dx

= 1 − s
Nd−1∑
k=0

1

k!γ̄k
2

I2∑
j=1

ωjγ̄
k
4,j

∫ ∞

0
xke−sxG1,1

1,1

⎡
⎢⎣ γ̄4,jx

γ̄2

∣∣∣∣∣∣∣
−k

0

⎤
⎥⎦ dx

︸ ︷︷ ︸
I1

+sαNs

c∑
l=0

⎛
⎜⎝ c

l

⎞
⎟⎠βc−l

I1∑
i=1

ρi

Nd−1∑
k=0

1

k!γ̄k
2

I2∑
j=1

ωjγ̄
k
4,j

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1

Γ (d)

(
γ̄3,i

γ̄1

)d−l ∫ ∞

0
xd−l+ke−sxG1,1

1,1

⎡
⎢⎣ γ̄4,jx

γ̄2

∣∣∣∣∣∣∣
−k

0

⎤
⎥⎦G1,1

1,1

⎡
⎢⎣(β − δ) γ̄3,i

γ̄1
x

∣∣∣∣∣∣∣
1 − d

0

⎤
⎥⎦ dx

︸ ︷︷ ︸
I2

+
εδ (β−δ)

Γ (d+1)

(
γ̄3,i

γ̄1

)d−l+1 ∫ ∞

0
xd−l+k+1e−sxG1,1

1,1

⎡
⎢⎣ γ̄4,jx

γ̄2

∣∣∣∣∣∣∣
−k

0

⎤
⎥⎦G1,1

1,1

⎡
⎢⎣(β−δ) γ̄3,i

γ̄1
x

∣∣∣∣∣∣∣
−d

0

⎤
⎥⎦ ds

︸ ︷︷ ︸
I3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (36)

As for the first integral I1, by using [26, eq. (7.813.1)], it can be written as

I1=s−k−2G1,2
2,1

⎡
⎢⎣ γ̄4,j

γ̄2s

∣∣∣∣∣∣∣
−k − 1,−k

0

⎤
⎥⎦ . (37)

Then, to solve the other two integrals I2 and I3, we express the exponential function in terms
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of Meijer-G function as [33, eq. (11)]

e−sx= G1,0
0,1

⎡
⎢⎣sx

∣∣∣∣∣∣∣
−
0

⎤
⎥⎦ . (38)

By substituting (38) into I2 and I3, and applying the identity in [27, eq. (3.1)], we have

I2 = s−d+l−k−1L (i, j, d, l, k) , (39)

and

I3 = s−d+l−k−2L (i, j, d + 1, l, k) , (40)

where

L (i, j, d, l, k) = G1,1,1,1,1
1,[1:1],0,[1:1]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ̄1

(β−δ)γ̄3,i

γ̄2

γ̄4,j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d − l + k + 1

−d + 1;−k

−;−
0, 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (41)

By using I1, I2 and I3 into (36), the analytical expression of Mγd
can be obtained as

Mγd
(s)≈1−

Nd−1∑
k=0

s−k−1

k!γ̄k
2

I2∑
j=1

ωjγ̄
k
4,jG

1,2
2,1

⎡
⎢⎣ γ̄4,j

γ̄2s

∣∣∣∣∣∣∣
−k−1,−k

0

⎤
⎥⎦+αNs

c∑
l=0

⎛
⎜⎝ c

l

⎞
⎟⎠βc−l

I1∑
i=1

ρi

×
Nd−1∑
k=0

1

k!γ̄k
2

I2∑
j=1

ωjγ̄
k
4,j

⎛
⎝s−d+l−k

Γ (d)

(
γ̄3,i

γ̄1

)d−l

L (i, j, d, l, k)

+
εδ (β−δ) s−d+l−k−1

Γ (d+1)

(
γ̄3,i

γ̄1

)d−l+1

L (i, j, d+1, l, k)

⎞
⎠ . (42)

In what follows, we provide an approximate yet accurate ASER expressions in terms of three

commonly used modulation formats, namely, M-PAM, M-PSK, and M-ary quadrature amplitude

modulation (M-QAM),

First of all, for the M-PAM modulation signals, the ASER can be calculated as [34]

PM−PAM ≈ 2
(

M − 1

πM

) ∫ π/2

0
Mγ

d

(
3

(M2 − 1) sin2φ

)
dφ. (43)

Although the ASER of the considered network can be computed by substituting (42) into (43),

it requires a numerical integration. To solve this problem, by using [35, eq. (3), eq. (14)], an

alternative method is given by

PM−PAM ≈ 2 (M − 1)

M

[
1

12
Mγ

d

(
3

M2 − 1

)
+

1

4
Mγ

d

(
4

M2 − 1

)]
. (44)
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For M-PSK modulation signals, the ASER can be obtained as [34]

PM−PSK =
1

π

∫ (M−1)π/M

0
Mγ

d

(
sin2 (π/M)

sin2φ

)
dφ, (45)

which can be approximated as

PM−PSK ≈
(

M − 1

2M
− 1

6

)
Mγ

d

(
sin2

(
π

M

))
+

1

4
Mγ

d

(
4

3
sin2

(
π

M

))

+
(

M − 1

2M
− 1

4

)
Mγ

d

(
sin2 (π/M)

sin2 ((M − 1)π/M)

)
. (46)

For a square M-QAM modulation signal, since it can be considered as two independent
√

M -PAM signals, its ASER can be evaluated as [34]

PM−QAM =
4

π

(
1− 1√

M

) ∫ π/2

0
Mγ

d

(
3

(M−1) sin2φ

)
dφ

+
4

π

(
1− 1√

M

)2 ∫ π/4

0
Mγ

d

(
3

(M−1) sin2φ

)
dφ. (47)

Following a similar derivation to (44) and (46), the approximate expression of PM−QAM can be

calculated as

PM−QAM ≈
(

1√
M

− 1

M

)(
1

3
Mγ

d

(
3

M − 1

)
+ Mγ

d

(
4

M − 1

))

+
1

2

(
1 − 1√

M

)2 (
Mγ

d

(
6

M − 1

)
− Mγ

d

(
3

M − 1

))
. (48)

Remark 2. It should be pointed out that although the approximate formulas are derived to

calculate the ASER performance of the HSTRNs with various modulation formats, computer

simulations in Section IV will demonstrate that the proposed method can provide satisfied

accuracy.

D. Asymptotic Analysis at High SNR

In this section, we provide the asymptotic analysis at high SNR in terms of diversity order

and array gain to gain further insights into the considered network.

First of all, inspired by [14] and [29], by using the the series representation of Meijer-G

function as [37, eq. (9.303)]

Gm,n
p,q

⎡
⎢⎣x

∣∣∣∣∣∣∣
a1, . . . , ap

b1, . . . , bq

⎤
⎥⎦ =

m∑
h=1

m∏
j=1,j �=h

Γ
(
bj − bh

) n∏
j=1

Γ
(
1 − bh − aj

)
q∏

j=m+1
Γ
(
1 + bh − bj

) p∏
j=n+1

Γ
(
aj − bh

)xbh

×pFq

(
1 + bh − a1, . . . , 1 + bh − ap; 1 + bh − b1, . . . , 1 + bh − bq; (−1)p−m−n x

)
, (49)
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where in the case of x → 0, pFq (; ;) has the property as [38]

pFq

(
a1, . . . , ap; b1, . . . , bq; x

)
→ 1, (50)

the asymptotic CDF of Γ1 can be expressed as

F∞
Γ1

(x) = αNs

c∑
l=0

⎛
⎜⎝ c

l

⎞
⎟⎠βc−l

I1∑
i=1

ηi

(
γ̄3,ix

γ̄1

)d−l

. (51)

Considering that asymptotic performance of F ∞
Γ1

(x) is determined by the lowest terms of γ̄1 at

high SNR, we let l = c in (51), and further obtain

F∞
Γ1

(x) = αNs

I1∑
i=1

ρi

(
γ̄3,ix

γ̄1

)Ns

+ O
(
xNs+1

)
, (52)

where O (·) stands for higher order terms. Meanwhile, as for F∞
γ2

(x), by applying the Maclaurin

series representation of exponential function to (8), one can obtain

F∞
γ2

(x) =
1

Nd!

(
x

γ̄2

)Nd

+ O
(
xNd+1

)
. (53)

Hence, by using (53) and (11) along with [26, eq. (3.351.3)], the CDF of Γ2 in (29) at high

SNR is given by

F∞
Γ2

(x) =
1

γ̄
N

d
2

I2∑
j=1

ωjγ̄
Nd
4,j xN

d + O
(
xN

d
+1
)
. (54)

Finally, substituting (52) and (54) into (27) yields the F ∞
γup

(x) as

F∞
γup

(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

αNs
I1∑

i=1
ρi

(
γ̄3,i

γ̄1

)Ns

xNs , Ns < Nd[
αNeq

I1∑
i=1

ρi

(
γ̄3,i

γ̄1

)Neq

+
I2∑

j=1
ωj

(
γ̄4,j

γ̄2

)Nd

]
xNeq , Ns = Nd = Neq

I2∑
j=1

ωj

( γ̄4,j

γ̄2

)Nd
, Ns > Nd

. (55)

In what follows, we consider the asymptotic behavior of ASER in high SNR regime. To this

end, we first denote γ̄1 = η1γ̄ and γ̄2 = η2γ̄, and substitute (55) into (21). After some necessary

mathematical manipulation, one can obtain

M∞
γup

(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

αNs
I1∑

i=1
ρi

(
γ̄3,i

η1

)Ns 1
(γ̄s)Ns , Ns < Nd[

αNeq
I1∑

i=1
ρi

(
γ̄3,i

η1

)Neq

+
I2∑

j=1
ωj

(
γ̄4,j

η2

)Neq

]
1

(γ̄s)Neq , Ns = Nd = Neq

I2∑
j=1

ωj

(
γ̄4,j

η2

)Nd 1
(γ̄s)Nd

, Nd > Ns

. (56)
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Then, by employing (56) into (35), the asymptotic ASER expression with respect to the diversity

order and array gain can be obtained as

P∞
s = (Gaγ̄)−G

d + O
(
γ̄−(Gd+1)

)
, (57)

where the diversity order and array gain are given by

Gd = min (Ns, Nd) , (58)

and

Ga =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ξ (a, b, θ) αNs
I1∑

i=1
ρi

(
γ̄3,i

η1

)Ns

, Ns < Nd

Ξ (a, b, θ)

[
αNeq

I1∑
i=1

ρi

( γ̄3,i

η1

)Neq

+ 1

Neq !η
Neq
2

]
, Ns = Nd = Neq

Ξ (a, b, θ)
I2∑

j=1
ωj

(
γ̄4,j

η2

)Nd
, Nd < Ns

, (59)

where Ξ (a, b, θ) is determined by the modulation formats, which will be described as follows.

1) M-PAM: In the case of M-PAM modulation, Ξ (a, b, θ) can be written as

Ξ (a, b, θ) =
2 (M − 1)/πM

(3/(M2 − 1))
2G

d

π/2∫
0

(sin φ)2Gd dφ. (60)

By using [26, eq. (3.621.3)] and [38, eq. (6.1.49)], (60) can be rewritten as

Ξ (a, b, θ) =
2 (M − 1)/πM

(3/(M2 − 1))
2G

d

√
πΓ (Gd + 1/2)

2Γ (Gd)
. (61)

2) M-PSK: For the M-PSK modulation, Ξ (a, b, θ) can be expressed as

Ξ (a, b, θ) =
1

(sin (π/M))2G
d

∫ π−π/M

0
(sin φ)2Gd dφ. (62)

Applying [26, eq. (3.621.3)] and [38, eq. (6.1.49)] along with the symmetry and periodicity of

the sine function, we can obtain

Ξ (a, b, θ) =
1

(sin (π/M))2N

(∫ π/2

0
(sin φ)2Gd dφ +

∫ π/2

π/M
(sin φ)2Gd dφ

)

=
1

πsin2G
d (π/M)

(√
πΓ (Gd + 1/2)

2Γ (Gd)
+ cos

(
π

M

)
2F1

(
1

2
,−Gd −

1

2
;
3

2
; cos2

(
π

M

)))
, (63)

where 2F1 (a, b; c; z) denotes the Gauss hypergeometric function [26].

3) M-QAM: Similar to the procedures in deriving (63), Ξ (a, b, θ) for M-QAM modulation

is given by

Ξ (a, b, θ) =
4

π

(
1√
M

− 1

M

)(
M − 1

3

)2Gd
∫ π/2

0
(sin φ)2G

d dφ
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+
4

π

(
1 − 1√

M

)2 (
M − 1

3

)2Gd
∫ π/2

π/4
(sin φ)2Gd dφ

=
4

π

(
1√
M

− 1

M

)(
M − 1

3

)2G
d
√

πΓ (Gd + 1/2)

2Γ (Gd)

+
4

π

(
1 − 1√

M

)2 (
M − 1

3

)2G
d

+

√
2

2
2F1

(
1

2
,−Gd −

1

2
;
3

2
;
1

2

)
. (64)

Remark 3. It is revealed in (58) that the maximal achievable diversity order of the considered

HSTRN equals the minimal number of the antennas deployed at the source and destination.

Moreover, it can also be observed from (59) that although the CCIs do not affect the system

diversity order, they do degrade the performance of HSTRN through reducing the array gain.

V. NUMERICAL RESULTS

This section presents computer simulations to confirm the validity of the presented analytical

results and investigates the impact of the system parameters on the performance of the considered

HSTRN. In the simulation, the satellite-relay link is subject to Shadowed-Rician fading with

channel parameters shown in Table I, and the relay-destination link follows Rayleigh fading

distribution. Similar to most of the related works, we consider η1 = η2 = 1, namely, γ̄1 = γ̄2 = γ̄,

and equal total CCI power at the relay and destination, namely,
∑I1

i=1 γ̄3,i =
∑I2

j=1 γ̄4,j = γ̄tot.

In addition, the label (Ns, Nd) denotes the number of antennas at the source and destination,

respectively, and all the simulations are obtained by performing 107 channel realizations.

Fig. 2 shows the ergodic capacity of the HSTRN for different antenna configurations, where

the satellite-relay link undergoes the average shadowing (AS) and I1 = I2 = 1 with γ̄tot = 1dB.

It can be seen from Fig. 2 that the proposed analytical results are in good agreement with

the simulation results, implying the proposed expressions can accurately evaluate the ergodic

capacity of the considered system. Meanwhile, as we expect, the ergodic capacity improves with

the increase of number of antennas, demonstrating the benefits of employing multiple antennas

and beamforming in HSTRNs. For example, the antenna configuration with (Ns, Nd) = (4, 4) can

achieve a capacity enhancement of approximate 1bits/s/Hz in comparison with (Ns, Nd) = (2, 2)

at γ̄ = 30dB. In addition, Fig. 3 shows the impact of different CCI powers on the ergodic

capacity of the HSTRN for the other fading cases, namely, frequent heavy shadowing (FHS)

and infrequent light shadowing (ILS). Here, we assume (Ns, Nd) = (4, 4), γ̄tot = {−∞, 1, 3}dB

with γ̄tot = −∞dB denote the case of no CCI, and I1 = I2 = 2 with γ̄3,1 = 2γ̄3,2 and γ̄4,1 = 2γ̄4,2.
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TABLE I: LMS Channel Parameters [4]

Shadowing b m Ω

Frequent heavy shadowing (FHS) 0.063 0.739 8.97 × 10−4

Average shadowing (AS) 0.126 10.1 0.835

Infrequent light shadowing (ILS) 0.158 19.4 1.29
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Fig. 2: Ergodic capacity versus γ̄ for various antenna configurations.

It can be seen from Fig. 3 that for both the FHS and ILS scenarios, the increase of the CCI powers

cause noticeable degradation on the system capacity. However, as the CCI power increases, the

capacity gap between FHS and ILS becomes smaller, which indicates that in the presence of

strong interference, the ergodic capacity is not sensitive to the shadowing conditions.

Fig. 4 illustrates the OP of HSTRN with different antenna configurations for the threshold

γth = 3dB and I1 = I2 = 1 with γ̄tot = 1dB. The curves of the analytical OP and that

of asymptotic OP are calculated by (34) and (55), respectively. As illustrated, an excellent

agreement between the simulation and analytical results can be seen, and the analytical curve is

sufficiently tight across the entire SNR range of interest, while the asymptotic curves match well

with the exact curves at high SNR. In addition, increasing the number of antennas at the source

and/or destination significantly degrades the system OP. Moreover, it can be clearly seen that

the achievable diversity order of the considered system equals to the minimal antenna number
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Fig. 3: Ergodic capacity versus γ̄ for various CCI powers.
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Fig. 4: Outage probability of HSTRN for different antenna configurations.

deployed at source and destination, or mathematically, min (Ns, Nd). For example, the diversity

order is two for the configurations (Ns, Nd) = (4, 2) and (Ns, Nd) = (2, 4), and four for the

configuration (Ns, Nd) = (4, 4).

Fig. 5 depicts the ASER of HSTRN with different antenna configurations for BPSK and 8PSK

modulation schemes. As seen from the figure, the analytical ASER curves are very closed to
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the simulation results at high SNR regime. Moreover, asymptotic ASER curves in (57) are also

plotted to provide further insights into the diversity order and array gain under different antenna

configurations. Just as in the case of OP, it can be seen that the more antennas are employed at

the source and/or destination, the better system performance can be achieved. Moreover, it can

be observed that the configuration with (Ns, Nd) = (4, 2) exhibits a better ASER performance

than that with (Ns, Nd) = (2, 4) , which indicates the antennas employed at the source pose a

greater influence on the system performance than the antennas at the destination. This is due

to the fact that, by employing the AF protocol, the SINR of the S-R link is amplified by the

relay node. This observation also suggests that, if the total available number of antennas is fixed,

more antennas should be deployed at the source. Fig. 6 plots the ASER curves of HSTRN for

different CCI powers with BPSK modulation scheme, where the simulation parameters are set

the same as Fig. 2. Similar to the cases of ergodic capacity, with the increase of CCI power,

the ASER performance degrades significantly, which demonstrates the detrimental effect of the

interference. When the CCI power increases from −∞ to 3dB, although the diversity order of the

considered network remains four, the significant performance degradation occurs. This is because

the CCI causes the loss of array gain. Furthermore, from the ASER comparison between FHS

and AS scenarios, although the AS case outperform the FHS case, the better channel quality

does not offer any additional diversity order. However, it does improve the system performance

by providing extra array gain.

VI. CONCLUSIONS

In this paper, we have investigated the performance of the multiple antenna hybrid satellite-

terrestrial relay network with multiple co-channel interferes at both the terrestrial relay and

destination. Specifically, the approximated closed-form expression for ergodic capacity of the

considered networks has first been derived. Then, we have obtained the analytical expressions

of OP and ASER, which is very tight in general despite a little deviation in low SNR regime.

Moreover, the simple asymptotic formulas at high SNR regime have also been provided, which

enables the characterization of various system parameters on the achievable diversity order and

array gain of the considered network. Simulations have been provided to confirm the validity

of the theoretical analysis, and indicated the impact of key system parameters, such as antenna

number, channel coefficients and CCI power on the system performance. It has been found that
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Fig. 5: Average symbol error rate of HSTRN for different antenna configurations in terms of BPSK and 8PSK

modulation formats.
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Fig. 6: Average symbol error rate of HSTRN for different CCI powers in terms of BPSK modulation format.

although the maximal diversity of min (Ns, Nd) can be achieved, the CCI severely degrades the

performance of HSTRN by reducing the array gain.
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APPENDIX A

PROOF OF THEOREM 1

From (16) and (17), in order to obtain Ci (i = 1, 2), we first calculate fΓi
(x) (i = 1, 2). By

substituting (5) and (9) into (16), we have

fΓ1 (x)=αN
c∑

l=0

⎛
⎜⎝ c

l

⎞
⎟⎠βc−l

I1∑
i=1

ρi

γ̄3,i

⎛
⎜⎜⎜⎜⎜⎝

xd−l−1

γ̄d−l
1 Γ (d−l)

∫ ∞

0
zd−le

− z
γ̄3,i

1F1

(
d; d−l;−(β−δ) xz

γ̄1

)
dz︸ ︷︷ ︸

IA,1

+
εδxd−l

γ̄d−l+1
1 Γ (d − l + 1)

∫ ∞

0
zd−l+1e

− z
γ̄3,i

1F1

(
d + 1; d − l + 1;−(β − δ)xz

γ̄1

)
dz︸ ︷︷ ︸

I
A,2

. (A.1)

For the convenience of subsequent derivation, with the help of [26, eq. (8.455.1)], we first express

1F1 (d; d − l;−(β − δ) xz/γ̄1) and 1F1 (d + 1; d − l + 1;−(β − δ)xz/γ̄1) in terms of Meijer-G

function as

1F1

(
d; d − l;−(β − δ)xz

γ̄1

)
=

Γ (d − l)

Γ (d)
G1,1

1,2

⎡
⎢⎣(β − δ) xz

γ̄1

∣∣∣∣∣∣∣
1 − d

0, 1 − d + l

⎤
⎥⎦ , (A.2)

1F1

(
d + 1; d − l + 1;−(β − δ) xz

γ̄1

)
=

Γ (d − l + 1)

Γ (d + 1)
G1,1

1,2

⎡
⎢⎣(β − δ) xz

γ̄1

∣∣∣∣∣∣∣
−d

0,−d + l

⎤
⎥⎦ , (A.3)

and further obtain

IA,1 = γ̄d−l+1
3,i G1,2

2,2

⎡
⎢⎣(β − δ) γ̄3,ix

γ̄1

∣∣∣∣∣∣∣
−d + l, 1 − d

0, 1 − d + l

⎤
⎥⎦ , (A.4)

IA,2 = γ̄d−l+2
3,i G1,2

2,2

⎡
⎢⎣(β − δ) γ̄3,ix

γ̄1

∣∣∣∣∣∣∣
−d + l − 1,−d

0,−d + l

⎤
⎥⎦ . (A.5)

In deriving IA,1 and IA,2, we have applied [26, eq. (9.34.8)]. After some algebraic manipulations,

the analytical expression for fΓ1 (x) is given by

fΓ1 (x) = αNs

c∑
l=0

⎛
⎜⎝ c

l

⎞
⎟⎠βc−l

I1∑
i=1

ρi

⎛
⎜⎝xd−l−1γ̄d−l

3,i

γ̄d−l
1 Γ (d)

G1,2
2,2

⎡
⎢⎣(β − δ) γ̄3,ix

γ̄1

∣∣∣∣∣∣∣
−d + l, 1 − d

0, 1 − d + l

⎤
⎥⎦
⎞
⎟⎠
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+
εδxd−lγ̄d−l+1

3,i

γ̄d−l+1
1 Γ (d + 1)

G1,2
2,2

⎡
⎢⎣(β − δ) γ̄3,ix

γ̄1

∣∣∣∣∣∣∣
−d + l − 1,−d

0,−d + l

⎤
⎥⎦
⎞
⎟⎠ . (A.6)

Then, substituting (A.6) into (15) and expressing ln (1 + x) in terms of Meijer-G function

according to [33, eq. (11)]

ln (1 + x) = G1,2
2,2

⎡
⎢⎣x

∣∣∣∣∣∣∣
1, 1

1, 0

⎤
⎥⎦ , (A.7)

we have

C1 =
αNs

2 ln 2

c∑
l=0

⎛
⎜⎝ c

l

⎞
⎟⎠βc−l

I1∑
i=1

ρi

(
γ̄d−l

3,i

γ̄d−l
1 Γ (d)

IA,3 +
εδγ̄d−l+1

3,i

Γ (d + 1)
IA,4

)
, (A.8)

where

IA,3 =
∫ ∞

0
xd−l−1G1,2

2,2

⎡
⎢⎣x

∣∣∣∣∣∣∣
1, 1

1, 0

⎤
⎥⎦G1,2

2,2

⎡
⎢⎣(β − δ) γ̄3,ix

γ̄1

∣∣∣∣∣∣∣
−d + l, 1 − d

0, 1 − d + l

⎤
⎥⎦ dx, (A.9)

IA,4 =
∫ ∞

0
xd−lG1,2

2,2

⎡
⎢⎣x

∣∣∣∣∣∣∣
1, 1

1, 0

⎤
⎥⎦G1,2

2,2

⎡
⎢⎣(β − δ) γ̄3,ix

γ̄1

∣∣∣∣∣∣∣
−d + l − 1,−d

0,−d + l

⎤
⎥⎦ dx, (A.10)

By utilizing the integration relationship [33, eq. (21)], IA,3 and IA,4 can be computed as

IA,3 = G3,3
4,4

⎡
⎢⎣η

∣∣∣∣∣∣∣
−d + l, 1 − d,−d + l, 1 − d + l

0,−d + l,−d + l, 1 − d + l

⎤
⎥⎦ , (A.11)

IA,4 = G3,3
4,4

⎡
⎢⎣η

∣∣∣∣∣∣∣
−d + l − 1,−d,−d + l − 1,−d + l

0,−d + l − 1,−d + l − 1,−d + l

⎤
⎥⎦ . (A.12)

To this end, by substituting (A.11) and (A.12) into (A.8) along with some mathematical com-

putations, the desired result of C1 is given by (18).

Similarly, by using (7), (11) into (17) and [26, eq. (3.351.3)], fΓ2 (x) can be obtained as

fΓ2 (x)=
xNd−1

(Nd−1)!γ̄Nd
2

I2∑
j=1

ωjNd!

γ̄4,j

(
x

γ̄2

+
1

γ̄4,j

)−Nd−1

. (A.13)

Then, substituting (A.13) into (15) along with (A.9) yields

C2 =
1

2 ln 2 (Nd−1)!γ̄Nd
2

I2∑
j=1

ωjNd!γ̄
Nd
4,j

∞∫
0

xNd−1

(
1+

γ̄4,jx

γ̄2

)−Nd−1

G1,1
1,1

⎡
⎢⎣ γ̄4,j

γ̄2

x

∣∣∣∣∣∣∣
−Nd

0

⎤
⎥⎦dx

︸ ︷︷ ︸
IA,5

. (A.14)

To solve the integral, we first express (1 + γ̄4,jx/γ̄2)
−Nd−1 in terms of Meijer-G function as [33,
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eq. (10)] (
1 +

γ̄4,jx

γ̄2

)−Nd−1

=
1

Γ (Nd + 1)
G1,1

1,1

⎡
⎢⎣ γ̄4,j

γ̄2

x

∣∣∣∣∣∣∣
−Nd

0

⎤
⎥⎦ . (A.15)

Then, using [33, eq. (21)], we can further obtain

IA,5 =
1

Γ (Nd + 1)
G3,2

3,3

⎡
⎢⎣ γ̄4,j

γ̄2

∣∣∣∣∣∣∣
−Nd,−Nd,−Nd + 1

0,−Nd,−Nd

⎤
⎥⎦ . (A.16)

Finally, by substituting (A.16) into (A.14), the analytical expression of C2 can be given by (19).

APPENDIX B

PROOF OF THEOREM 2

By substituting (A.6) and (A.13) into (21) and applying [26, eq. (7.813.1)], the MGF of Γ1

and Γ2 can be, respectively, obtained as

MΓ1
(s) = αNs

c∑
l=0

⎛
⎜⎝ c

l

⎞
⎟⎠βc−l

I1∑
i=1

ρi

(
γ̄d−l

3,i

Γ (d) γ̄d−l
1

ϕ1 +
εδγ̄d−l+1

3,i

Γ (d + 1) γ̄d−l+1
1

ϕ2

)
, (B.1)

and

MΓ2
(s) =

1

(Nd − 1)!γ̄Nd
2

I2∑
j=1

ϕjγ̄
Nd
4,j ϕ3, (B.2)

where

ϕ1 = s−d+lG1,3
3,2

⎡
⎢⎣(β − δ) γ̄3,i

γ̄1s

∣∣∣∣∣∣∣
−d + l + 1,−d + l, 1 − d

0, 1 − d + l

⎤
⎥⎦ , (B.3)

ϕ2 = s−d+l+1G1,3
3,2

⎡
⎢⎣(β − δ) γ̄3,i

γ̄1s

∣∣∣∣∣∣∣
−d + l,−d + l − 1,−d

0,−d + l

⎤
⎥⎦ , (B.4)

ϕ3 = s−NdG1,2
2,1

⎡
⎢⎣ γ̄4,j

γ̄2s

∣∣∣∣∣∣∣
−Nd + 1,−Nd

0

⎤
⎥⎦ . (B.5)

According to the well-known derivative property of [f1 (x) f2 (x)](1) = f
(1)
1 (x) f2 (x)+f1 (x) f

(1)
2 (x),

where f
(1)
i (x) denotes the first-order derivative of fi (x) with respect to x, M

(1)
Γ3

(s) can be

expressed as

M
(1)
Γ3

(s) = M
(1)
Γ1

(s) MΓ2
(s) + MΓ1

(s) M
(1)
Γ2

(s) , (B.6)
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Now, we turn to derive the expressions of M
(1)
Γi

(i = 1, 2). By using the following identity [39,

eq. (8.2.2.14)]

Gm,n
p,q

⎡
⎢⎣x−1

∣∣∣∣∣∣∣
ap

bq

⎤
⎥⎦= Gn,m

q,p

⎡
⎢⎣x

∣∣∣∣∣∣∣
1 − bq

1 − ap

⎤
⎥⎦ , (B.7)

ϕi (i = 1, 2, 3) can be first written as

ϕ1 = s−d+lG3,1
2,3

⎡
⎢⎣ γ̄1s

(β − δ) γ̄3,i

∣∣∣∣∣∣∣
1, d − l

d − l, d − l + 1, d

⎤
⎥⎦ , (B.8)

ϕ2 = s−d+l−1G3,1
2,3

⎡
⎢⎣ γ̄1s

(β − δ) γ̄3,i

∣∣∣∣∣∣∣
1, 1 + d − l

d − l + 1, d − l + 2, 1 + d

⎤
⎥⎦ , (B.9)

ϕ3 = s−NdG2,1
1,2

⎡
⎢⎣ γ̄2s

γ̄4,j

∣∣∣∣∣∣∣
1

Nd, Nd + 1

⎤
⎥⎦ . (B.10)

Then, from [39, eq. (8.2.2.38)],

d

dz

⎡
⎢⎣z−b1Gm,n

p,q

⎡
⎢⎣z

∣∣∣∣∣∣∣
ap

bq

⎤
⎥⎦
⎤
⎥⎦= − z−1−b1Gm,n

p,q

⎡
⎢⎣z

∣∣∣∣∣∣∣
ap

b1 + 1, b2, · · · , bq

⎤
⎥⎦ (m ≥ 1) , (B.11)

we can obtain the further obtain ϕ
(1)
i (i = 1, 2, 3) as

ϕ
(1)
1 = −s−d+l−1G3,1

2,3

⎡
⎢⎣ γ̄1s

(β − δ) γ̄3,i

∣∣∣∣∣∣∣
1, d − l

d − l + 1, d − l + 1, d

⎤
⎥⎦ , (B.12)

ϕ
(1)
2 = −s−d+l−2G3,1

2,3

⎡
⎢⎣ γ̄1s

(β − δ) γ̄3,i

∣∣∣∣∣∣∣
1, 1 + d − l

d − l + 2, d − l + 2, 1 + d

⎤
⎥⎦ , (B.13)

ϕ
(1)
3 = −s−Nd−1G2,1

1,2

⎡
⎢⎣ γ̄2s

γ̄4,j

∣∣∣∣∣∣∣
1

Nd + 1, Nd + 1

⎤
⎥⎦ . (B.14)

Thus, the analytical expression of M
(1)
Γi

(i = 1, 2) is given by

M
(1)
Γ1

(s) = αNs

c∑
l=0

⎛
⎜⎝ c

l

⎞
⎟⎠βc−l

I1∑
i=1

ρi

(
γ̄d−l

3,i

Γ (d) γ̄d−l
1

ϕ
(1)
1 +

εδγ̄d−l+1
3,i

Γ (d + 1) γ̄d−l+1
1

ϕ
(1)
2

)
, (B.15)

M
(1)
Γ2

(s) =
1

(Nd − 1)!γ̄Nd
2

I2∑
j=1

ϕj γ̄
Nd
4,j ϕ

(1)
3 . (B.16)
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By substituting (B.1), (B.2), (B.15) and (B.16) into (B.6), one can obtain

M
(1)
Γ3

(s)=αNs

c∑
l=0

⎛
⎜⎝ c

l

⎞
⎟⎠βc−l

I1∑
i=1

ρi

I2∑
j=1

ϕjγ̄
Nd
4,j

(Nd−1)!γ̄Nd
2

ϕ3

(
γ̄d−l

3,i

Γ (d) γ̄d−l
1

ϕ
(1)
1 +

εδγ̄d−l+1
3,i

Γ (d+1) γ̄d−l+1
1

ϕ
(1)
2

)

αNs

c∑
l=0

⎛
⎜⎝ c

l

⎞
⎟⎠βc−l

I1∑
i=1

ρi

I2∑
j=1

ϕjϕ̄
Nd
4,j

(Nd−1)!γ̄Nd
2

ϕ
(1)
3

(
γ̄d−l

3,i

Γ (d) γ̄d−l
1

ϕ1+
εδγ̄d−l+1

3,i

Γ (d+1) γ̄d−l+1
1

ϕ2

)
. (B.17)

Finally, from (20) and (B.17), the closed-form expression for C3 is given by

C3 =
αNs

ln 2

c∑
l=0

⎛
⎜⎝ c

l

⎞
⎟⎠βc−l

I1∑
i=1

ρi

I2∑
j=1

ϕjγ̄
Nd
4,j

(Nd − 1)!γ̄Nd
2

×
(

γ̄d−l
3,i

Γ (d) γ̄d−l
1

[∫ ∞

0
Ei (−x)ϕ

(1)
1 ϕ3dx +

∫ ∞

0
Ei (−x) ϕ1ϕ

(1)
3 dx

]

+
εδγ̄d−l+1

3,i

Γ (d + 1) γ̄d−l+1
1

[∫ ∞

0
Ei (−x)ϕ

(1)
2 ϕ3dx +

∫ ∞

0
Ei (−x) ϕ2ϕ

(1)
3 dx

])
. (B.18)

To solve the four integrals in (B.18), we first apply the identity [39, eq. (8.4.11.1)] to express

the Ei (−s) in terms of Meijer-G function as

Ei (−s) = −G2,0
1,2

⎡
⎢⎣s

∣∣∣∣∣∣∣
1

0, 0

⎤
⎥⎦ . (B.19)

With the aid of the [27, eq. (3.1)], the closed-form expression for C3 can be expressed as (22).
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