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Abstract:

Rare-earth orthoferrites RFeO3 materials have recently attracte
technolgical potential. Among these materials, SmFeO3 ho dsﬂgreat
physical properties (fast magnetic switching, spin reorient
for its potential ferroelectric properties which have
attention on T-dependent Zero Field Cooled (ZF
of micrometer scale crystals of SmFeO3 obtained by
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K to 100 K). Due to residual small fractions of
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ferromagnetic o-Fe from the samp%th, possible interactions between the magnetic moment of

a-Fe and the SmFeOs cry t the compensation temperature can not be excluded and could be at
the origin of the enhance%’ signal reported in this work.
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Introduction r(l/ y.
Rare-earth orthoferfites RFeOs (R= rare-earth ion)

materials have récently attracted a great attention

for their intrigu hysical properties, ideal for

numerous gechnological applications, such as
ultrafast to-magnetic  recording  [1-4],
switching [5], laser-induced
reorientation [6-7], magnetic

hysteresis loops [8], enhanced
magnetoelegtric interactions [9,10], multiferroics,
electrics [11-15]. The family of RMOs3
térials is generally characterized by a distorted
peroyskite Pbnm structure which exhibits a weak
ferromagnetic behavior due to a small canting of
the antiferromagnetic metal sub-lattices (M>*

sub-lattices). In these structures two magnetic
sub-lattices can be identified: one due to the
4f-electrons of the rare-earth ions (R-sub-lattice)
and another due to the 3d-electrons of the Fe ions
(Fe-sub-lattice) [16-21]. One of the most attractive
properties of RMOs materials is the spin
reorientation (SR). SR is a phenomenon which can
be induced by temperature and/or by an applied
magnetic field. In this type of effect the direction
of the easy axis of magnetization has been
reported to change from one crystal axis to
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ious works have attributed the origin of SR to
antisymmetric (as described by Dzyaloshinskii
[22], Moriya [23], and Treves [24]) and
anisotropic-symmetric ~ exchange interactions
between Metal (M3") and Rare-Earth (R3)
magnetic moments [21].
The observed spin configurations and the SR
dynamics in RMO3 are generally classified into 3
configurations, following the Bertaut description,
namely I'y, [, and I's [16]. Among many RFeO3
materials, SmFeOs3; has recently attracted a great
attention not only for the excellent physical
properties such as 1) fast magnetic switching, and
2) easy axis rotation transition (also known as spin
reorientation transition) but also for its newly
observed room-temperature ferroelectric

| This manuscript was accepted by J. Appl. Phys. Click here to see the version of record. |
zs Ipotl er with the change of temperature and/or K (Neel Temperature). IThe origin of this

. " applied magnetic field parameters [15,16,20,21].
Publishif

ferroelectric polarization is highly debated and
still not well understood [11-14]. An inverse
Dzyaloshinskii-Moriya interaction based
mechanism was firstly reported to be the driving
force of such ferroelectric properties [11].
However this interpretation was very recently
revised due to incozﬁatibilities in the calculated
C

k= 0 magnetic st , which could not be
responsible for #the™ spin-erbit-coupling driven

ferroelectric polatigation by Si % Sj (due to
un-broken inﬂ%&'o\nKI mmetry) [12]. Thus an

r?chan' n based on JSi ¢ §j
iction“was then proposed [13]. Such
is‘still debated and not confirmed by
investigations, where no

has been found in single crystals of

ecent

firf:lectrl 1

the'same material (SmFeO3) [14].
properties [11-15]. In this type of materials the S this“work we continue to investigate the
effect involves two main spin configurations, fascinating physical properties of SmFeOs
m.

N

rials focusing our attention on T-dependent

namely ['; at high temperature and I, at,low
temperature [15, 16]. These conﬁguration‘s\riﬂero Field Cooled (ZFC) and Field Cooled (FC)
(Fx

defined by the symbols I's (Gx, Ay, F7) a
Gy, Gz) [21].

™
In these spin configurations Gx rem e
antiferromagnetic spin-configurati t tal

M3* ions along the a-axis and F; the

omagnetic

spin-configuration along thes€-axis. Ay represents
the antiferromagnetic-spin- %nt along the
b-axis (due to hidden cating o ins) [21].
The dynamics of theftempératute induced SR in
this type of materi
the temperaturesfi
magnetization, begins/to rotate at a temperature Ta,
and ceases/to rot when the rotation angle
rees 4at another temperature Ti,
resulting m spinsdonfiguration I'; (Fx Cy, Gy)
repjesents another hidden canting
ton [21]. Particularly the dynamics

loweted, the easy axis of

reaches 90

where

spifi-config

of are \being recently re-investigated due to
sib important  correlations  of  this
efomenon with magnetically driven

ferreglectricity effects [11-15].

Recent works have indeed reported the discovery

of ferroelectric polarization in SmFeOs below 670

magnetization properties of micrometer scale
crystals obtained by annealing methods.
Particularly, we report the observation of a not
previously reported magnetic transition at the
temperature of approximately 139 K. From
literature bulk susceptibility measurements, is has
been suggested that below the temperature of
about 140 K, Sm** moments would begin to order
antiparallel to the Fe-moments due to
antiferromagnetic f~d exchange interactions. We
therefore attribute the observed transition to
compensation effects induced by the appearance
of long range ordering in Sm*' spins. The
magnetic-nature of the observed transition is
confirmed by additional temperature dependent
Powder X-ray Diffraction analysis which did not
show structural changes in the same temperature
range (from 298 K to 100 K). Due to residual
small fractions of ferromagnetic a-Fe from the
sample-growth, possible interactions between the
magnetic moment of a-Fe and the SmFeOs
crystals at the compensation temperature can not
be excluded. However, no exchange-bias effects
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found
measurements of the produced samples.

I'-dependent hysteresis loops

prerimental:

The SmFeOs crystals were prepared by annealing
mixtures of Fe-filled carbon foam (produced with
the method reported in ref.[26]) and Sm20Os3
nanoparticles in an Ar and Ar/H2 flow of 15
ml/min within a chemical vapour deposition
system consisting of a quartz tube reactor and an
electrical furnace set at the temperature of
approximately 990 °C. Transmission electron
microscopy (TEM) and Scanning TEM (STEM)
investigations were performed by using a 200 kV
American FEI Tecnai G?F20 fitted with field
emission  gun. Variable temperature XRD
analysis performed with a Panalytical
Empyrean powder diffractometer (Cu K-a with A
= 0.154 nm) equipped with a primary Johansson
monochromator, an Oxford Cryosystems PhoeniX

was

cryostat, and a X’celerator linear detector. The
magnetic measurements (zero field cooled (ZEC);
field cooled (FC) and hysteresis loop$) were
performed by employing a VSM Quantum Design
and a VSM Cryogenic Limited London UK.

Results and Discussion

The morphology of the as.annealed“SmFeO3
crystals was revealed by{ TEM%performed in
STEM mode. Due to the high_thi¢ckness of the
crystals, the use of SEEMd{atomie contrast was
used for a better vispalization of the
cross-sectional moerphology of the grown crystals.
In particular th€ brighter areas in Fig.1 represent
the SmFeOj3/ phase, Note also the presence of
small flakés, of/grey-like areas which could be
associateéd-to residual a-Fe-filled carbon foam not
completely oxidized during the annealing process.

Figure.1: STEM image.of a micrometer-scale SmFeO;
crystal _flakes ‘The*“grey areas correspond to the
remaining carbonfpam flakes not completely oxidized

during the annealing process.

Thepresence of Pbnm SmFeOs crystals within the
post-ammealed sample was further confirmed by
room temperature XRD,
Together with the presence of intense crystalline
peaks of SmFeOs, the presence of a residual a-Fe
phase was confirmed by the observation of the
110 reflection.

as shown in Fig.2.

Counts (a.u.)

002
110 111 020

20 25 30 35 40 45 50

260degrees

—
n

Figure.2: XRD diffractogram of the sample obtained
after annealing a mixture of Fe-filled carbon foam and
Figs.1-3 for
Rietveld Refinement analysis of different portions of

SmyO; nanoparticles. See Supp. Info.

the as grown powder sample.
The attention was then turned on the magnetic

properties of the produced samples. The presence
of a magnetic transition in the temperature range
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‘s I m 100 K to 200 K was Tirstly revealed by ZFC T . T
m

easurements as shown in Fig.3.
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Figure.3: ZFC measurement of the micrometre scale
SmFeOs/a-Fe crystals. The used field was 800 Oe.

The existence of such magnetic transition was also
confirmed by further FC measurements performed
at different fields. Fig.4 shows the typical result o

FC 500 Oe 1

0.860 |- Q
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Figure.5: méasurement of micrometre scale

SmFe 3/(-1\—Fe C Is. The used field was 500 Oe.

e observation of this transition cannot be
e inéaon the basis of the previously observed
phenomenon, which has been generally

Furthermore Figs.5-6 show the results of F Indeed, below the Neel temperature, near 670 K,
measurements at 500 Oe and 800 Oe respecti ly. ““the weak ferromagnetic moments (associated to
It is important to notice that the observe k is™%_ the Fe-sublattice spins of the SmFeOs phase) are
found to become clearer with the increase ¢ expected to re-orient from the c-axis towards the

a-axis. It has been shown that this effect observed

at approximately 480 K causes the c-axis
0500 - r ’ L \ E
L]
0.498 - 4 /& .
0.496 / / .
0.494 - \\\ ’f J

0.492

an FC measurement at the applied field of 300 Q%\ reported at the temperature in the order of 480 K.

susceptibility to decrease rapidly below this
temperature, and simultaneously,
susceptibility to rise sharply [25].
Furthermore, the observed transition is not
compatible with possible exchange bias effects,
since no unusual magnetization or coercivity shifts
in the hysteresis loops were found at different
temperatures as shown in Fig.7A-B and Fig.8.
Note however that in our samples the hysteresis
loops magnetization-dynamics may be influenced
by the ferromagnetic behavior of the residual a-Fe
component mentioned above (see also Supp.
Info.Figs.1-10).

the a-axis

Magnetization emu

1 I

10 150 200 50 3o

'l‘w“l perature K

0.490

Figure.4%_FC
SmfFeOs/a-

NI

%easurement of micrometre scale
stals. The used field was 300 Oe.
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Figure.6: FC measurement of micrometre scale
SmFeOs/a-Fe crystals. The used field was 800 Oe.

Instead, considering the low temperature magnetic
properties of SmFeOs, an important observation

can be made. Indeed at cryogenic temperatures
the magnetization of SmFeOs has been reportedK\
1

exhibit a spontaneous magnetization reversa
[15,17,18,19,25]. This reversal has
previously attributed to a compensation t o

the weak ferromagnetic moment (assogiatedtoAhe™
N
N

Fe-sublattice spins of the SmFeOs3 \m@b
antiparallel alignment of the ments.

Additionally from the bulk susceptibili
been suggested that below, temperature of

about 140 K, Sm** mome ould'begin to order
antiparallel to the 4/ Fe-mOments due to
change interactions

sub-lattices [25].

antiferromagnetic  f;

between the two/d one
Interestingly, re easurements by Y. K. Jeong
n(‘;NS‘change in the slope of the
in their FC measurements
approximately 135 K; but

reported.

ization peak was

'Eh% notable role of the a-Fe ferromagnetic
age on such enhancement of the magnetic
trar§ition signal cannot be excluded.

en

>

Y[ = 300K
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Figure.7: Hysteresis loops of micrometre scale
SmFeOs/a-Fe crystals at different temperatures. See
Supp. Info. Figs 1-10 for detailed calculations and
measurements of the o-Fe contribution to the

magnetization.

In the attempt to further confirm the magnetic
nature of the observed transition, and therefore
exclude possible structural changes within the
samples, temperature dependent XRD was carried
out. As shown in Figs.9-10 no changes in the
structure of the SmFeOs and a-Fe phases were
found in the XRD measurements performed in the
temperature range from 298 K to 100 K. These
results confirm the interpretations above and
suggest that the observed transition in the
temperature range between 130 K and 140 K is of
attributed  to
ferromagnetic

and can be
compensation effects of the
Fe-sublattice moments by antiparallel alignment
with the Sm*" moments. This is also confirmed by
the fact that Sm** spins are expected to undergo

magnetic-nature
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‘s Ipa g-range ordering from temperatures 1n the
der of 140 K.
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Figure.8: Coercivities parameters from hysteresis loops

of micrometre scale SmFeOs/a-Fe crystals at different

temperatures.
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Figure.10: T-dependent XRD measurements in the 26

range from 397 to 47°.

However future studies will clarify a possible role
of the residual a-Fe phase in such magnetic
transition and its possible interaction with the
Sm** moments of the SmFeO3 phase.

rﬁh\he direct observation

tion effects by ZFC and FC
icrometer-scale SmFeO3

Conclusion

In conclusion w,
of enhanced com
measurements Qf
crystals }ed direct high temperature
annealing c-filled carbon foam and Sm2O3
nano rt-\les §1 tures in Ar and Ar/Hz flow. The

nature of the transition was also

additional temperature dependent
h1 h did not show structural changes of the

s é-m the temperature range from 298 K to
\ 100
\ pplementary Material

for Rietveld
Refinement analyses of different portions of the as

See supplementary online material
grown powder sample and detailed calculations and
measurements of the o-Fe contribution to the
magnetization in the case of 1) the only carbon foam
filled with a-Fe (before the annealing stage) and 2) the
a-Fe-foam/SmFeO; crystals reported in this work.
Additional SEM images of the SmFeO; crystals are

also shown.
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