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Two recently found coupled Bogomol'nyi-Prasad-Sommerfield (BPS) submodels of the Skyrme model
are further analyzed. First, we provide a geometrical formulation of the submodels in terms of the
eigenvalues of the strain tensor. Second, we study their thermodynamical properties and show that the
mean-field equations of state coincide at high pressure and read p ¼ ρ̄/3. We also provide evidence that
matter described by the first BPS submodel has some similarity with a Bose-Einstein condensate.
Moreover, we show that extending the second submodel to a non-BPS model by including certain
additional terms of the full Skyrme model does not spoil the respective ansatz, leading to an ordinary
differential equation for the profile of the Skymion, for any value of the topological charge. This allows for
an almost analytical description of the properties of Skyrmions in this model. In particular, we analytically
study the breaking and restoration of the BPS property. Finally, we provide an explanation of the success of
the rational map ansatz.
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I. INTRODUCTION

The Skyrme model [1] is a highly nonlinear effective
model of nuclear physics, which has had some success in
replicating nuclear states. A consequence of this non-
linearity is that physically interesting solutions, called
Skyrmions, have only been identified numerically revealing
very sophisticated geometrical structures [2,3]. The task of
finding soliton solutions in Skyrme-like models is some-
times simplified by the possibility to reduce their second
order Euler-Lagrange equations to first order equations—
the so-called Bogomol'nyi-Prasad-Sommerfield (BPS)
equations. The corresponding BPS solutions then saturate
a topological energy bound known as the Bogomol'nyi
bound. The Skyrme model [1] is not BPS, and hence its
equations of motion cannot be reduced to first order
equations. However, it is possible to identify certain BPS
submodels of the Skyrme model [4,5]. The understanding
and analysis of these BPS submodels is important for
several reasons.

First of all, the much simpler solutions of the BPS
submodels may reveal certain qualitative properties of full
Skyrmions in an analytically tractable way, or they may
provide useful starting points for a numerical treatment of
the full model.
A second reason is related to another significant problem

in applying the Skyrme model to nuclear physics, namely
that its static Skyrmion solutions are too tightly bound to
replicate experimentally observed nuclei. Conversely,
BPS Skyrmions have zero classical binding energies by
construction. Consequently, there have been proposals to
solve this problem by the inclusion of the so-called BPS
Skyrme model [4,6,7] consisting of the sextic and potential
term or by inclusion of infinitely many vector mesons [8,9].
Alternatively, one can add suitably chosen repulsive poten-
tials to reduce binding energies [10,11]. Furthermore,
vibrational quantization of Skyrmions can reduce binding
energies [12].
Quite recently, BPS submodels of the original Skyrme

model [1] have been identified [5]. This allows, within
each submodel, to reduce the static field equations to more
tractable first order differential equations. The two sub-
models constitute the original Skyrme model in the sense
that the full model is a sum of these two submodels,
but they are not proper Skyrme models on their own.
This means that eliminating one submodel by a suitable
choice of coupling constants, simultaneously eliminates
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the other one. As they always appear together, it is natural
to call them coupled BPS submodels. Nonetheless, one
can study each submodel separately, and their solutions
reveal interesting properties of Skyrmions. For example, it
has been shown that the origin of the success of the
rational map ansatz approximation has its roots in the first
coupled BPS submodel which has rational maps as exact
solutions.
The existence of such coupled sectors give us a unique

possibility for some analytical insight into the complicated
structure of the full theory. Our aim is to further understand
the properties of the coupled BPS submodels and of certain
extensions which result from the inclusion of additional
Skyrme model terms.
The Skyrme model [1] can be expressed as

L ¼ c2L2 þ c4L4 þ c6L6 þ c0L0 with

L2 ¼ −
1

2
TrLμLμ; L4 ¼

1

16
Tr½Lμ; Lν�2;

and L6 ¼ −π4BμBμ; ð1:1Þ
where Lμ ¼ U†∂μU with U ∈ SUð2Þ, and ci are dimen-
sionful, non-negative coupling constants. This has an
associated baryon current, Bμ ¼ 1

24π2
ϵμνρσTrLνLρLσ, and

an invariant baryon number B ¼ R B0d2x ∈ Z. Further,
U ¼ −L0 is a potential. In most of what follows, we will
assume c2 ¼ 1, c4 ¼ 1, which may always be achieved by
an appropriate choice of units of length and energy.
The conventional Skyrme model, L24 ¼ L2 þ L4, is

not a BPS type model. Recently, it has been shown in
[5] that when the Skyrme field is reexpressed as

U ¼ expðiξðxÞτ · nðxÞÞ with

nðxÞ ¼ 1

1þ juðxÞj2

0
B@

uðxÞ þ ūðxÞ
−iðuðxÞ − ūðxÞÞ

1 − juðxÞj2

1
CA; ð1:2Þ

the Skyrme model L24 can be viewed as a sum of two
coupled BPS submodels

L24 ¼ Lð1Þ
24 þ Lð2Þ

24 ;

where Lð1Þ
24 and Lð2Þ

24 are the two BPS submodels

Lð1Þ
24 ¼ 4sin2ξ

uμūμ

ð1þ juj2Þ2

− 4sin2ξ

�
ξμξ

μ uνūν

ð1þ juj2Þ2 −
ξμūμξνuν

ð1þ juj2Þ2
�

ð1:3Þ

and

Lð2Þ
24 ¼ ξμξ

μ − 4sin4ξ
ðuμūμÞ2 − u2μū2ν
ð1þ juj2Þ4 ; ð1:4Þ

where ξμ ≡ ∂μξ and uμ ≡ ∂μu.

The first BPS submodel Lð1Þ
24 gives rise to the

Bogomol’nyi equation

ui � iϵijkξjuk ¼ 0; ð1:5Þ

and its complex conjugate. These equations imply the
constraints

uiξi ¼ ūiξi ¼ 0 and u2i ¼ ū2j ¼ 0: ð1:6Þ

The second BPS submodel Lð2Þ
24 leads to the Bogomol’nyi

equation,

ξi ∓ 2i sin2 ξ
ð1þ jujÞ2 ϵijkujūk ¼ 0; ð1:7Þ

implying the constraints,

uiξi ¼ ūiξi ¼ 0: ð1:8Þ

These two BPS models independently have the topological
bounds

Eð1Þ ≥ 8π2jBj and Eð2Þ ≥ 4π2jBj; ð1:9Þ

where Eð1Þ and Eð2Þ are the energies of the first and second
BPS submodels, respectively.
There is a third unrelated BPS submodel, the so-called

BPS Skyrme model, where conventionally c0 ¼ m2 and
c6 ¼ λ2,

LBPS ¼ λ2L6 þm2L0; ð1:10Þ

which has the BPS static field equations

λ
sin2 ξ

ð1þ juj2Þ2 iϵ
ijkξiujūk ¼ �m

ffiffiffiffi
U

p
: ð1:11Þ

Note that the BPS Skyrme model is a proper submodel,
since it can be found as a certain limit in the 4-dimensional
parameter space of the full theory while, as we pointed out
before, the first and second coupled BPS submodels do not
have this property. The coupled submodels always exist
together because each of them receives contributions both
from the quadratic Dirichlet and from the quartic Skyrme
term. In spite of this fact, it is interesting to study both
models separately, both because of their simplicity and
because they reveal crucial mathematical and physical
features of Skyrmions in the full model. Of course, if
treated separately they do not cover the whole variety of
phenomena in the Skyrme model L24.
In the present work, we want to further analyze the two

coupled BPS submodels, especially from the thermody-
namical point of view (type of matter, mean-field equations
of state). We also analytically investigate the solutions of
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the new BPS submodels once new terms, such as a potential
or the sextic term, are added. In particular, we are interested
in deformations of the BPS submodels which preserve the
ansatz for the n⃗ ∈ S2 part of the Skyrme field, thus still
allowing for the almost analytical calculation of solutions
for any value of the topological charge.

II. GEOMETRIC MEANING

In order to develop some geometric understanding of
these new coupled BPS submodels and their Bogomol'nyi
equations, we use the well know formulation of the static
energy integral of the L24 Skyrme model in terms of the
eigenvalues λ2i of the strain tensor [13,14],

Dij ¼ −
1

2
TrðLiLjÞ: ð2:1Þ

Using Eq. (1.2) the three eigenvalues of the strain tensor
λ21; λ

2
2; λ

2
3 can be expressed as,

λ1λ2λ3 ¼ �2
sin2ξ

ð1þ juj2Þ2 ðiϵ
ijkξiujūkÞ; ð2:2Þ

λ21 þ λ22 þ λ23 ¼ ξ2i þ 4sin2ξ
uiūi

ð1þ juj2Þ2 ; ð2:3Þ

and

λ21λ
2
2 þ λ21λ

2
3 þ λ22λ

2
3

¼ 4sin4ξ
ðuiūiÞ2 − u2i ū

2
j

ð1þ juj2Þ4

þ 4sin2ξ

�
ξ2i

ujūj

ð1þ juj2Þ2 −
ξiuiξjūj

ð1þ juj2Þ2
�
: ð2:4Þ

Hence,

E24 ¼
Z

d3xðλ21 þ λ22 þ λ23 þ λ21λ
2
2 þ λ22λ

2
3 þ λ22λ

3
1Þ: ð2:5Þ

The derivation of the topological Skyrme-Faddeev bound is
now straightforward

E ¼
Z

d3xððλ1 � λ2λ3Þ2 þ ðλ2 � λ3λ1Þ2 þ ðλ3 � λ1λ2Þ2Þ

∓ 6

Z
d3xλ1λ2λ3;

≥ 6

����
Z

d3xλ1λ2λ3

���� ¼ 12π2B; ð2:6Þ

where B is the baryon charge associated with the baryon
density

B ¼ 1

2π2
λ1λ2λ3: ð2:7Þ

This topological bound can be saturated if and only if the
following Bogomol’nyi equations are satisfied

λ1 ¼ �λ2λ3; λ2 ¼ �λ3λ1; λ3 ¼ �λ1λ2: ð2:8Þ

However, it is known that there are no nontrivial solutions
satisfying these equations on R3. The case S3 is discussed
in the next section.
Let us now analyse these Bogomol’nyi equations in the

separation of variables ansatz, where we chose the plus
sign. Furthermore we decompose u ¼ geiΦ, set G ¼ g2 and
use the invariant gradient notation

∇ ¼ êx∂x þ êy∂y þ êz∂z ¼ êr∂r þ
1

r
êθ∂θ þ

1

r sin θ
êφ∂φ;

ð2:9Þ

to obtain

λ1λ2λ3 ¼ �2
sin2ξ

ð1þ GÞ2 ∇ξ · ð∇G × ∇ΦÞ; ð2:10Þ

λ21 þ λ22 þ λ23

¼ ð∇ξÞ2 þ 4
sin2ξ

ð1þ GÞ2
�

1

4G
ð∇GÞ2 þ Gð∇ΦÞ2

�
;

ð2:11Þ

λ21λ
2
2 þ λ21λ

2
3 þ λ22λ

2
3

¼ 4sin2ξ
ð1þ GÞ2

�
sin2ξ

ð1þ GÞ2 ðð∇GÞ
2ð∇ΦÞ2 − ð∇G ·∇ΦÞ2Þ

þ 1

4G
ðð∇ξÞ2ð∇GÞ2 − ð∇ξ ·∇GÞ2Þ

þ Gðð∇ξÞ2ð∇ΦÞ2 − ð∇ξ · ∇ΦÞ2Þ
�
: ð2:12Þ

Now we introduce spherical polar coordinates and assume
ξ ¼ ξðrÞ and u ¼ uðθ;φÞ. This is consistent with constraint
(1.8) which is satisfied by both BPS submodels and can be
written as

∇ξ ·∇u ¼ 0 and ∇ξ ·∇ū ¼ 0: ð2:13Þ

In fact it is sufficient to assume ξ ¼ ξðrÞ and then u ¼
uðθ;φÞ follows from constraint (2.13). This assumption
implies that the strain tensor in spherical polar coordinates
partially diagonalizes such that one eigenvalue (let us say,
λ21) is equal to ξ2r , λ21 ¼ ξ2r . We choose λ1 ¼ ξr and the plus
sign (or λ1 ¼ −ξr and the minus sign), leading to
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λ2λ3 ¼ 2
sin2ξ

ð1þ juj2Þ2 iêr · ð∇u ×∇ūÞ;

λ22 þ λ23 ¼ 4sin2ξ
∇u ·∇ū

ð1þ juj2Þ2 ;

λ22λ
2
3 ¼ 4sin4ξ

ð∇u ·∇ūÞ2 − ð∇uÞ2ð∇ūÞ2
ð1þ juj2Þ4 : ð2:14Þ

The third equation is a consequence of the first, but it is
nevertheless useful to see directly the consequence of the
complex eikonal equation ð∇uÞ2 ¼ 0. On the one hand, the
complex eikonal equation implies that uðθ;φÞ is either a
holomorphic or an antiholomorphic function, so that u can
be written as u ¼ uðzÞ or u ¼ uðz̄Þ where z ¼ tan θ

2
eiφ. On

the other hand, the complex eikonal equation immediately
implies that

λ22 ¼ λ23 ¼ 2 sin2 ξ
∇u ·∇ū

ð1þ juj2Þ2 : ð2:15Þ

For the second type of BPS system, the expressions in
terms of ξ, G and Φ are more useful. Indeed, using the
separation of variables ansatz ξ ¼ ξðrÞ, G ¼ GðθÞ,
Φ ¼ ΦðφÞ, the equations for the eigenvalues simplify to

λ21 ¼ ð∇ξÞ2 ¼ ξ2r ; ð2:16Þ

λ22 ¼
sin2 ξ

Gð1þ GÞ2 ð∇GÞ2 ¼ sin2 ξG2
θ

Gð1þ GÞ2r2 ; ð2:17Þ

λ23 ¼ 4
sin2 ξ

ð1þ GÞ2Gð∇ΦÞ2 ¼ 4
sin2 ξGΦ2

φ

ð1þ GÞ2r2 sin2 θ : ð2:18Þ

Now we want to relate the BPS equations for the two
submodels to equations for the eigenvalues λi. Multiplying

the BPS equation (1.7) of the second submodel Lð2Þ
24 by êr

(multiplication by the other two basis vectors perpendicular
to êr gives zero), we obtain the equation

ξr ¼ �2
sin2ξ

ð1þ juj2Þ2 iêr · ð∇u ×∇ūÞ ⇔ λ1 ¼ �λ2λ3:

ð2:19Þ
The first BPS equation (1.5) reads ∇u ¼∓ i∇ξ ×∇u and
implies the constraints ð∇uÞ2 ¼ 0 and ∇ξ · ∇u ¼ 0.
Multiplying the BPS equation by ∇ū results in

∇u ·∇ū ¼ �ξriêr · ð∇u ×∇ūÞ ⇔ 1

2
ðλ22 þ λ23Þ ¼∓ λ1λ2λ3:

ð2:20Þ

But the constraint ð∇uÞ2 ¼ 0 for this ansatz implies that
λ22 ¼ λ23 which directly leads to λ1 ¼ ξr ¼ �1, which is the
radial BPS equation for this submodel, see [5].

For both submodels we find that, after a separation of
variables ansatz ξ ¼ ξðrÞ, u ¼ uðθ;φÞ, their BPS equations
may be expressed as simple algebraic equations for the
eigenvalues of the strain tensor. The BPS equation for
the second submodel is equivalent to λ1 ¼ �λ2λ3, whereas
the BPS equation of the first model is equivalent to the two
equations λ2 ¼ �λ1λ3 and λ3 ¼ �λ1λ2. The BPS equation
of the BPS Skyrme model (1.10) may also be expressed in
terms of these eigenvalues as

λ1λ2λ3 ¼ � 2m
λ

ffiffiffiffiffiffiffiffiffiffi
UðξÞ

p
: ð2:21Þ

This BPS equation implies that the baryon density (2.7) is
always either non-negative or nonpositive depending on the
choice of sign. This implies that there is no negative baryon
density for charge B > 0 solutions. This can be contrasted
with the standard Skyrme model L24 where negative
baryon density has been found in [15]. For example for
B ¼ 3 the negative baryon density was found close to the
origin and along tubes through the faces of the tetrahedron.
Furthermore, it was shown that λ22 ≠ λ23 for the B ¼ 3

Skyrmion. For the second submodel we have λ1 ¼ �λ2λ3
which implies λ21 ¼ �λ1λ2λ3. Hence, in this submodel there
is also no negative baryon density for B > 0. A similar
argument can also be applied to the first submodel, so that
all BPS models we discuss here do not have negative
baryon density.

III. S3 BASE SPACE

Consider the Bogomol’nyi equations (1.5) and (1.7) on a
three dimensional sphere of unit radius with line element

ds2 ¼ dψ2 þ sin2 ψdθ2 þ sin2 ψ sin2 θdφ2: ð3:1Þ

For the ansatz ξ ¼ ξðψÞ, u ¼ uðθ;φÞ, then, Eq. (1.7)
becomes

∇ψξ ¼ � 2i sin2 ξ
ð1þ juj2Þ2 ð∇θu∇φū −∇φu∇θūÞ; ð3:2Þ

where the components of the invariant gradient are given by

∇ψ ¼ ∂ψ ; ∇θ ¼
1

sinψ
∂θ and ∇φ ¼ 1

sinψ sin θ
∂φ:

ð3:3Þ

This is solved by

ξ ¼ π − ψ and u ¼ tan
θ

2
eiφ ð3:4Þ

which has the same boundary conditions as on R3 if we
interpret ψ ¼ 0 as the origin and ψ ¼ π as “infinity.”On the
other hand, Eq. (1.5) gives
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∇θu ∓ i∇ψξ∇φu ¼ 0 and ∇φu� i∇ψξ∇θu ¼ 0:

ð3:5Þ

This is solved again by (3.4). Therefore, on S3 both BPS
submodels do lead to a common solution, as expected [13].
Solutions of higher topological charge on S3 are discussed
in [16].
Recently a similar deformation of Skyrme-related

Bogomol’nyi equations has been considered, where the
coupling constants multiplying the quadratic and quartic
terms of the model are replaced by a space dependent
function f [17] (for another possibility see [18]). Then the
Bogomol’nyi equations take the form

f2ui � iϵijkξjuk ¼ 0 ð3:6Þ

and

f2ξi ∓ 2i sin2 ξ
ð1þ jujÞ2 ϵijkujūk ¼ 0: ð3:7Þ

Now, for suitably chosen functions f the resulting
Bogomol’nyi equations have common topologically non-
trivial solutions on R3.
Due to the fact that the BPS equations on S3 base space

coincide and have a common solution in the charge one
sector we can conclude that solutions of the BPS equations
satisfy

E ¼ Eð1Þ þ Eð2Þ

¼
Z
S3

dΩðλ22 þ λ23 þ λ21λ
2
3 þ λ21λ

2
2Þ

þ
Z
S3

dΩðλ21 þ λ22λ
2
3Þ; ð3:8Þ

¼ 2Eð2Þ þ Eð2Þ: ð3:9Þ

In other word, the first BPS submodel gives a two times
bigger contribution to the total energy than the second BPS
submodel for the B ¼ 1 soliton solution,

Eð1Þ
on−shell ¼ 2Eð2Þ

on−shell ð3:10Þ

where the subscript “on-shell” emphasizes that this is only
valid for solutions of the BPS equations. The fate of this
relation on R3 and its relevance for the rational map ansatz
will be investigated in Sec. VII.

IV. T = 0 THERMODYNAMICS OF THE COUPLED
BPS SUBMODELS

BPS solutions have zero pressure by construction since
the energy is topological and, therefore, metric independent
[19]. The corresponding BPS equations may be generalized

to first-order equations for nonzero pressure, shedding light
on the thermodynamical behavior of the material system
described by the solitons. It is, thus, natural to analyze the
soliton solutions in the BPS submodels once a nonzero
pressure is imposed.

A. The Lð1Þ
24 BPS model and nonzero pressure

Static Skyrmions of this model can be found from the
ansatz ξ ¼ ξðrÞ, together with the rational map ansatz

uðzÞ ¼ pðzÞ
qðzÞ ; ð4:1Þ

where z ¼ tan θ
2
eiφ is a stereographic coordinate on the unit

sphere S2 parametrized by the usual angular variables θ and
φ. The resulting reduced energy functional reads

Eð1Þ ¼ 4π

Z
drð2Bsin2ξð1þ ξ02ÞÞ

¼ 4πB
Z

drð2η02 − 2η2 þ 4ηÞ; ð4:2Þ

where, for convenience, we have introduced the target
space variable

η ¼ 1 − cos ξ:

Then, the profile function follows from the corresponding
reduced Bogomol’nyi equation

η0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð2 − ηÞ

p
; ð4:3Þ

which has the solution

η ¼ 1 − cosðπ − rÞ ⇒ ξ ¼ π − r ð4:4Þ

for r ∈ ½0; π� and 0 otherwise. R ¼ π is interpreted as the
size of the compact Skyrmion. Here we chose the minus
sign and imposed the appropriate boundary conditions

ηðr ¼ 0Þ ¼ 2; ηðr ¼ RÞ ¼ 0; η0ðr ¼ RÞ ¼ 0:

ð4:5Þ

It is interesting to note that for the BPS submodel Lð1Þ
24 ,

all Skyrmions have the same size and volume independ-
ently of the value of the topological charge—RðBÞ ¼ π
and VðBÞ ¼ V0 ¼ 4

3
π4. Hence, increasing the baryon

charge we increase the energy, EðBÞ ¼ 8π2jBj, stored in
a fixed volume. Therefore, one can say that this BPS
submodel describes a very attractive BPS skyrmionic
matter, where solitons are confined in a fixed volume.
The radial energy density is zero both outside r ¼ R and
at r ¼ 0, therefore the individual B ¼ 1 Skyrmions are
distributed on a spherical shell of finite thickness which is
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independent of B. Their angular distribution is given by the
rational map u ¼ ðpðzÞ/qðzÞÞ of the solution which can be
interpreted as the distribution of sigma model lumps on the
two-sphere.
The fact that the volume of a soliton and its radial profile

function are independent of its topological charge some-
what resembles a Bose-Einstein condensate (BEC). In a
BEC phase a large fraction of particles occupies the same
lowest energy state, described by the same wave function.
Adding more particles, which is analogue to increasing the
topological charge, just increases the density of the con-
densate. Furthermore, a BEC is a phenomenon occurring
close to T ¼ 0 which is the relevant phase for the
applicability of the Skyrme model.
The constant volume of Skyrmions together with their

BPS nature give a simple expression for the mean-field
baryon chemical potential

μ̄ ¼
�∂E
∂B
�

V
¼ 8π2; ð4:6Þ

which is equal to the energy of the charge one Skyrmion.
Furthermore, due to the compacton nature of

Skyrmions in this submodel, there is another phase of
Skyrmionic matter—a gas of N non-overlapping B ¼ 1
Skyrmions, each of volume V ¼ V0. This phase has exactly
the same energy as the charge B ¼ N Skyrmion, but the
total volume of the configuration is now N times bigger.
This should be contrasted with liquid and gas phases in the
BPS Skyrme model where the volume and energy of a
soliton are always linear functions of the baryon charge.
The secondorderEuler-Lagrange equation for the profile ξ

η00 þ η − 1 ¼ 0 ð4:7Þ

is solved not only for the Bogomol’nyi equation (4.3) but
also for a whole family of first order equations parametrized
by a parameter C, namely

η02 ¼ ηð2 − ηÞ þ C
2B

: ð4:8Þ

This equation can be analytically solved providing the
squeezed Skyrmion solutions

ηðrÞ ¼
8<
:

1 − sin ðr−R
2
Þ

sinR
2

r ≤ R;

0 r ≥ R;

ð4:9Þ

where the size of the Skyrmion is

R ¼ 2 arctan

ffiffiffiffiffiffi
2B
C

r
; ð4:10Þ

and the volume V satisfies the useful identity

tan2
1

2

�
3V
4π

�
1/3

¼ 2B
C

: ð4:11Þ

The parameterCmeasures the squeezing rate of the solution
and therefore is related to the external pressure imposed
on the original BPS solution at zero pressure. The energy of
this solution for general C is

Eð1ÞðPÞ ¼ 4πB
Z

R

0

drð2η02 − 2η2 þ 4ηÞ

¼ 16πB
Z

2

0

dη
2η − η2 þ C

4Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2η − η2 þ C

4B

q ; ð4:12Þ

where the first order equation (4.8) has been used to
transform the base space integral into a target space integral.
Then we find

Eð1ÞðCÞ ¼ 16πB

 ffiffiffiffiffiffi
C
2B

r
þ arctan

ffiffiffiffiffiffi
2B
C

r !
; ð4:13Þ

which can be written with (4.11) in terms of the volume as

Eð1ÞðVÞ ¼ 16πB

�
1

tan ð 3V
32πÞ1/3

þ
�
3V
32π

�
1/3
�
: ð4:14Þ

This expression is linear in B, therefore, the mean-field
baryon chemical potential is again equal to the energy of
theB ¼ 1 Skyrmion, now at nonzero pressure. Furthermore,
this energy allows us to compute the proper thermodynam-
ical pressure

p ¼ −
∂EðVÞ
∂V ¼ C

ð2 arctan
ffiffiffiffi
2B
C

q
Þ2
: ð4:15Þ

In otherwords the parameterCgives, in a rather complicated
way, the thermodynamical pressure, namely

p ¼ C
R2ðCÞ ; ð4:16Þ

where we explicitly use the formula for the size of the
squeezed SkyrmionRðCÞ. In the small volume limit (largeC
parameter) the energy and the pressure take the form

Eð1ÞðVÞ ¼ 16πB

�
32π

3V

�
1/3

and

p ¼ 16πB

�
32π

3V

�
1/3 1

3V
: ð4:17Þ

This leads to the expected high pressure limit of the
mean-field equation of state relating the pressure and the
mean-field energy density ρ̄ ¼ E/V, namely
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p ¼ ρ̄

3
: ð4:18Þ

This is exactly the mean-field equation of state of the L24

Skyrme model [20,21].

B. The Lð2Þ
24 BPS model and nonzero pressure

Within this submodel it is not possible to simultaneously
impose both boundary conditions for the profile function,
ξðr ¼ 0Þ ¼ π and ξðr ¼ ∞Þ ¼ 0, because the condition
ξðr ¼ ∞Þ ¼ 0 is not required for finite energy. Therefore,
the Skyrmion solutions do not possess integer baryon
charge. An interpretation is that there are too strong
repulsive forces in this submodel, such that a Skyrmion

cannot form, as opposed to the compactons in the Lð1Þ
24

model. Acting with an additional external force by applying
external pressure should give rise to conventional
Skyrmions. Let us start with the static energy for the
second BPS submodel, where we insert ξ ¼ ξðrÞ and the
solution for the complex field u ¼ tan θ

2
eiBφ, resulting in

Eð2Þ ¼ 4π

Z
∞

0

drr2
�
ξ02 þ B2 sin4 ξ

r4

�
: ð4:19Þ

It is convenient to introduce the new base space variable
y ¼ 1/r, giving

Eð2Þ ¼ 4π

Z
∞

0

dyðξ2y þ B2 sin4 ξÞ: ð4:20Þ

Again, the full second order Euler-Lagrange equation for ξ
is solved not only by the Bogomol’nyi equation but also by
its one-parameter ðD ≥ 0Þ generalization

ξ2y ¼ B2 sin4 ξþD; ð4:21Þ

whereD ¼ 0 gives the Bogomol’nyi equation. The nonzero
pressure boundary conditions translate as

ξðy ¼ ∞Þ ¼ π; ξðy ¼ y0Þ ¼ 0; and

ξyðy ¼ y0Þ ¼ 0; ð4:22Þ

where y0 ¼ R−1 and R is a compacton boundary at which
we impose an external pressure. But the first condition
leads to difficulties. Namely, at leading order at y → ∞,
ξ2y ¼ D. As a consequence, the formal solution ξ ¼ � ffiffiffiffi

D
p

y
is unbounded which contradicts the assumed condition at
y → ∞, namely ξ ¼ π. Therefore, the y ¼ ∞ (r ¼ 0)
boundary condition cannot be satisfied for solutions of
the nonzero pressure ðD > 0Þ equation (4.21).
It is instructive to recall the BPS case with no squeezing

and D ¼ 0, where the boundary condition ξðr ¼ 0Þ ¼ π
can be imposed but ξðr ¼ ∞Þ ≠ 0. Hence, qualitatively the

squeezing brings the ξ ¼ 0 end from “beyond infinity” to a
finite distance while the solution at the origin diverges.
The problem with D > 0 becomes more transparent if

we insert the generalization of the Bogomol’nyi equation to
the total energy so that

Eð2Þ ¼ 4π

Z
∞

0

dyð2B2 sin4 ξþDÞ: ð4:23Þ

Obviously, for D > 0 the second term leads to infinite
energy at y ¼ ∞ which is the origin r ¼ 0. Hence, in order
to squeeze such a skyrmionic matter we have to use an
infinite amount of energy or act with infinite pressure. We
interpret this as a very repulsive BPS skyrmionic matter
which cannot be squeezed by finite pressure.
A Skyrmion cannot exist in a ball of finite volume

because of the singular behavior at r ¼ 0. This can be
resolved by also “squeezing” the configuration from the
inner region which is achieved by the following boundary
conditions

ξðr ¼ R1Þ ¼ π and ξðr ¼ R2Þ ¼ 0 ð4:24Þ

or equivalently,

ξðy ¼ R−1
2 Þ ¼ 0 and ξðy ¼ R−1

1 Þ ¼ π: ð4:25Þ

One can easily verify that equation (4.21) has finite energy
solutions satisfying such boundary conditions. These sol-
utions may be expressed in terms of hypergeometric
functions, but the resulting expressions are rather compli-
cated and not very instructive, so we do not show them
here. An instructive example can be provided in the limit
when D ≫ B2 which, physically, corresponds to the limit
of high pressure and high density. Then, we can choose the
plus sign in (4.21) and obtain

ξy ¼
ffiffiffiffi
D

p
; ð4:26Þ

leading to the solution with baryon charge B

ξðrÞ ¼
ffiffiffiffi
D

p �
1

r
−

1

R2

�
; ð4:27Þ

where r ∈ ½R1; R2�. Furthermore the radii are related by the
following condition

π ¼
ffiffiffiffi
D

p �
1

R1

−
1

R2

�
: ð4:28Þ

The corresponding energy reads

E ¼ 4πD

�
1

R1

−
1

R2

�
¼ 4π3

R1R2

R2 − R1

; ð4:29Þ
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and the volume of the solution is

V ¼ 4π

3
ðR3

2 − R3
1Þ: ð4:30Þ

It follows that the energy cannot be expressed solely by the
volume, but depends separately on the volume and on the
“size” (e.g. R2) of the solution which is related to the fact
that the underlying field theory is not of the perfect fluid
type. For such field theories, the correct thermodynamical
definition of the pressure is given by the Weyl rescaling of
the energy functional, see [19]. If the space coordinates in
d-dimensional Euclidean space are rescaled by x⃗ → eλx⃗,
then the pressure is given by

p ¼ 1

dV
∂E
∂λ
����
λ¼0

: ð4:31Þ

For the above energy expression the Weyl rescaling is just
Ri → eλRi, leading to the pressure and equation of state

p ¼ 1

3V
E; ρ̄≡ E

V
⇒ p ¼ ρ̄

3
; ð4:32Þ

which is the expected equation of state in the limit of high
density.

C. Oscillons in the Lð1Þ
24 BPS model

Although this issue is somewhat outside the main line of
the present paper, it is interesting to observe that in the Lð1Þ
BPS submodel there exists a different type of nontopo-
logical and nonstatic soliton, the so-called oscillon. We first
observe that the ansatz ξ ¼ ξðr; tÞ, u ¼ uðθ;φÞ is still
compatible with the field equations and u continues to be
solved by rational maps uðzÞ for this ansatz.
In order to prove it we note that the ansatz implies the

orthogonality ξμuμ ¼ ξμūμ ≡ 0. As a consequence, the last
term in the Lagrangian density (1.3) vanishes identically
and, as it is quadratic in the action, it also vanishes in the
equations of motion. Hence, for the above ansatz, the
model is just the CP1 model multiplied by a real scalar field
model, with Lagrangian density

Lð1Þ
24 ¼ LCP1Lξ; LCP1 ¼ 4uνūν

ð1þ juj2Þ2 ;

Lξ ¼ sin2ξð1 − ξμξ
μÞ: ð4:33Þ

The ansatz implies for the Euler-Lagrange (EL) variation of
u that� ∂

∂u − ∂μ
∂
∂uμ
�
Lð1Þ
24 ¼ Lξ

� ∂
∂u − ∂μ

∂
∂uμ
�
LCP1 ð4:34Þ

because Lξ only depends on r and t. Hence, the EL
equations are just the field equations for the CP1 model.

For the variation w.r.t. ξ we use that LCP1 ¼ r−2L̃CP1ðθ;φÞ
and find� ∂
∂ξ − ∂μ

∂
∂ξμ
�
Lð1Þ
24 ¼ r−2L̃CP1

� ∂
∂ξ − ∂μ

∂
∂ξμ þ

2

r
∂
∂ξr
�
Lξ

ð4:35Þ

where the only effect of the last term is to replace the
three-dimensional radial Laplacian ∂2

r þ ð2/rÞ∂r by the
one-dimensional Laplacian ∂2

r . To find the equivalent
symmetry-reduced model for the ansatz we now separate

the Lagrangian Lð1Þ
24 ¼ R dΩR3Lð1Þ

24 as

Lð1Þ
24 ¼

�
−2
Z

ΩS2

ð1þ zz̄Þ2
ð1þ uūÞ2 ðuzūz̄ þ uz̄ūzÞ

�

×
Z

dr sin2 ξð1 − ξμξ
μÞ ð4:36Þ

where we used that

dΩR3 ¼ drr2dΩS2 ; dΩS2 ¼ 2i
ð1þ jzj2Þ2 dzdz̄ ð4:37Þ

and

uμūμ ¼ −uiūi ¼ −
ð1þ zz̄Þ2

2r2
ðuzūz̄ þ uz̄ūzÞ: ð4:38Þ

Here we introduced the stereographic coordinate
z ¼ tan θ

2
eiφ. Note that the r−2 factor from uμuμ cancels

with the r2 factor from the volume form. The CP1 part is
minimized by rational maps of degree B with energy
ECP1 ¼ 4πjBj. Hence,

Lð1Þ
24 ¼ −2ECP1

Z
dr sin2 ξð1 − ξμξ

μÞ

¼ 8πjBj
Z

dr sin2 ξðξμξμ − 1Þ ð4:39Þ

or, using η ¼ 1 − cos ξ,

Lð1Þ ¼ 8πB
Z

drðημημ − ηð2 − ηÞÞ ð4:40Þ

where the r.h.s. is formally equivalent to a scalar field
theory in 1þ 1 dimensions with a potential with two vacua.
To investigate solutions with small amplitudes around the
first vacuum η ¼ 0 we substitute ηðt; rÞ ¼ ϵðt; rÞ ≥ 0 and
find

Lð1Þ ¼ 8πB
Z

drðϵμϵμ − 2ϵÞ: ð4:41Þ

The resulting equation of motion is
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∂2
t ϵðt; rÞ − ∂2

rϵðt; rÞ ¼ −1: ð4:42Þ

Since the perturbation cannot take negative values one has
to specify what happens for ϵ → 0. Following [22] we
equip the field equation with the elastic bounce condition at
ϵðt; rÞ ¼ 0 relating the field velocities before and after
bouncing. Namely

∂tϵðt; rÞ → −∂tϵðt; rÞ when ϵ ¼ 0: ð4:43Þ

This condition can be removed if we extend the field (the
target space) to a new auxiliary field (extended target space)
ϵ̃ ∈ R with ϵðt; rÞ ¼ jϵ̃ðt; rÞj by performing the unfolding
procedure as described in [22]. As a consequence, we
derive the following evolution equation

∂2
t ϵ̃ðt; rÞ − ∂2

r ϵ̃ðt; rÞ ¼ −signðϵ̃ðt; rÞÞ; ð4:44Þ

which is the signum-Gordon equation in (1þ 1) dimension.
Strictly speaking, it is a version of the model on R ×Rþ.
An interesting observation is that this equation still admits
breatherlike solutions which are stable, nonradiating, and
time-periodic [23]. Furthermore, these solutions are known
in an exact form [23]. Let

ϵ̃1ðt; rÞ ¼

8>>>>>>>>>>><
>>>>>>>>>>>:

− r2
2

0 ≤ r ≤ t;

t2
2
− rt t ≤ r ≤ 1

2
− t;

r2
2
þ t2 − r

2
− t

2
þ 1

8
1
2
− t ≤ r ≤ 1

2
þ t;

t2
2
þ tðr − 1Þ 1

2
þ t ≤ r ≤ 1 − t;

− ð1−rÞ2
2

1 − t ≤ r ≤ 1;

0 otherwise;

ð4:45Þ

for t ∈ ½0; 1
4
� and

ϵ̃2ðt; rÞ ¼

8>>>>>>>>>>><
>>>>>>>>>>>:

− r2
2

0 ≤ r ≤ 1
2
− t;

t2
2
þ tr − r

2
− t

2
þ 1

8
1
2
− t ≤ r ≤ t;

r2
2
þ t2 − r

2
− t

2
þ 1

8
1 − t ≤ r ≤ 1

2
þ t;

t2
2
− trþ r

2
þ t

2
− 3

8
1 − t ≤ r ≤ 1

2
þ t;

− ð1−rÞ2
2

1
2
þ t ≤ r ≤ 1;

0 otherwise;

ð4:46Þ

for t ∈ ½1
4
; 1
2
�. Then the solution for time t can be

written as

ϵ̃ðt; rÞ ¼

8>>>>>>>><
>>>>>>>>:

ϵ̃1ðt; rÞ 0 ≤ t ≤ 1
4
;

ϵ̃2ðt; rÞ 1
4
≤ t ≤ 1

2
;

−ϵ̃1ðt − 1
2
Þ 1

2
≤ t ≤ 3

4
;

−ϵ̃2ðt − 1
2
Þ 3

4
≤ t ≤ 1;

ϵ̃ðt; rÞ ¼ ϵ̃ðtþ 1; rÞ otherwise:

ð4:47Þ

This solution has period T ¼ 1 and describes an oscillating
shell of size R ¼ 1 and with the center at Rc ¼ 1

2
. Using the

translation invariance of the reduced model it can be trivially
moved to any position Rc > 1

2
.

Moreover, since the signum-Gordon equation is dilata-
tion invariant, the breather solution constitutes in fact an
infinite family of solutions

ϵ̃lðt; rÞ ¼ l2ϵ̃

�
t
l
;
r
l

�
; ð4:48Þ

where the arbitrary parameter l is the size and the period of
the solution. The amplitude is l2

16
and the energy is

E ¼ 2

3
πBl3: ð4:49Þ

Of course, our assumption of small amplitude leads to a
restriction on the parameter l ≪ 1.
To summarize, these solutions are approximate solu-

tions, and therefore the true solutions are not breathers but
very long lived oscillons. Analogous long lived oscillons
can also be found for small field fluctuations about the
second vacuum at η ¼ 2.
Compact breathers with arbitrarily small amplitude

[arbitrarily long lived compact oscillons in the model
(4.40)] have arbitrarily small energy and therefore form a
sort of an infrared cloud (a composition of nonoverlapping
compactons) which may dominate radiation/interaction in
the model (4.40). It is also worth emphasizing that the
oscillons are genuine 3þ 1 dimensional non-topological
objects (nontopological shell solitons) even though
described by the effective 1þ 1 dimensional signum-
Gordon equation. The detailed analysis of the oscillons in

the model (4.40), their fate in the Lð1Þ
24 BPS model as well as

their role in the full Skyrme model is very interesting but
goes beyond the scope of the present work. The perturbation
of the signum-Gordon model by a quadratic part of the
potential has been investigated in [24]. In addition to
breathers with a fixed boundary, the signum-Gordon model
also gives rise to breathers with oscillating boundaries [25].
Consequently, the model (4.40) should contain oscillons with
oscillating boundaries (inner and outer radial boundary)
which become long lived in the limit of small amplitude.
Finally, nontopological long-lived breather-like structures

in the Skyrme model have been reported [26]. It would be
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interesting to verify if they are related with the presented
signum-Gordon breathers of the Lð1Þ

24 submodel.

V. THE Lð2Þ
24 BPS MODEL AND ITS SOLVABLE

NON-BPS EXTENSION

As we know, the second coupled BPS submodel does not
support Skyrmions with an integer baryon number. In fact,
this may be interpreted as a strong repulsion built into
the model.
The addition of a potential

L ¼ Lð2Þ
24 þm2L0 ð5:1Þ

not only breaks the BPS property of this submodel but also
increases the attractive force acting on the Skyrmion. This
may result in the appearance of the usual infinitely extended
Skyrmions which possess an integer valued baryon charge.
The first important observation is that the ansatz

assumed for Lð2Þ
24 BPS submodel

ξ ¼ ξðrÞ and u ¼ vðθÞeiBφ; ð5:2Þ

still works and gives v ¼ tan θ
2
and the radial energy

functional

Eð2Þ þ E0 ¼ 4π

Z
drr2

�
ξ02 þ B2sin4ξ

r4
þm2UðξÞ

�
; ð5:3Þ

where E0 ¼ 4πm2
R
drr2UðξÞ is the contribution from the

potential part. This ansatz continues to work even after
including the usual BPS Skyrme term. A finite energy
requirement is that ξðr ¼ 0Þ ¼ nπ, for n ∈ Z (we chose
ξðr ¼ 0Þ ¼ π).
In the following we assume Uðξ ¼ 0Þ ¼ 0, so that U has

its vacuum at ξ ¼ 0. Then the second boundary condition is
limr→∞ξðrÞ ¼ 0. Using these two boundary conditions, the
lower topological energy bound becomes

Eð2Þ þ E0 ≥ Eð2Þ ≥ 4π2jBj: ð5:4Þ

A. The pion mass potential Uπ

To find solutions, when a pion mass term is included, we
need to consider the energy functional

Eð2Þ þ E0 ¼ 4π

Z
drr2

�
ξ02 þ B2 sin4 ξ

r4
þm2ð1 − cos ξÞ

�
:

ð5:5Þ

One can redefine the radial coordinate r → Br to obtain a
one parameter family of models with the energy scale
multiplied by the charge B

Eð2Þ þ E0 ¼ 4πB
Z

drr2
�
ξ02 þ sin4 ξ

r4
þ β2ð1 − cos ξÞ

�
ð5:6Þ

and β2 ≡ B2m2. The corresponding field equation is

−2∂rðr2ξ0Þ þ
4

r2
sin3 ξ cos ξþ β2r2 sin ξ ¼ 0: ð5:7Þ

Expansion at the origin where ξ ¼ π − ηþ oðηÞ is gov-
erned by the first two terms and is not affected by the
potential. We find that

ξ ¼ π − rþ oðrÞ: ð5:8Þ

On the other hand, at r → ∞where ξ ¼ ηþ oðηÞwe obtain

ξ ¼ Ae−
βffiffi
2

p r: ð5:9Þ

The existence of the expansions at r ¼ 0 (ξ ¼ π) and at
r ¼ ∞ (ξ ¼ 0) gives some evidence that there can exist
integer baryon charge Skyrmions for (5.6). Especially, if
one compares with what happens for the BPS case without
potential when

−2∂rðr2ξ0Þ þ
4

r2
sin3 ξ cos ξ ¼ 0: ð5:10Þ

For the asymptotic expansion at infinity we assume
η ¼ Crα, which leads to

−2Aαðαþ 1Þrα þ 4A3r3α−2 ¼ 0: ð5:11Þ

Hence, α ¼ 1. But this contradicts our assumption that ξ (or
η) is close to the vacuum value for r → ∞. So, there is no
expansion at infinity which would give ξ ¼ 0 for r ¼ ∞.
This completely agrees with our previous finding that there
is no integer baryon charge Skyrmions for the Lð2Þ BPS
submodel.
Therefore, to solve the differential equation (5.7) we

need to proceed numerically. We approximate the deriva-
tives by fourth order finite differences on a numerical
lattice, and minimize the energy functional with gradient
flow. This produces an artificial solution which is supported
by the numerical lattice and the solution shrinks as the
lattice spacing is reduced. This is due to what numerically
seems to be an infinite derivative. To proceed we consider
the inverse problem. This is analogous to solving a differ-
ential equation by separation of variables. We make use
of the identity ξ−1ðξðrÞÞ ¼ r to rewrite the differential
equation (5.7) as ( ̇r≡ dr/dξ),
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−4r ̇r2 þ 2r2 ̈rþ 4B
r2

̇r3 sin3 ξ cos ξþ ̇r3β2r2 sin ξ ¼ 0:

ð5:12Þ

We now consider the radius as rðξÞ, with the boundary
conditions rðξ ¼ 0Þ ¼ ∞ and rðξ ¼ πÞ ¼ 0. Solving this,
with gradient flow, produces the image in Fig. 1. As a
further check we placed the solution into the gradient flow
for ξðrÞ with a lattice spacing of 0.000001 and verified the
previous solutions.
The Skyrmion solutions we obtain have rather remark-

able qualitative features. First of all, the profile ξ looks like
a step-function. Second, the size of the Skyrmion, here
identified with the position of the rapid jump of ξ, does not
significantly vary as we change the baryon charge. The
corresponding energy is very close to the bound (5.4). For
m ¼ 1 we find E/ð12π2BÞ ¼ 0.3333 for B ¼ 1, 2, 3, 4,
which agrees with the bound for the given numerical
precision. Furthermore, the energy grows only very slowly
as we increase the mass parameter and go away from the
BPS regime as shown in Fig. 1. For m ≈ 500 we
found E/ð12π2BÞ ¼ 0.36.

B. Inclusion of the sextic term

As we have already mentioned, adding the sextic term
does not spoil the applicability of the ansatz. This is
important, since it allows us to reduce the problem to a
second order ordinary differential equation (ODE) for the
profile function ξ. In fact, L0 and L6 constitute the BPS
Skyrme model, which for the assumed ansatz reads

EBPS ¼ 4π

Z
drr2

�
λ2B2 sin4 ξξ02

4r4
þm2UðξÞ

�
: ð5:13Þ

Here we want to analyze the existence and properties of
Skyrmions in a model which is a sum of the second BPS
submodel and the BPS Skyrme model

Eð2Þ þ EBPS ¼ 4π

Z
drr2

�
ξ02 þ B2 sin4 ξ

r4

þ λ2B2 sin4 ξξ02

4r4
þm2U

�
; ð5:14Þ

where, for simplicity, the potential is chosen as the standard
pion mass potential U ¼ m2ð1 − cos ξÞ. Equivalently, one
can treat the model (5.14) as the BPS Skyrme model
equipped with a partial contribution from the Dirichlet and
the Skyrme term. This is the maximal extension of the BPS
Skyrme model such that it admits a reduction to an ODE for
the profile function ξ with the angular dependence solved
by the ansatz u ¼ vðθÞeiBφ and with the same vðθÞ ¼ tan θ

2
.
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FIG. 1. Left: Profile function ξ in the Eð2Þ þ E0 model with the pion mass potential andm ¼ 1. Right: Energy divided by 12π2jBj as a
function of the mass parameter for B ¼ 1 (there is no discernible difference for B ¼ 2, 3, 4).
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FIG. 2. Profile function ξ in the Lð2Þ þ LBPS in the B ¼ 1
sector. Here we assume the pion mass potential Uπ with m ¼ 1.
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First of all, let us observe that we can use the topological
bounds for both parts of the model separately, i.e., for the
second coupled BPS submodel and for the BPS Skyrme
model

EBPS ≥
64

ffiffiffi
2

p
π

15
jBj: ð5:15Þ

Then the improved bound reads

Eð2Þ þ EBPS ≥
�
4π2 þ 64

ffiffiffi
2

p
π

15
λm

�
jBj: ð5:16Þ

In Fig. 2 we show the profile function ξ for some
particular values of λ for charge one solutions. For
decreasing λ the solution approaches the previously found
step-functionlike solution of the Eð2Þ þ E0 model. In Fig. 3
we plot the energy per baryon charge and energy per
topological bound (5.16) for the first Skyrmions (B ¼ 1, 2,
3, 4) as a function of the coupling constant λ. Here we have
chosen the mass parameter m ¼ 1. As one may expect, the
ratio E/Ebound tends to 1 as λ → 0. For increasing λ the ratio
grows as we depart from the BPS theory. Finally, for very
large λ the ratio drops again. However, even for extremely
large λ it is significantly above 1. This means that even in
this limit the quadratic term 4π

R
drr2ξ02 provides an non-

negligible contribution to the total energy, and we do not
approach the pure BPS regime.

VI. THE Lð1Þ
24 BPS MODEL AND ITS NON-BPS

EXTENSION

Here we consider an extension of the first coupled BPS
submodel by the inclusion of a potential

L ¼ Lð1Þ
24 þm2L0: ð6:1Þ

For m ¼ 0, inserting the separation of variable ansatz ξðrÞ
and uðθ;φÞ leads to a complete factorization of the energy

density into an angular part, which is equivalent to the
CP(1) model on S2, and a radial part. For m ≠ 0 this is no

longer true. Instead, theLð1Þ
24 term contains an angular factor

proportional to the topological charge density on S2,
whereas the potential part has no angular dependence at
all for potentials of the form UðξÞ. After the separation of
variables, the variation with respect to u gives rise to Euler-
Lagrange (EL) equations which can be identified with those
of the CP(1) model and have solutions given by rational
maps. The EL equation for ξ, however, is the sum of one
angular-dependent term and one angular independent term,
which is not compatible with the separation of variables.
The only exception is the spherically symmetric charge one
case u ¼ z, where the topological charge density is a
constant.
Therefore, in this section wewill study how the inclusion

of the potential influences the properties of the compacton
in the B ¼ 1 sector. The corresponding reduced energy
functional is

Eð1Þ þ E0 ¼ 4π

Z
drð2 sin2 ξð1þ ξ02Þ þ r2m2UðξÞÞ

ð6:2Þ

¼ 4π

Z
drð2 sin2 ξξ02 þ 2 sin2 ξþ r2m2UðξÞÞ

ð6:3Þ

¼ 4π

Z
drð2η02 − 2η2 þ 4ηþ r2m2UðηÞÞ:

ð6:4Þ
Adding a potential means adding a new attractive force
into the system. Therefore, at least for the case of compact
solutions, the size of the compactons will decrease.
We find an analytical understanding of this property in
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FIG. 3. Energy per baryon charge (left) and energy divided by the topological bound (5.16) (right) for B ¼ 1, 2, 3, 4 in the Lð2Þ þ LBPS
model, as a function of the coupling constant λ. Here we assume the pion mass potential Uπ with m ¼ 1.
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the following subsection. Furthermore, we can analytically
study how the potential breaks the BPS property.

A. The pion mass potential

For the usual pion mass potential, Uπ ¼ ð1 − cos ξÞ ¼ η,
the model is

E≡ Eð1Þ þ E0 ¼ 4π

Z
drð2η02 − 2η2 þ ð4þ r2m2ÞηÞ:

ð6:5Þ

This energy integral has a unique vacuum at η ¼ 0 in the
relevant interval 0 ≤ η ≤ 2, and the effective potential V ¼
ð4þm2r2Þη approaches its vacuum linearly, that is, V ∼ η
for η → 0. As a result, the static solutions in this BPS
submodel are compactons.
The corresponding field equation is

η00 þ η −
�
1þm2

4
r2
�

¼ 0; ð6:6Þ

with the general solution

η ¼ α sin rþ β cos rþm2

4
r2 þ 1 −

m2

2
: ð6:7Þ

Now, we have to impose the proper boundary conditions
for compactons (4.5). Hence,

β ¼ 1þm2

2
; ð6:8Þ

0 ¼ α sinRþ β cosRþm2R2

4
þ 1 −

m2

2
; ð6:9Þ

0 ¼ α cosR − β sinRþm2R
2

: ð6:10Þ

This leads to

α ¼
�
1þm2

2

�
tanR −

m2

2

R
cosR

; ð6:11Þ

where R is given by the following implicit formula whose
graph is shown in Fig. 4

m2

2
¼ 1þ cosR

R sinRþ cosR − 1
2
R2 cosR − 1

: ð6:12Þ

One can check that R is a monotonously decreasing
function of the mass m. In the limit m ¼ 0 we find the
BPS submodel result R ¼ π, as expected. Furthermore, the
expansion for small m gives

R ¼ π −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
π2 − 4

p

2
mþ oðmÞ: ð6:13Þ

On the other hand increasing the mass parameter, and
thereby increasing the attractive force, shrinks the size of
the Skyrmion according to

R ¼ 2
ffiffiffi
2

4
p 1

m1/2 þ o

�
1

m1/2

�
for m → ∞: ð6:14Þ

This solution leads to the following exact expression for the
energy

E ¼ 8πfðRÞ; ð6:15Þ

where fðRÞ is displayed in Fig. 4 and is given by

fðRÞ ¼ 1

30ð2þ ðR2 − 2Þ cosR − 2R sinRÞ2
× ½240R − 20R3 þ 14R5

− 8R3ðR2 − 10Þ cosRþ 4Rð60 − 35R2 þ 2R4Þ
× cos 2Rþ 40R2ðR2 − 6Þ sinR
− ð240ð1 − R2Þ þ 55R4Þ sin 2R�; ð6:16Þ
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FIG. 4. Dependence of the radius and fðRÞ function of the B ¼ 1 Skyrmion in the Lð1Þ
24 þ Lπ model on 1/2m.
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and the size R of the soliton depends on the mass m by
(6.12). This function is a monotonously decreasing func-
tion of R. For R → π, which coincides with the limit
m → 0, it tends to its minimal value fðπÞ ¼ π. This gives
E ¼ 8π2 for m ¼ 0. More precisely, for R → π we find

fðRÞ ¼ π þ π

6

π2 − 6

π2 − 4
ðR − πÞ2 þ oððR − πÞ2Þ: ð6:17Þ

Similarly, for small radius

fðRÞ ¼ 128

21

1

R
þOðRÞ: ð6:18Þ

Combining this with the relation between the size of the
compacton and the mass leads to

EðBÞ ¼ 8π2
�
1þ π2 − 6

6
m2 þ oðm2Þ

�
; m → 0:

ð6:19Þ

As was observed above, rational maps are not solutions of
the problem for B > 1. This leads to several interesting
questions about the case of higher B. First of all, we may
calculate higher B solutions approximately within the
rational map ansatz approximation as is done for the
standard Skyrme model L24. That is to say, we assume
separation of variables and also assume that u is given by a
rational map. Then we integrate over the angular part of the
energy functional where the integral over the CP(1) charge
density just gives B. After the replacement m2 → ðm2/BÞ,
the resulting reduced energy functional for ξðrÞ leads to the
same EL equation (6.6) and, therefore, to the same solution
and boundary conditions.
There is, however, one important difference between the

rational map ansatz in the massless standard Skyrme model
and our case. In the standard Skyrme model, the Skyrme
term (more precisely, the Lð2Þ

24 contribution to it) selects one
rational map as its minimizer which determines the optimal
rational map and, therefore, the symmetry of the corre-
sponding Skyrmion. In our case, the potential does not
depend on u at all and, therefore, cannot lift the degeneracy
between arbitrary rational maps within the rational map
ansatz approximation. This leads to the second question
about the geometry of the energy minimizers in each
topological sector. The potential term is not compatible
with the separation of variables, so it will most likely lift the

rather large degeneracy of the Lð1Þ
24 model for true (numeri-

cally calculated) Skyrmions. The resulting Skyrmions will,
therefore, have definite shapes and symmetries. These
symmetries will in general be different from the symmetries
of Skyrmions in the L24 model. The two different sym-
metries from the mass term in the model considered here,
on the one hand, and the massless standard Skyrme model,
on the other hand, and their competing effects might be

useful to understand the shapes of standard Skyrmions
with massive pions. Similar considerations hold for other
potential terms. In any case, this issue requires full three
dimensional numerical calculation, which goes beyond the
scope of the present paper. We plan to investigate this in the
future.

VII. THE SKYRME MODEL AND THE
RATIONAL MAP ANSATZ

The fact that arbitrary rational maps (4.1) are solutions
of the first coupled BPS submodel provided an explanation
why the rational map ansatz works remarkably well for
the massless Skyrme model L24 [5]. Here we further
investigate this problem.
In a first step, we numerically calculate the true soliton

solutions of the massless Skyrme model L24 with
B ¼ 1;…; 8. Then we compute the corresponding on-shell
energies of the first Eð1Þ and second Eð2Þ coupled BPS
submodels. Obviously, for each B they sum to the energy
of the Skyrmion of the massless Skyrme model, E24 ¼
Eð1Þ þ Eð2Þ. It is instructive to plot the on-shell energies
divided by the respective topological bounds. Figure 5
shows that the energy of the first BPS submodel computed
on the true solution of the full E24 model is very close to the
topological bound, with the ratio approaching approxi-
mately 1.05 for higher values of the topological charge.
This implies that the solution of the full L24 model is rather
close to a solution of the Lð1Þ submodel which can be
parametrized by rational maps. On the other hand, the
on-shell energy of the second BPS submodel exceeds the
corresponding bound much more significantly. This
explains why the angular part of a solution of the first
BPS Skyrme submodel, rather than the solution emerging
from the second BPS submodel, provides a good guess for
the true massless Skyrmions. In this approximation, the role
of the second submodel Lð2Þ is to select a minimizing
rational map among all rational maps of a given degree. In
addition, Fig. 5 shows that the second BPS submodel is the
main source of the binding energy problem in the Skyrme
model L24.
The on-shell ratios Eð1Þ/ð8π2jBjÞ and Eð2Þ/ð4π2jBjÞ seem

to provide a good indication when the rational map ansatz
is a good approximation. Indeed, one can compute them
for Skyrme models with arbitrary potentials or with a
contribution from the sextic term. If Eð1Þ/ð8π2jBjÞ is close
to one, then the rational map is still a good approximation.
It is, however, completely plausible that for many poten-
tials, with or without the inclusion of the sextic term, the
ratio is much above one. This should result in a different
ansatz for solutions of such a generalized Skyrme model.
It is an intriguing question whether in such a situation the
second ratio, Eð2Þ/ð4π2jBjÞ, can be made closer to one.
Then, the ansatz inherited from the solutions of the second
BPS submodel might be the right guess. We emphasize that
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knowing good analytical approximations for Skyrmions is
important for numerical calculations.
If both bounds were saturated at the same time, then the

ratio between the energy of the first and the second BPS
submodels would read

Eð1Þ

Eð2Þ

����
saturated

¼ 2: ð7:1Þ

As we know, this happens on S3 base space. For the usual
R3 base space the bounds cannot be simultaneously
satisfied. We found that for the true Skyrmions in the
massless Skyrme model this ratio grows with the baryon
charge but never approaches the “saturated” value as shown
in Fig. 5.

VIII. CONCLUSIONS

In the present paper, we further analyzed the coupled
BPS submodels of the L24 Skyrme model. Although the
submodels are coupled, which means that they always
coexist, one can investigate them separately, as some
features of Skyrmions in the full theory may originate
from one of the submodels. Due to the fact that, by
construction, these submodels are examples of BPS theo-
ries, they offer unique analytical insights into properties of
Skyrmions. Let us summarize the main results.
(1) Geometric explanation of the coupled BPS submo-

dels. A target space coordinate-independent formu-
lation of thesemodels togetherwith the corresponding
Bogomol’nyi equations is given by the eigenvalues of
the strain tensor. The Bogomol’nyi equations for each
of the models are just a subset of the Bogomol’nyi
equations emerging in a derivation of the topological
Skyrme-Faddeev bound for the Skyrme model.

(2) Explanation of the success of the rational map
ansatz (RMA). The success of the RMA in the
construction of approximate solutions of the stan-
dard massless Skyrme model L24 can be explained
by the fact that the on-shell value of the Eð1Þ energy
is remarkably close to the relevant topological
bound. This implies that the solution of the full
L24 model is rather close to a solution of the Lð1Þ
submodel which is solved by rational maps.

(3) Thermodynamics at T ¼ 0. We found that, in spite
of many differences, both submodels have the same
mean-field equation of state (MF EoS) in the high
pressure regime p ¼ ρ̄/3. As expected, this coin-
cides with the MF EoS for the L24 Skyrme model.
Of course, it gives a subleading contribution to the
MF EoS of the full Skyrme model L0246 in the high
pressure limit, where the thermodynamics is gov-
erned by the sextic term [20,27]. Still, the submodels
describe rather different types of Skyrmionic matter.
In the first coupled BPS submodel we found a very
attractive matter which resulted in compactons
while in the second submodel the matter reveals a
very repulsive nature. In the L24 Skyrme model,
where both submodels coexist, there is a balance
between these two opposing properties leading to
the appearance of crystal structures [28]. Under-
standing the details of this process requires further
analysis.

(4) Bose-Einstein condensate. It is a rather surprising
fact that the volume of Skyrmions in the first coupled
BPS Skyrme submodel is independent of the topo-
logical charge. This behavior has some similarities
with that of a Bose-Einstein condensate. Such a BEC
would not be a condensate of individual Skyrmions
because it occurs already in the charge one sector.
This resembles the perfect fluid property of the
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BPS Skyrme model where even the B ¼ 1 solution
is a perfect fluid droplet. The observation of a
BEC-like sector within the Skyrme model is inter-
esting and definitely deserves further investigation.

(5) Oscillons.There is also a rich nontopological sector in
the Lð1Þ

24 BPS submodel where approximate exact
oscillons can be found. Notably, they can oscillate
for an arbitrarily long time by reducing their ampli-
tude. Therefore, such small amplitude oscillons
dominate interactions in this submodel. Whether they
give rise to some nontopological structures in the L24

Skyrme model [26] or can be detected in Skyrmion
interactions [29] requires further investigations.

(6) Existence of a solvable non-BPS model. The second
BPS submodel can be extended to various non-BPS
theories by the addition of new terms, in such a way
that the corresponding ansatz for the S2 part of the
Skyrme field remains valid. As a result, we are left
with an ODE for the Skyrme profile function ξ
where the topological charge enters as a parameter,
which allows for easy studies of such models for any
value of the topological charge.

This is an interesting observation, as it provides an
extension of the BPS Skyrme model, where the quadratic as
well as quartic terms are partially taken into account, which
gives the main contribution to thermodynamical and bulk
properties at higher density/pressure [20]. This can have
obvious applications to nuclear matter, neutron stars [30],
and hairy black holes [31].
It is widely known that a restriction of the Skyrme model

to a two-sphere target space (simply by assuming that
ξ takes a constant value which leaves only u ∈ C or

equivalently n ∈ S2 degrees of freedom) gives the Skyrme-
Faddeev-Niemi model conjectured to be relevant for the
low energy sector of the quantum SUð2Þ Yang-Mills theory
and therefore a candidate for a model of glueballs [32]. It is
a matter of fact that each of the coupled BPS submodels
contains a different contribution from the SFN model. The
first BPS submodel contains the ð∂μnÞ2 term which is the
kinetic part generated by the dimension two condensate,
while the second BPS submodel contains the ð∂μn × ∂νnÞ2
term. This term follows from the YM action if the Faddeev-
Niemi-Cho-Shabanov decomposition of the gauge field is
assumed [32,33]. In particular, it carries magnetic monop-
ole like degrees of freedom of the original gauge field,
which coincides with previous remarks that the second BPS
submodel resembles a dilaton-magnetic monopole system
[34]. It would be very desirable to better understand a
possible relation between the coupled BPS structures of the
Skyrme model and the Skyrme-Faddeev-Niemi action.
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