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Gas-Liquid Two-Phase Flow Measurement Using
Coriolis Flowmeters Incorporating Artificial
Neural Network, Support Vector Machine,
and Genetic Programming Algorithms
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Abstract— Coriolis flowmeters are well established for the
mass flow measurement of single-phase flow with high accuracy.
In recent years, attempts have been made to apply Coriolis
flowmeters to measure two-phase flow. This paper presents data
driven models that are incorporated into Coriolis flowmeters
to measure both the liquid mass flowrate and the gas volume
fraction of a two-phase flow mixture. Experimental work was
conducted on a purpose-built two-phase flow test rig on both
horizontal and vertical pipelines for a liquid mass flowrate
ranging from 700 to 14500 kg/h and a gas volume fraction
between 0% and 30%. Artificial neural network (ANN), support
vector machine (SVM), and genetic programming (GP) models
are established through training with the experimental data. The
performance of backpropagation-ANN (BP-ANN), radial basis
function-ANN (RBF-ANN), SVM, and GP models is assessed and
compared. Experimental results suggest that the SVM models
are superior to the BP-ANN, RBF-ANN, and GP models for
two-phase flow measurement in terms of robustness and accuracy.
For liquid mass flowrate measurement with the SVM models,
93.49% of the experimental data yield a relative error less
than +1% on the horizontal pipeline, while 96.17 % of the results
are within £1% on the vertical installation. The SVM models
predict the gas volume fraction with a relative error less than
+10% for 93.10% and 94.25% of the test conditions on the
horizontal and vertical installations, respectively.

Index Terms— Artificial neural network (ANN), Coriolis mass
flowmeter, flow measurement, gas volume fraction, genetic pro-
gramming (GP), support vector machine (SVM), two-phase flow.

I. INTRODUCTION

AS-LIQUID two-phase flow is widely seen in oil and
gas fields, chemical engineering, food processing, and
other industrial processes. The accurate measurement of the
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flowrate of a two-phase mixture is challenging in industry.
Significant research based on traditional flowmeters for two-
phase flow measurement has been conducted, such as Venturi,
V-cone, turbine, vortex, and slotted orifice meters [1]-[3].
The determination of gas volume fraction of two-phase flow
is crucial for the optimization of some industrial processes.
Resistive sensors, capacitive sensors, electrical capacitance
tomography, electrical resistance tomography, and microwave
probes have been proposed for the phase fraction measurement
of two-phase flow [4]-[6]. These techniques are often referred
to as direct method, since the systems are designed to measure
the desired two-phase flow characteristics directly. Due to
the difficult nature of two-phase flow and complexity of the
sensing systems, the applications of such direct two-phase
flowmeters have achieved limited success in industry.
Indirect techniques based on traditional sensors incorpo-
rating soft-computing algorithms, such as artificial neural
network (ANN), support vector machine (SVM), least-squares
SVM, and extreme learning machine together with genetic
algorithms or particle swarm optimization, have also been
applied to two-phase or multiphase flow measurement or
flow regime identification [7]-[10]. Coriolis flowmeters, as
one of the most accurate single-phase mass flowmeters, have
been successfully applied to a range of industrial applica-
tions. In recent years, many researchers have attempted to
use Coriolis flowmeters for two-phase or multiphase flow
measurement [11]. However, despite recent progress in sensor
and transmitter technologies, improving the accuracy for mass
flow metering of liquid with entrained gas still remains a
challenge. A bubble effect model was proposed to study gas—
liquid two-phase flow for Coriolis flowmeters [12], but it
cannot deal with positive errors in the mass flow measurement.
Subsequently, Liu et al. [13] used a neural network to correct
mass flow errors in a Coriolis mass flowmeter, which was
based on a horizontal flow tube and the flow rate was limited to
1.5-3.6 kg/s. The multilayer perceptron and radial basis func-
tion (RBF) networks include four inputs, i.e., temperature,
damping, density drop, and flowrate to estimate mass flow
errors. Although most of the mass flow errors were reduced
to within +2%, the gas entrainment was not quantified and
different installation conditions were not considered. A method
based on fuzzy inference was proposed to correct the mass
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flow errors of a Coriolis flowmeter for the measurement of
two-phase flow [14]. The fuzzy system accepts damping, drop
in density, and apparent mass flowrate as inputs to generate
corrected mass flowrate. Lari and Shabaninia [15] applied a
neuro-fuzzy algorithm to the error correction of a Coriolis
mass flowmeter for air—water two-phase flow measurement.
However, the experimental data and the results were not
explained in detail in [14] and [15]. Hou et al. [16] developed
a digital Coriolis flow transmitter and tested a commercial
Coriolis flowmeter. The measurement errors achieved under
gas—liquid two-phase flow conditions were corrected using a
feedforward neural network with two inputs—apparent liquid
mass flowrate and apparent drop in density. Xing et al. [17]
applied a Coriolis flowmeter in combination with an ultrasonic
flowmeter to measure the individual mass flowrates of gas—
liquid two-phase flow under low liquid loading. The root-
mean-square errors of gas and liquid mass flowrates were
3.09% and 12.78%, respectively. Ma et al. [18] used a
25-mm bore Coriolis flowmeter together with SVM algorithms
to measure the overall mass flowrate of oil-water two-phase
flow and achieved relative errors within +1%. The mass
flowrate of individual phase was obtained with the maximum
error of 28%. However, it is known that the gas entrained in
a liquid flow affects significantly the performance of Corio-
lis flowmeters, especially under different flow regimes [11].
Moreover, very little research has been undertaken to date to
predict the gas volume fraction from the outputs of a Coriolis
flowmeter.

Owning to the good reproducibility of the measurement
errors of Coriolis flowmeters under two-phase flow conditions,
data driven models, such as ANN, SVM, and genetic pro-
gramming (GP), have the potential to correct the liquid mass
flowrate and predict gas volume fraction. In this paper, experi-
mental work was undertaken on a purpose-built 1-in (25 mm)
bore air-water two-phase flow test rig. Coriolis flowmeters
(KROHNE OPTIMASS 6400 S25) in conjunction with DP
transducers were applied to obtain liquid mass flowrate and
gas volume fraction on both the horizontal and vertical pipes.
Parametric dependence along with input variable selection for
the data driven models is investigated based on the partial
mutual information (PMI) algorithm [19], [20]. Four data
driven models based on backpropagation-ANN (BP-ANN),
RBF-ANN, SVM, and GP, respectively, are established and
validated through training and testing with the experimental
data. The performances of the four models are evaluated and
compared in terms of robustness and accuracy. The basic
principle of BP-ANN modeling with some preliminary results
was reported at the 2016 IEEE International Instrumentation
and Measurement Technology Conference [21]. This paper
presents in detail the principles, structures, training, and per-
formance comparisons of the BP-ANN, RBF-ANN, SVM, and
GP models.

II. METHODOLOGY

A. Overall Measurement Strategy

ANN, SVM, and GP are common data driven models for
modeling a nonlinear system with multiple inputs and outputs
[22]-[26]. These techniques learn from history data and give
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flowmeter ~  Data driven models ! Liquid mass flowrate
DP o SNN/SVNEGE Gas volume fraction
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Fig. 1. Principle and structure of the measurement system.
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Fig. 2. Structure of a BP-ANN.

examples by constructing an input—output mapping in order
to perform estimations of desired outputs. Fig. 1 shows the
principle and structure of the measurement system. The data
driven models accept variables from a Coriolis flowmeter and
a DP transducer, while the output gives the corrected mass
flowrate or predicted gas volume fraction. The analysis of
parametric dependence and input variable selection for the data
driven models based on the experimental data is presented
in Section III-C. Since the volume of data is often limited
in practice, it is appropriate to design a separate model for
each desired output. The structure of each data driven model
based on ANN, SVM, and GP will be explained in detail in
Sections II.B-ILE.

B. BP-ANN

BP-ANN is a multilayer feedforward neural network trained
with a BP learning algorithm, which is one of the most com-
mon neural networks. A BP-ANN consists of an input layer,
one or more hidden layers, and an output layer. The hidden
layer connects the input and output layers and represents their
quantitative relationship. In general, a neural network with a
single-hidden layer of sufficient neurons is able to represent
any nonlinear problem. In consideration of the simplicity
of the ANN structure, a single-hidden layer is chosen and
investigated in this paper.

As shown in Fig. 2, x = [x1, x2, ..., x,]7 is an input sample
and y is the desired output. Assume y is the linear output of
the hidden neurons and a transfer function f(x) is used on
the neurons, the ANN is modeled as

L L n
YBP = Za)jHj +b ZZCUjf(Zwijxi —l—aj)—i-b @)

j=1 j=1 i=1
where n and L are the numbers of input variables and hidden
nodes. w; is the weight connecting the jth hidden node and
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Fig. 3. Structure of an RBF-ANN.

the output node, and w;; is the weight connecting the ith
input node to the jth hidden node. a; and b are the biases
on the jth hidden node and the output node. In this paper,
the hyperbolic tangent sigmoid function is used as a transfer
function on hidden neurons and presented by

2
f(x)=m— 2

The learning algorithm is described as a procedure that con-
sists of adjusting the weights and biases of a network, to
minimize an error function between the network output and
desired output for a given set of inputs. The BP algorithm
has been widely applied to solve practical problems. However,
the BP algorithm has the disadvantage of slow convergence
and long training time. In addition, the success of the BP
algorithm depends on the user-dependent parameters, such as
initialization and structure of the ANN.

C. RBF-ANN

RBF-ANN has a fixed three layer structure (Fig. 3) and uses
a type of RBF as an activation function to the hidden nodes.
The output of the network is a linear combination of RBFs
of the inputs and neuron parameters. The RBF measures the
distance between the input vectors and the weight vectors and
is typically taken to be the Gaussian function. Thus, the output
of the network is given by

L L
1
YRBE = D wjHj =D wjexp (—mllx - lelz) 3
j=1 j=1

where C; is the center vector for the jth hidden node and
determined by the K-means clustering method. ||x — C; | is
the Euclidean norm and o2 is the variance of the Gaussian
function.

An RBF network with enough hidden nodes can approxi-
mate any continuous function with arbitrary precision. More-
over, as a local approximation network, the RBF neural
network has the advantages of simple structure, less adjustive
parameters, and fast training.

D. SVM

SVM was developed by Cortes and Vapnik [27] to solve the
classification problem based on the statistic learning theory

Output layer

S8

Hidden layer

Input layer

Input vector x

Fig. 4. Structure of an SVM.

and structural risk minimization. Then, this method has been
extended to the domain of regression and prediction prob-
lems [28]. As shown in Fig. 4, the input vector x is first
mapped into an L-dimensional feature space using transfer
functions, and then, a linear model is constructed in this feature
space.

The linear model in the feature space is given by

y=wx+b “4)

where v = (w1, wy, ..
bias term.

Regression estimates can be obtained by minimizing the
empirical risk on the training data. SVM regression performs
a linear regression in the high-dimensional feature space using
e-insensitive loss and tends to reduce the model complexity
by minimizing ||w|>. This can be described by introducing
slack variables & and fi/ (i =1,2,...,m) to measure the
deviation of training samples (X*, D) outside e-insensitive
zone. X* = (x',x%, ..., x™) represents m input vectors of
training samples and D = (dy, d>, ..., dn) is the correspond-
ing desired output. Thus, the optimization problem can be
formulated as

., L) is the weight vector and b is the

m
@ :min%”wllz—f—CZ(@- +¢&) (3)
i=1
where m is the number of training samples. C is a positive
constant as a regularization parameter that allows tuning the
tradeoff between the flatness of the function and the tolerance
of deviations larger than ¢ (a constant).
Minimize the risk function of (5) subject to the following
constraints:

di—yi <e+¢ (6)
yi—di < e+ @)
i =0 (®)
& =0. ©)

Equation (4) can be transformed into a dual problem and
solved by Lagrange functional

L

y:Z(ai—a;“)-K(x,xi)—i—b

i=1

(10)

where @; and o are Lagrange multipliers and K (x, x;) is a
kernel function.
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Fig. 5. Structure of a GP model.

There are some optional kernel functions for SVM, such
as linear, polynomial, RBF, and sigmoid function. One of
the most widely used kernel functions is the RBF. The final
product of a training process in the SVM method can be
presented by

L

1 2
ysvm = D (@i —af) - exp (—26—2||x —xill ) +b. (1)

i=1

E. GP

GP as an evolutionary computation technique is an exten-
sion of genetic algorithms and is widely applied to symbolic
data mining (symbolic regression, classification, and opti-
mization) [29]-[31]. Unlike the traditional regression analysis,
GP-based symbolic regression automatically evolves both the
structure and the parameters of the mathematical model from
the available data. Meanwhile, it is superior to other machine
learning techniques due to the ability to generate an empir-
ical mathematical equation without assuming prior form of
the existing relationships. In this paper, multigene symbolic
regression is applied to establish a model for two-phase
flow measurement. The structure of a multigene symbolic
regression model is shown in Fig. 5.

The GP model can be regarded as a linear combination
of lower order nonlinear transformations of the input vari-
ables. The output ygp is defined as a vector output of n
trees modified by the bias term by and scaling parameters
b1,...,by

yop =bo+ b1ty + -+ buty (12)

where t; (i = 1,...,n) is the (m x 1) vector of outputs from
the ith tree comprising a multigene individual.

The evolutionary process starts with initial population by
creating individuals containing GP trees with different genes
generated randomly. The evolutionary process continues with
an evaluation of the fitness of the new population, two-point
high-level crossover to acquire and delete genes, and low-level
crossover on subtrees. Then, the created trees replace the
parent trees or the unaltered individual in the next generation
through mutation operators. The best program that appeared
in any generation, the best-so-far solution, defines the output
of the GP algorithm [30].

III. EXPERIMENTAL RESULTS AND DISCUSSION
A. Test Rig and Experimental Conditions

Fig. 6 shows the schematic of the two-phase flow test rig
that was used in this paper. The measurement data obtained
on this rig and subsequent conclusions drawn from the data

Horizontal test section

2 l3le

Vertical test|section

Water phase
Water tank Pump flowmeter
[08)
Gas phase Mixer
flowmeter
Airsource

Fig. 6. Schematic of the two-phase flow test rig.

Fig. 7. Photograph of the test Coriolis flowmeters on 1-inch pipelines.

are expected to be transportable to other gas—liquid two-phase
flow conditions. The gas flow is set to enter to the liquid flow
through a bypass on the pipe. The liquid mass flowrate is
controlled by adjusting the pump frequency from 15% to 80%.
The gas flowrate is varied by adjusting the opening of the
valve in a gas flow controller. Two independent Coriolis
flowmeters (KROHNE OPTIMASS 6400 S25 and Bronkhorst
mini CORI-FLOW M15) were installed before the mixer to
provide references for the individual mass flow rates of the
liquid and gas phases, respectively. Both reference meters’
measurement uncertainties under single-phase conditions were
verified according to the manufacturer’s technical specifica-
tion. In the downstream, two additional Coriolis flowmeters
(see Fig. 7) of the same type as the liquid reference meter
were installed in the vertical and horizontal test sections,
respectively. These are the meters under test to assess the
performance of ANN, SVM, and GP models under two-
phase flow conditions. In view of the effects of gravity and
buoyancy on two-phase fluid, both the horizontal and vertical
installations of the meters are considered. A DP transducer
was used to record the DP value across each flowmeter under
test.
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Fig. 8. Original errors of the liquid mass flowrate from Test I. (a) Horizontal
pipeline. (b) Vertical pipeline.

The data logging frequencies, as set in the data loggers for
the mass flowrate, density, damping, and DP, are 50, 10, 2,
and 20 Hz, respectably. Each parameter was logged over a
period of 100 s with a time averaged value generated under
each experimental condition. Gas volume fraction o is defined
and calculated as follows:

a=—I%  100%

qv,1 + qv.g

where ¢, ¢ and g,; are the calculated volume flowrates of
gas and liquid phases from the reference flow meters and the
temperature and pressure in the upstream of the horizontal
test meter.

Density drop is determined from the density of the liquid
flow (p;) and the apparent density (p) from the Coriolis
flowmeter under test

13)

d="2"Lx 100%.
Pl

Two series of experimental tests, Tests I and II, were conducted
for the liquid mass flow rate ranging from 700 to 14 500 kg/h
and gas volume fraction from 0% to 30%. The fluid temper-
ature during the tests was around 20 °C. For the purpose of
ANN training, 237 data sets were collected from Tests I, while
24 data sets recorded from Tests II for testing the performance
of the data driven models.

(14)

B. Analysis of Original Errors

The typical original mass flow errors of the Coriolis flowme-
ters in Test I are shown in Fig. 8. The Coriolis flowmeter on
the vertical section gives negative errors at flowrates below
4000 kg/h. At a higher flowrate (>5500 kg/h), the mass flow

Fig. 9. Original errors of the liquid mass flowrate from Test II. (a) Horizontal
pipeline. (b) Vertical pipeline.

errors become positive and crossing the zero line and then
return to negative errors again along with increasing entrained
gas. This is believed to be due to the flow regime effects
on the fluid-tube coupling system at different flowrates. At a
lower flowrate (<2000 kg/h), the flow was nearly slug flow
as observed during the test, while the flow regime became
gradually dispersed bubbly flow as the flowrate and entrained
gas increase. For the Coriolis flowmeter on the horizontal
pipeline, the range of mass flow errors is different from
that on the vertical pipeline most likely due to the effects
of gravity and buoyancy on the flow regime. Positive errors
occur at the mass flowrates of 700 and 1000 kg/h when the
gas volume fraction below 6%. By comparing the mass flow
errors at the same flowrate in Figs. 8 and 9, the errors are
generally reproducible for the same installation and thanks to
the new-generation flow transmitter [32]. For the test data set,
Test II includes some experimental data that were collected at
different flowrates from those in Test I. The new conditions as
in Test II that were conducted on a different day and obtained
under different flowrate from Test I are useful to assess the
models’ generalization capability and reproducibility.

Fig. 10 shows the distribution of the relative errors of the
measured liquid mass flowrate on both the horizontal and
vertical pipelines. Each color (blue or green) in the figure
represents training or test data sets, respectively. The Coriolis
flowmeter on the horizontal pipeline yields the liquid mass
flowrate with a relative error between —41% and 9%, while
the meter on the vertical pipeline gives an error from —25%
to 11%. The difference in errors between the vertical and
horizontal installations is due to the fact that the bubbles in
a vertical flow are distributed evenly in the pipe cross section
due to the effect of gravity, resulting in less interruption on
the tube vibration inside the Coriolis flowmeter and hence
different errors.
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Fig. 10. Relative error histogram of the measured liquid mass flowrate. (a) Horizontal pipeline. (b) Vertical pipeline.

C. Analysis of Parametric Dependence

There are three important parameters from a Coriolis
flowmeter, including observed density drop, apparent mass
flowrate, and damping. The DP value from the DP transducer
is also included as a potential input variable in this paper. The
apparent mass flowrate from a Coriolis flowmeter and the DP
value across the meter correlate strongly with the liquid mass
flowrate under two-phase conditions. In addition, when gas
entrains in the liquid flow, a rapid rise in damping occurs for
the fluid-conveying tube and the mixture density also deviates
from the liquid density. This physical background for the fluid-
tube coupling system determines that these four input variables
are more important than other variables. There exist strong
nonlinearities between the outputs of a Coriolis flowmeter and
the flowrate being measured under two-phase flow conditions,
as observed by other researchers [12], [13]. Such nonlinearities
are also shown in Fig. 8.

In order to investigate the parametric dependence of indi-
vidual input parameters and the combined effect of multiple
parameters on the output of a data model, PMI is utilized
to measure the partial dependence between a potential input
variable and the output, conditional on any inputs that have
already been selected. The variable with the highest PMI score
is added to the input set, if the Akaike information crite-
rion (AIC) value decreases as a result from the inclusion of this
variable. The detailed definitions of PMI and AIC are available
in [19] and [20]. Suppose variables x1, x2, x3, and x4 represent
observed density drop, apparent mass flowrate, damping, and
DP, respectively, the variable selection procedures for the
models for correcting the liquid mass flowrate and predicting
the gas volume fraction are summarized in Tables I and II.
H-L and V-L represent the models established for the hori-
zontal and vertical pipelines, respectively, to correct the liquid
mass flowrate, while H-G and V-G stand for the models for
the horizontal and vertical pipelines to predict the gas volume
fraction, respectively. The selection sequence also represents
the sensitivity level of each variable to the desired output.
For the liquid mass flowrate, x, (apparent mass flowrate)
has more significant effect on the liquid mass flowrate.

TABLE I
VARIABLE SELECTION PROCEDURES FOR MODELS H-L AND V-L

Model H-L Model V-L

Step - 5 - )

Variable | AIC R Variable AIC R
1 X2 -1030 | 0.9795 X2 -1027 0.9793
1I X3 -971 ]0.9757 X4 -1032 0.9797
I X4 -1040 | 0.9814 X3 -1085 0.9842
v X -1161 | 0.9886 X1 -1200 0.9901

TABLE I1

VARIABLE SELECTION PROCEDURES FOR MODELS H-G AND V-G

Step Model H-G . Model V-G ,
Variable | AIC R Variable AIC R
I X -669.3 | 0.9210 X1 -485.8 0.8430
1T X4 -743.3 |1 0.9434 X4 -668.1 0.9248
1 X2 -745.9 |0.9456 X2 -691.1 0.9334
v X3 -727.4 | 0.9415 X3 -669.2 0.9272

The coefficient of determination, R2, indicates the goodness of
fit. A combination of the four variables gives the highest R,
which illustrates that the combined effect of the variables is
more significant than that of an individual variable on the
output. For predicting the gas volume fraction, x; (observed
density drop), plays a more important part than other variables.
Variable x3 (damping) is not used in models H-G and V-G,
since the AIC value becomes increasing and R? is reducing
with the inclusion of x3. As a result of these variable selec-
tion procedures, the models for correcting the liquid mass
flowrate accept the four input variables (observed density drop,
apparent mass flowrate, damping, and DP) and three variables
(observed density drop, apparent mass flowrate, and DP) are
taken as the inputs to the models for predicting the gas volume
fraction.

D. Performance of the BP-ANN

The BP-ANN model is established through training with
data set I and tested with data set II. For each installation
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condition, a separate model is established for the correction
of the measured liquid mass flowrate and the prediction of
gas volume fraction. The inputs of the BP-ANN for liquid
mass flowrate correction include four variables, i.e., observed
density drop, apparent mass flowrate, damping, and DP. The
inputs of the BP-ANN for gas volume fraction prediction
include observed density drop, apparent mass flowrate, and DP.
The number of neurons (L) in the hidden layer is determined
using (15) and (16), as proposed in [33]

L <2n+1 (15)
m

L < 16

“n+1 (16)

where n and m are the numbers of input variables and training
samples, respectively. However, (15) and (16) give only the
range of L for BP-ANN models. The exact L for a model
can be selected by a trial-and-error method to compromise
between minimizing errors and achieving good generalization
capability. The output layer has one neuron for each model,
since there is only one output variable.

The BP-ANN transfer function between the input and
hidden layers is hyperbolic tangent sigmoid transfer function.
The pure linear function is taken as the transfer function
connecting the hidden layer to the output layer. The training
function is Bayesian regularization, while the learning function
is gradient descent with momentum weight and bias learning
function. Training stops when the maximum number of epochs
is reached or the performance is minimized to the goal. In this
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Performance of BP-ANNs with differenct numbers of neurons in the hidden layer. (a) BP-ANN: H-L. (b) BP-ANN: V-L. (c) BP-ANN: H-G.

paper, normalized root-mean-square error (NRMSE) is used
to assess the performance of a data driven model, which is
defined as

m

% > i =302

i=1

NRMSE = a7)

<] =

where y; is the reference mass flow rate of the liquid phase or
gas volume fraction, y is the mean of y;, y; is the corrected
mass flow rate or predicted gas volume fraction from the data
driven model accordingly, and m is the number of samples
used.

As the weights and biases between the neurons are ini-
tialized randomly, a different BP-ANN is obtained for each
training, resulting in different performances. A preliminary
study of averaging NRMSE of more than 200 BP-ANNs did
not show any noticeable difference. Therefore, in order to
minimize the effect of random initialization of an ANN, the
average NRMSE of 200 BP-ANNs with the same structure is
calculated to assess the effect of the hidden neurons on the
performance of the ANN.

For the models for liquid mass flowrate correction, the
number of neurons in the hidden layer is set from 4 to 9 as
per (15) and (16). The NRMSE values of the BP-ANNs are
summarized in Fig. 11. The error bars indicate the maximum
and minimum errors of 200 BP-ANNSs for the same structure.
In view of the errors on both training and test datasets, the
BP-ANN with seven neurons in the hidden layer performs
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Error of the predicted gas volume fraction from the trained

BP-ANN:S. (a) Errors of the corrected mass flowrate on the horizontal pipeline
with training data set. (b) Errors of the corrected mass flowrate on the
horizontal pipeline with test data set. (c) Errors of the corrected mass flowrate
on the vertical pipeline with training data set. (d) Errors of the corrected mass
flowrate on the vertical pipeline with test data set.

better than other structures under both the horizontal and
vertical conditions. The BP-ANN used for gas volume fraction
prediction has lower NRMSE when the number of the hidden
neurons is 6.

Once the structure of a BP-ANN is determined, the trained
neural network that has the minimum error with the test data
set is selected. Fig. 12 shows the errors of the corrected

BP-ANN:Ss. (a) Errors of the predicted gas volume fraction on the horizontal
pipeline with training data set. (b) Errors of the predicted gas volume fraction
on the horizontal pipeline with test data set. (c) Errors of the predicted gas
volume fraction on the vertical pipeline with training data set. (d) Errors of
the predicted gas volume fraction on the vertical pipeline with test data set.

liquid mass flowrate from the BP-ANNs. For the horizontal
and vertical pipelines, the relative errors are mostly less than
+2% (the red dashed lines in Fig. 12) with the training
data set except some larger errors at the low flowrates of
700 and 1000 kg/h. This is very likely due to larger bubbles
or slugs appearing in the flow tubes under low flowrate,
which affects the Coriolis flowmeter behaving differently from
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Fig. 14. Errors of the corrected liquid mass flowrate from the RBF-ANNs.
(a) Errors of the corrected mass flowrate on the horizontal pipeline with
training data set. (b) Errors of the corrected mass flowrate on the horizontal
pipeline with test data set. (c) Errors of the corrected mass flowrate on
the vertical pipeline with training data set. (d) Errors of the corrected mass
flowrate on the vertical pipeline with test data set.

smaller bubbles. The trained BP-ANN has relatively larger
errors at low flowrates and hence results in unsatisfactory
performance with the test data set under the same experimental
conditions.

Since the gas volume fraction under the experimental con-
ditions ranges from 0% to 30% and the intrinsic complexity of
two-phase flow, the relative errors of the predicted gas volume
fraction from the BP-ANNs are quite large when the gas
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Fig. 15. Errors of the predicted gas volume fraction from the RBF-ANNs.
(a) Errors of the predicted gas volume fraction on the horizontal pipeline
with training data set. (b) Errors of the predicted gas volume fraction on
the horizontal pipeline with test data set. (c) Errors of the predicted gas
volume fraction on the vertical pipeline with training data set. (d) Errors of
the predicted gas volume fraction on the vertical pipeline with test data set.

volume fraction is below 5%. As the entrained gas increases,
the errors from the training data set are mostly within +10%
(the red dashed lines in Fig. 13). For the test data set, however,
all the errors are less than £10% on the vertical pipeline, even
under the low flowrate conditions.

E. Performance of the RBF-ANN

Fig. 14 shows the relative errors of the corrected liquid
mass flowrate from the RBF-ANNSs. In order to achieve more
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Fig. 16. Errors of the corrected liquid mass flowrate error from the SVMs.

(a) Errors of the corrected mass flowrate on the horizontal pipeline with
training data set. (b) Errors of the corrected mass flowrate on the horizontal
pipeline with test data set. (c) Errors of the corrected mass flowrate on
the vertical pipeline with training data set. (d) Errors of the corrected mass
flowrate on the vertical pipeline with test data set.

accurate results with the test data set, the RBF-ANN on the
horizontal pipeline disregards the errors at lower flowrates
(<2000 kg/h) and the network is trained to well fit higher
flowrates (>4000 kg/h). Consequently, the errors at higher
flowrates with the training data set, and the errors with the
test data set are reduced to +1%. Due to the insignificant
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Fig. 17.  Errors of the predicted gas volume fraction from the SVMs.

(a) Errors of the predicted gas volume fraction on the horizontal pipeline
with training data set. (b) Errors of the predicted gas volume fraction on
the horizontal pipeline with test data set. (c) Errors of the predicted gas
volume fraction on the vertical pipeline with training data set. (d) Errors of
the predicted gas volume fraction on the vertical pipeline with test data set.

difference in the original errors between the lower and higher
flowrates on the vertical pipeline, the RBF-ANN yields errors
between +2% with the training data set and £1% with the
test data set.

As shown in Fig. 15, the RBF-ANN for gas volume fraction
prediction outperforms significantly the BP-ANN, particularly
under the low entrained gas. When the gas volume fraction is
below 5%, the maximum relative errors from RBF-ANNSs on
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Fig. 18. Errors of the corrected liquid mass flowrate error from the GPs.

(a) Errors of the corrected mass flowrate on the horizontal pipeline with
training data set. (b) Errors of the corrected mass flowrate on the horizontal
pipeline with test data set. (c) Errors of the corrected mass flowrate on
the vertical pipeline with training data set. (d) Errors of the corrected mass
flowrate on the vertical pipeline with test data set.

both the horizontal and vertical pipelines are around +30%.
The rest errors with the training data set are well within +10%.
The relative errors from the test data set are almost less
than +10%, except at the flowrate of 1000 kg/h on the
horizontal pipeline. This is probably due to the fact that the
samples at 1000-kg/h flow rate are far away from the center
vectors in the network.
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Fig. 19. Errors of the predicted gas volume fraction from the GPs. (a) Errors
of the predicted gas volume fraction on the horizontal pipeline with training
data set. (b) Errors of the predicted gas volume fraction on the horizontal
pipeline with test data set. (c) Errors of the predicted gas volume fraction
on the vertical pipeline with training data set. (d) Errors of the predicted gas
volume fraction on the vertical pipeline with test data set.

F. Performance of the SVM

SVM models are also established for both installation
conditions. An important difference between the SVM and
ANN models is that the SVM leads to a unique deterministic
model for each data set, while ANNs depend on a random
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TABLE III
NRMSE oF SVM WITH DIFFERENT KERNEL FUNCTIONS

Data set 1 Data set 2
Model Radial Radial
Linear | Polynomial | basis Sigmoid | Linear | Polynomial | basis Sigmoid
function function
H-L 5.62% 11.12% 0.11% 889.50 7.44% 10.97% 0.58% 738.32
V-L 6.32% 10.33% 0.10% 911.90 | 9.39% 11.42% 0.57% 777.32
H-G 21.37% 28.37% 3.44% 606.58 2.6% 5.68% 3.29% 138.03
V-G 27.27% 34.08% 2.16% 683.13 3.71% 6.78% 3.2% 171.56
16 16
ij 10 ®BP-ANN ‘E’E 10 ® BP-ANN
é 8 EIRBF-ANN :§: 8 % EIRBF-ANN
= 6 )175 3 SVM = 6 . SVM
2 2
H-L V-L ol H-G V-G H-L VL Vol H-G V-G
(a) (b)

Fig. 20.
test data set.

initial choice of synaptic weights and cannot produce the fixed
results. Through a direct comparison of the performances of
SVM between the four kinds of kernel function (Table III), we
know that the SVM with RBF generates the smallest NRMSE
among the four models.

From Fig. 16(a) and (c), the SVM model performs well
to fit with training data and limit the relative errors on the
horizontal and vertical pipelines to +1% or less, except some
points at 700 and 1000 kg/h, which is a common problem for
the ANN and SVM models. The generalization ability of the
SVM model is proven, as shown in Fig. 16(b) and (d). Most
errors from the SVM models with the test data are reduced
to £1%.

Fig. 17 shows that for gas volume fraction prediction, a less
number of points from the SVM models have an error beyond
+10% with the training data set. Since the kernel function
used in the SVM models is RBF, the performance of the SVM
models has the common problem with the RBF-ANN. The
relative errors in the predicted gas volume fraction with the
test data set at the flowrate of 1000 kg/h are larger than other
test data.

G. Performance of the GP

Four GP models are established in this paper for correcting
the liquid mass flowrate and predicting the gas volume frac-
tion, respectively, for the horizontal and vertical installations
of Coriolis flowmeters. The parameters that were set in the GP
algorithms include: a population size of 250, a tournament size
of 25, an elitism of 0.7, maximum number of genes allowed
in an individual 6, function set { x, —, +, tanh, mult3, add3},

Performance comparison between ANNs, SVMs, and GPs. (a) ANNs, SVMs, and GPs with training data set. (b) ANNs, SVMs, and GPs with

and terminal sets {x{, x2, x3, x4} for models H-L and V-L
and {x{, x2, x4} for models H-G and V-G.

The GP-based formulations for the four models are given
in the following:

yH—1L = 0.994x7 — 2633x| + 4300 tanh(x{) tanh(x3)
4+ 13.2x1x4 + 0.00571x2x3 — 0.0995x7x3
X tanh(x() + 62.4

yy—r = x3 +57.6x3 — 0.161x4 4+ 29.8x1x4
+ 871 tanh (x7x4) tanh(x1) — 0.00913x4(x3 + x1x4)

(18)

—0.122x1x0x3 + 32.5 (19)
ya—c = 0.783x1 + 1.6e_6xz + 0.00278x4 — 0.114x1x4
+0.159x7x4 4 6.82¢2x3 — 0.0182 (20)

yv_g = 1.01x] — 5.49¢ x5 — 0.0217x4 — 2.74¢~ tanh(x)

— 1.05e " *x1x2 + 2.74e Cxpx4 + 0.00253x1x7

— 1.05¢ *x?x4 — 2.74¢ "x1x2x4 4+ 0.00587.  (21)
The errors of the corrected mass flowrate on the train-
ing data set using GP are higher by —15% and 25%,
respectively, under the horizontal and vertical installations
[Fig. 18(a) and (c)], which results in larger errors on the
test data set [Fig. 18(b) and (d)]. As can be seen that, larger
errors normally occur at low flowrates, which indicate that the
GP models are unable to approximate all the data.

As shown in Fig. 19, for the prediction of gas volume
fraction, the outputs of GP models have large errors for low
gas entrainment and low flowrates. The relative errors with
test data reach 25% and —50% on the horizontal and vertical
pipes, respectively.
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Fig. 21. Relative error histogram of ANNs, SVMs, and GPs for corrected liquid mass flowrate. (a) BP-ANN: H-L. (b) BP-ANN: V-L. (c) RBF-ANN: H-L.
(d) RBF-ANN: V-L. (e) SVM: H-L. (f) SVM: V-L. (g) GP: H-L. (h) GP: V-L.

H. Perforamce Comparison Between BP-ANN, gas volume fraction prediction, GP produces larger errors than
RBF-ANN, SVM, and GP the other three techniques. Both BP-ANN and RBF-ANN have

1) Robustness: In order to assess the robustness of the four a similar mean NRMSE with the training data set, while the
kinds of models, the averaged NRMSE values are shown in SVM models yield less error. With the test data set, BP-ANN,
Fig. 20. The models for liquid mass flowrate correction and RBF-ANN, and SVM methods perform similarly on Models
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Fig. 22. Relative error histogram of ANNs, SVMs, and GPs for gas volume fraction prediction. (a) BP-ANN: H-G. (b) BP-ANN: V-G. (c) RBF-ANN: H-G.

(d) RBF-ANN: V-G. (e) SVM: H-G. (f) SVM: V-G. (g) GP: H-G. (h) GP: V-G.

H-L and V-L. However, the SVM models are significantly
better than the BP-ANN, RBF-ANN, and GP models for the
prediction of gas volume fraction. Moreover, BP-ANN and
RBF-ANN have uncertain parameters to optimize which could
result in differences in performance. However, due to their
fixed structure, the SVM models produce repeatable results

all the time. This outcome suggests that the SVM models are
superior to both ANN and GP models in terms of robustness.

2) Accuracy: Fig. 21 shows the relative error histograms of
the ANNs, SVMs, and GPs for corrected liquid mass flowrate.
It is clear that the error distributions of the GP and ANN
models are much wider and dispersive than the SVM models.
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TABLE IV

MEAN AND STANDARD DEVIATION OF THE RELATIVE ERROR DISTRIBUTION FOR LIQUID MASS FLOWRATE CORRECTION

Model BP-ANN RBF-ANN SVM GP
Model H-L | Mean (%) 0.0823 1.2200 0.0585 0.2405
Standard deviation (%) 1.03 2.30 0.66 2.83
Model V-L | Mean (%) 0.0548 -0.0248 0.0008 0.1660
Standard deviation (%) 1.50 0.61 0.40 2.77
TABLE V

MEAN AND STANDARD DEVIATION OF THE RELATIVE ERROR DISTRIBUTION FOR GAS VOLUME FRACTION PREDICTION

Model BP-ANN RBF-ANN SVM GP
Model H-G Mean (%) 0.17 -0.26 -0.25 3.15
Standard deviation (%) 11.88 6.02 6.95 17.70
Model V-G Mean (%) -0.18 0.50 -0.38 -1.99
Standard deviation (%) 9.70 4.70 5.57 20.62
TABLE VI
ACCURACY COMPARISONS OF ANN, SVM, AND GP MODELS
Model H-L V-L H-G V-G
Error limit <£2% <#+1% <£2% <#1% <=£10% <#10%
BP-ANN 91.95% 80.08% 89.66% 79.69% 79.31% 86.21%
RBF-ANN 82.76% 72.80% 97.70% 91.57% 90.80% 95.79%
SVM 96.93% 93.49% 98.85% 96.17% 93.10% 94.25%
GP 68.20% 54.41% 83.14% 67.05% 55.56% 54.79%

Through comparing the mean value and standard deviation of
the errors between the eight error distributions (Table IV), we
can see that the SVM models with the lowest mean value and
standard deviation outperform the BP-ANN, RBF-ANN, and
GP models for liquid mass flowrate measurement on both the
horizontal and vertical pipelines. Moreover, the data driven
models (a mean value of 0.0008% and a standard deviation
of 0.40%) on the vertical pipeline perform better than those
on the horizontal pipeline (a mean value of 0.0585% and a
standard deviation of 0.66%).

Fig. 22 shows the relative error histograms of the four
types of models for gas volume fraction prediction. GP models
have a larger range of errors than all other models. The error
distribution of the SVM model is much narrower than the ANN
models for the measurement of gas volume fraction. It can be
seen that most errors of the SVM models are concentrated
around zero line. Table V shows that the standard deviations
of the SVM and RBF-ANN models are smaller than that of the
BP-ANN and GP models on both the horizontal and vertical
pipelines.

In order to assess the accuracy of the ANN, SVM, and GP
models, the percentage of experimental data for each model
that can achieve the accuracy of 2% and 1%, respectively,
for liquid mass flowrate measurement and £10% for gas
volume fraction prediction is calculated and summarized in
Table VI. For liquid mass flowrate measurement with the
SVM models, 93.49% of the experimental data yield a relative

error less than 1% on the horizontal pipeline, while 96.17%
of the results are within 1% on the vertical installation.
The SVM models predict the gas volume fraction with a
relative error less than 10% for 93.10% and 94.25% of the
test conditions on the horizontal and vertical installations,
respectively. Therefore, the SVM models perform significantly
better than the BP-ANN, RBF-ANN, and GP models for two-
phase flow measurement in terms of robustness and accuracy.

IV. CONCLUSION

In this paper, experimental and analytical investigations
have been carried out to assess the performance of BP-ANN,
RBF-ANN, SVM, and GP for gas-liquid two-phase flow mea-
surement using Coriolis flowmeters. The results presented have
suggested that the SVM models are superior to the two ANN
models and the GP models for two-phase flow measurement in
terms of robustness and accuracy. The SVM models perform
well consistently, while the performance of ANN and GP
models depends on the user-defined parameters. For liquid
mass flowrate measurement, the SVM models outperform
the BP-ANN, RBF-ANN, and GP on both the horizontal
and vertical pipelines and the most corrected errors (>93%)
are within £1%. For the gas volume fraction prediction,
the RBF-ANN and SVM models yield most relative errors
(>90%) less than £10% and outperform the BP-ANN and
GP. It must be stressed that the significantly reduced errors in
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mass flowrate measurement from the Coriolis mass flowmeters
and gas volume fraction prediction are achieved by using the
existing data from the Coriolis flowmeters and a simple DP
transducer without the use of any other devices. SVM has
consistently outperformed ANN and GP in the correction of
liquid mass flow errors and prediction of gas volume fraction.
This outcome has effectively extended the applicability of
Coriolis mass flowmeters to liquid flow measurement with
a significant volume of entrained gas. In the future work,
the data driven models will be extended for the measurement
of other liquids with different viscosities under two-phase or
multiphase flow conditions.
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