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We study the groundstates of the Bose-Hubbard model in a uniform effective magnetic field,
illustrating the physics of cold atomic gases on ‘rotating optical lattices’. Mapping the bosons to
composite fermions leads to the prediction of quantum Hall fluids that have no counterpart in the
continuum. We construct trial wavefunctions for these phases, and perform numerical tests of the
predictions of the composite fermion model. Our results establish the existence of strongly correlated
phases beyond those in the continuum limit, and provide evidence for a wider scope of the composite
fermion approach beyond its application to the lowest Landau-level.

Ultra-cold atomic gases have become a very active field
of study of strongly correlated quantum systems. While
dilute Bose gases are typically in a weakly interacting
regime, they can be driven into regimes of strong corre-
lations. The application of an optical lattice potential
leads to a suppression of the kinetic energy relative to
the interaction energy, and has allowed the experimen-
tal exploration of the quantum phase transition between
Mott insulator and superfluid [1]. Rapid rotation of the
atomic gas also leads to a quenching of the kinetic en-
ergy, into degenerate Landau levels [2], and a regime of
strong interactions [3]. At low filling factor ν (defined
as the ratio of the number of particles to the number of
vortices) this is predicted to lead to remarkable strongly
correlated phases [4] which can be viewed as bosonic ver-
sions of fractional quantum Hall effect (FQHE) states
[5]. In order to access the low filling factor regime in
experiment, it may be favourable to exploit the strong
interactions that are available in optical lattice systems
[6, 7] for which methods exist in which to simulate uni-
form rotation (or equivalently a uniform magnetic field)
[8–10]. This raises the interesting question: what are the
correlated phases of atomic gases that are subjected both
to an optical lattice and to rapid rotation?

In this Letter, we study the interplay between the
FQHE of bosons and the strong correlation imposed by
a lattice potential. At sufficiently low particle density,
the effect of the lattice has been shown to have negligible
impact on the nature of the continuum Laughlin state at
ν = 1

2 [7, 10]. We focus on the possibility that there exist
strongly correlated phases which have no counterpart in
the continuum, but that appear as a direct consequence
of both the lattice potential and a (simulated) magnetic
field. To do so, we adapt the composite fermion (CF)
theory [11, 12] which has been shown to accurately de-
scribe atomic Bose gases in the continuum [13, 14], and
apply this theory to bosons on a lattice. Within mean-
field theory, the lattice leads to the intricate Hofstadter
spectrum for the composite fermions [15, 16]. We pre-
dict a series of incompressible phases of bosons on a lat-
tice, characterized by special relations of the flux density
nφ and particle density n, and we construct trial wave-

functions describing these phases. From extensive exact
diagonalization studies, we establish the accuracy of the
composite fermion approach, notably for states for which
n = 1

2 ±
1
2nφ; these correspond to incompressible quan-

tum Hall states which have no counterpart in the con-
tinuum. To our knowledge, there has been no previous
evidence for new FQHE states induced by a lattice po-
tential. A previous proposal for quantum Hall states of
bosons on the lattice [17] takes a different viewpoint, but
remains untested.

We study a model of bosonic atoms on a two dimen-
sional square lattice and subjected to a uniform effec-
tive magnetic field, using the Bose-Hubbard model with
Hamiltonian [8–10, 18]

H = −J
∑
〈i,j〉

[
â†i âje

iAij + h.c.
]

+
U

2

∑
i

n̂i(n̂i − 1), (1)

with â
(†)
i bosonic field operators on site i, and n̂i ≡ â†i âi.

We consider a uniform system with fixed average parti-
cle density n (per lattice site). The strength of the mag-
netic field is set by the flux density nφ (per plaquette),
defined by the condition that

∑
�Aij = 2πnφ. Here,

nφ = ma2Ω/(π~) if this vector potential is due to ro-
tation of the system with lattice constant a and boson
mass m at the angular frequency Ω. Simulating the field
by imprinting phases [8–10] directly defines 2πnφ; such
methods are likely to allow fields with nφ ∼ 1. Owing to
the periodicity under nφ → nφ+1, we choose 0 ≤ nφ < 1.

The single particle spectrum follows from the solution
of Harper’s equation, and takes an intricate form, known
as the Hofstadter butterfly [19]. It has a fractal structure
consisting of q bands at rational flux density nφ = p/q.
Signatures of this structure appear in the mean-field
treatment of the Bose-Hubbard model [20, 21]. We wish
to determine the groundstates (GS) of bosons beyond the
mean-field regime, where interparticle repulsion leads to
strongly correlated phases. We focus on the hard-core
limit U � J , where the bosonic Hilbert-space is reduced
to single occupations of lattice sites 0 ≤ ni ≤ 1. In this
limit, the Hamiltonian (1) can be viewed as a spin-1/2
quantum magnet. The gauge fields introduce frustration,
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putting this in the class of frustrated quantum spin mod-
els where unconventional spin-liquid phases can appear.
Indeed the Laughlin ν = 1

2 state studied in Ref. [10] is in
the Kalmeyer-Laughlin [22] spin-liquid phase [34]. The
strongly correlated phases that we describe here can be
viewed as generalizations of this spin-liquid phase.

Following the application of composite fermion theory
for rotating bosons in the continuum [13], we construct
composite fermions by attaching a single vortex to each
boson. (An explicit form for the wavefunction is pre-
sented below.) The CF transformation relates the flux
density for the original atoms nφ and the effective flux
for CFs n∗φ via

n∗φ = nφ ± n, (2)

where the two signs correspond to attaching vortices
of opposite sign. Within a mean-field theory, the CFs
are assumed to be weakly interacting, and to form a
Fermi-sea which fills the lowest energy states of the
single-particle spectrum. Incompressible states then oc-
cur when the CFs completely fill an integer number of
bands. In the continuum, the single-particle spectrum
consists of Landau-levels (LL), leading to an incompress-
ible state each time an integer number, ν∗ = n/n∗φ, of
CF Landau-levels is filled [13, 14]. Applying this logic on
the lattice leads to the conclusion that the single parti-
cle spectrum of the CFs is the Hofstadter butterfly [15],
now at a flux density n∗φ. Owing to the fractal structure
of this spectrum, depending on n∗φ there can be many
such energy gaps, leading to many possible incompress-
ible states. To determine the locations of these incom-
pressible states, we need to know the particle densities
n which completely fill an energy number of bands of
the spectrum of CF’s at flux n∗φ. Generalizing from the
continuum DOS for LLs, which is proportional to the
flux density, an analysis of the lattice spectrum yields
that, when filling all states up to any given gap in the
Hofstadter spectrum, the relation between n and n∗φ re-
mains linear [23, 24], n = ν∗n∗φ + δ, with an offset δ.
The coefficients ν∗ and δ can be determined from the
Hofstadter spectrum by locating two points within the
same gap. Using the reverse of the CF transformation
(2), one obtains the lines of n, nφ on which a non-zero
gap is predicted above the CF groundstate.

Within a model of non-interacting CFs the relative
magnitudes of gaps follow from those in the single particle
CF spectrum. The gaps inferred under this hypothesis
are shown in Fig. 1, in which the mode of flux attachment
[determined by the sign in (2)] is chosen maximise the
gap. Note that the positive sign in (2) can be regarded
either as negative flux attachment [25], or as attachment
of the conjugate flux 1− n due to the particle-hole sym-
metry on the lattice. Indeed, Fig. 1 shows symmetries
under nφ ↔ 1−nφ and n↔ 1−n. In the hardcore limit,
the Hamiltonian itself enjoys these symmetries, so the
parameter space may be reduced to 0 ≤ n, nφ ≤ 1
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FIG. 1: (color online) Excitation gap of bosons on a lattice,
with particle density n and flux density nφ, as predicted by a
model of non-interacting composite fermions. The bright lines
show parameters (n, nφ) where the model predicts the ap-
pearance of incompressible quantum fluids, and include cases
(where n/nφ is not constant) which are not connected to the
continuum limit. We include data for n∗φ = p/q, with q ≤ 50.

this quadrant, the lines emerging from the corner with
n = nφ = 0 and constant filling factor ν ≡ n/nφ are
the CF states expected in the continuum limit [13, 14].
Crucially, however, Fig. 1 shows a large number of other
lines. These correspond to new candidate incompressible
states.

The preceding discussion conjectures candidates for
new types of correlated quantum liquids of bosons in op-
tical lattices. However, given that the mean-field CF the-
ory is an uncontrolled approximation, it is important to
test these predictions. There are competing condensed
states on the lattice [24, 26, 27]. Even in the contin-
uum limit, some of the correlated states predicted by
composite fermion theory are replaced by other strongly
correlated phases [2], with only ν = 1/2, 2/3 and 3/4
appearing to be described in this form [14].

We have investigated the success of the CF construc-
tion for the Bose-Hubbard model (1) using exact diago-
nalisation studies. We study the model for N particles
on a square lattice with Ns = Lx × Ly sites, in the pres-
ence of 0 ≤ Nφ < Ns flux quanta. To limit finite size
effects, we impose periodic boundary conditions (pbc,
discussed further below) giving the system the geome-
try of a torus. Thus, we identify possible bulk phases
and determine their properties, from which the physics
of a finite system in a confining potential may be deduced
within the local density approximation.

In order to compare the exact GSs with the CF theory
it is useful to have a trial CF wavefunction. We general-
ize the continuum construction [13] to allow not only for
the lattice, but also for the torus geometry, for which no
convenient formation exists even in the continuum limit.
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We construct the trial CF state for bosons in a lattice,

Ψtrial(r1, . . . , rN ) = ΨJ({ri})×ΨCF({ri}), (3)

where ΨJ and ΨCF are fermionic wavefunctions [35]. The
factor ΨJ effects the flux attachment (2), and represents
the “Jastrow” factor of the continuum wavefunction [13,
28]. However, we define this factor in a form suitable on
a lattice and in the torus geometry, instead of using the
continuum form of ΨJ [28]. We note that ΨJ corresponds
to a filled Landau-level of fermions at flux ∓N [36] . We
generate ΨJ on the lattice as the Slater determinant ΨJ =
det[Φ∓Nα (rβ)], describing N fermions occupying the N
lowest energy states on the lattice with ∓N flux indexed
by α = 1, . . . N . The factor ΨCF is the wavefunction
of the CFs in the resulting effective field (2). This is

the Slater determinant ΨCF = det[Φ
N∗
φ

α (rβ)] of the N
lowest single-particle CF states at flux N∗φ = Nφ ± N .
For the cases derived above (and illustrated in Fig. 1),
these numbers N and N∗φ are such that the CFs fill a
integer number of bands. Note that, in contrast to the
continuum limit where the GSs have been studied within
the lowest LL limit [5], our CF state (3) does not include
a projection to the lowest LL. This is appropriate for the
hard-core model that we study, since (3) vanishes when
the positions of any two bosons coincide.

The description of the trial state (3) is completed by
discussing the pbc imposed on each of the functions. In
the most general case, one introduces twisted boundary
conditions for the bosons [7, 30], defined by the phases
θµ = (θx, θy), such that magnetic translations of a bo-
son around the two cycles of the torus (by Lµ in the
µ-direction) act as Ψ→ exp[iθµ]Ψ. In the trial state (3),
one may choose boundary phases for the Jastrow- and
CF-parts independently, defining θJµ, θCF

µ (affecting only
the single-particle states Φα entering the Slater determi-
nants). The sum of these phases is constrained to match
the pbc for the bosons θJµ + θCF

µ = θµ. This leaves the

freedom to vary θJµ − θCF
µ , which is a crucial ingredient

to our construction: it allows one to generate the set of
states responsible for the non-trivial GS degeneracy of
these topologically ordered phases on a torus [31]. It is
easy to show that, with this freedom, in the continuum
limit the wavefunctions (3) reproduce the two continuum
Laughlin states at ν = 1/2 [30].

As an initial test, we have computed the overlaps
|〈Ψtrial|Ψexact〉|2 of our trial wavefunctions (3) with the
GSs on the lattice at ν = 1

2 as a function of nφ. The
overlaps (not shown) are very close to those found with
the continuum Laughlin wavefunctions (closely reproduc-
ing Fig. 2 of [10]). Thus, the continuum [30] and lattice
states (3) are very similar, up to the flux density nφ ' 0.3
at which both fail to describe the exact GS.

Using our general construction (3), we can study for
the first time the influence of the lattice structure on
other continuum CF states. The state at ν = 2

3 has a
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FIG. 2: (color online) Average overlap of the CF states with
the exact eigenstates in the (approximately) three-fold degen-
erate GS manifold of the ν = 2

3
state.

n nφ N Lx Ly ∆ OCF dim(H)

1/7 3/7 2 2 7 0.156 0.437 91

1/7 3/7 3 3 7 0.156 0.745 1330

1/7 3/7 4 4 7 -0.032 0.2753† 20.5k

1/7 3/7 5 5 7 0.0401 0.5631 324k

1/7 3/7 6 6 7 0.0455 0.3284 5.2M

1/9 4/9 2 2 9 0.113 0.3603 153

1/9 4/9 3 3 9 0.241 0.8407 2925

1/9 4/9 4 4 9 -0.036 0.1515† 58.9k

1/9 4/9 4 6 6 0.071 0.3061 58.9k

1/9 4/9 5 5 9 0.0945 0.4585 1.2M

1/9 4/9 6 6 9 -0.0154 0.1957† 25.8M

TABLE I: Exact diagonalization results: gaps ∆ and overlaps
of the exact groundstate with the CF trial state with nega-
tive flux attachment OCF = |〈Ψtrial|Ψex〉|2. We also give the
Hilbert-space dimension dim(H) for hardcore bosons. Where
negative gaps are indicated, the CF state is the first excited
state. Notes: †overlap shown for first excited state.

GS degeneracy dGS = 3 [30]. We take overlaps of the
CF trial states within the GS manifold composed of the
three lowest states of the exact spectrum, and give their
average in Fig. 2. The overlap is high, and drops only
above flux densities of nφ ' 0.35. Previous numerical
evidence for this CF state is restricted to the lowest Lan-
dau level [5]. Our results show that, for sufficiently small
nφ, the CF state (3) also describes the GS for hard-core
interactions (where LL mixing is strong).

Let us now return to the main focus of this Letter: the
new CF states that appear on the lattice. To investigate
these states numerically we focus on the CF series derived
from the most dominant gap in a subcell of the Hofstadter
spectrum (cell L1 [19]), leading to a sequence with nφ =
1
2 −

1
2n. To be able to study several different system sizes

for some states in this class, we select two points where
(n, nφ) are fractions with small denominators, and the
density n is low enough to avoid competition with the
continuum Laughlin state: ( 1

7 ,
3
7 ), and (n, nφ) = ( 1

9 ,
4
9 ).

We find multiple pieces of evidence for the formation of
strongly correlated incompressible phases at these values
of (n, nφ). First, an analysis of the eigenvalues of the sin-
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gle particle density matrix of the GS shows that, as the
system size N increases, there are N eigenvalues of or-
der one. Thus, there is no evidence for condensation (an
eigenvalue that grows with N), so the GS is likely uncon-
densed, and strongly correlated. Second, the spectra at
these densities typically show a single GS separated by a
large gap (see Table I). The gaps we find are larger than
the typical spacing of higher excited states, or the gaps
at typical spectra at nearby flux densities [37]. This in-
dicates that the system may be an incompressible liquid
with a non-degenerate GS on the torus. This is consistent
with the CF state, in which one expects a GS degeneracy
of one, applying the reasoning of Ref. [15].

Further direct evidence for the CF phase is obtained
by taking the overlap of the exact GSs with the trial CF
states (3). As detailed in Table I, we find that, in general,
the trial CF states have significant overlap with the exact
GS. Notable exceptions occur for certain cases (N = 4 for
n = 1/7 and n = 1/9, and N = 6 for n = 1/9) where the
exact GS has a different momentum from the CF state
so the overlap vanishes identically. In these cases, we
find large overlap of the CF state with the lowest lying
excited state (as shown in Table I). We account for this
behaviour as arising from the existence of a competing
broken-symmetry “stripe” phase that is stabilized by de-
localization of the particles around the short direction,
similar to finite size effects in continuum studies on the
torus [32]. This interpretation is confirmed by our stud-
ies at n = 1/9, which show that the GS is sensitive to the
lattice geometry (two aspect ratios Lx × Ly = 4× 9 and
6 × 6 are available for N = 4 at n = 1/9). The GS re-
verts to be of the CF form for the more isotropic aspect
ratio. Unfortunately, no geometry with smaller aspect
ratio is available for the systems (N = 4 at n = 1/7 and
N = 6 at n = 1/9). Still, our results indicate that, for
the system at (n, nφ) = ( 1

7 ,
3
7 ), the composite fermion

state dominates the competing (striped) state at large
system sizes, and maintains a very high overlap with the
exact GS. A similar trend is evident for (n, nφ) = ( 1

9 ,
4
9 ),

but here the available geometries at N = 6 are still very
asymmetric so we cannot confirm the preference of the
CF state in this case.

Overall, the values of the overlaps with the CF state
are highly non-trivial, given the sizes of the Hilbert spaces
and that the trial CF wavefunction has no free parame-
ters. In contrast, for large system sizes, the overlap with
a condensed (Gutzwiller) wavefunction is much smaller
(< 10%), even allowing for optimization over the con-
densate wavefunction. It is clear that the CF ansatz is
capturing the essential physics of the correlated phases.

While a large overlap with the trial CF state is highly
suggestive that the phase is of the CF type, it is very use-
ful to have other tests of the qualitative features of the
state. As noted above, the nondegenerate GS is consis-
tent with the expected topological degeneracy of the CF
state. Another important qualitative test is provided by

Chern numbers [7, 33], which provide a highly non-trivial
test of the existence and nature of the topological order
of a many-body quantum phase. We have evaluated the
Chern number C for the GSs with nonzero overlap with
the CF states for systems up to N = 5. In all cases, we
find that C = 2. This is the value expected for the CF
phase [15]. This agreement lends very strong evidence
that the phase appearing in the numerics is of the form
predicted by the CF theory.

In conclusion, we have presented numerical evidence
for novel types of correlated quantum fluids for bosons
on rotating lattices. Our results show strong evidence
that there exist fractional quantum Hall states beyond
those in the continuum limit. They provide the first evi-
dence for a wider applicability of the composite fermion
ansatz. They also further motivate experimental studies
of rotating gas on optical lattices, which would be able
to probe novel aspects of the physics of quantum Hall
systems.
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