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The method of Jain and Kamilla [PRB 55, R4895 (1997)] allows numerical generation of composite
fermion trial wavefunctions for large numbers of electrons in high magnetic fields at filling fractions
of the form ν = p/(2mp+ 1) with m and p positive integers. In the current paper we generalize this
method to the case where the composite fermions are in an effective (mean) field with opposite sign
from the actual physical field, i.e. when p is negative. We examine both the ground state energies
and the low energy neutral excitation spectra of these states. Using particle-hole symmetry we
can confirm the correctness of our method by comparing results for the series m = 1 with p > 0
(previously calculated by others) to our results for the conjugate series m = 1 with p < 0. Finally,
we present similar results for ground state energies and low energy neutral excitations for the states
with m = 2 and p < 0 which were not previously addressable, comparing our results to the m = 1
case and the p > 0, m = 2 cases.

I. INTRODUCTION

The composite fermion approach1 has had a great
number of extremely impressive successes in describing
the physics of electrons in high magnetic fields. In
this picture, fractional quantum Hall systems in total
magnetic field B are described in terms of noninteract-
ing “composite fermions” in an effective magnetic field
Beff = B−2mφ0n, where φ0 = hc/e is the flux quantum,
n is the electron density, and m is a positive integer. This
maps, for example, fractional quantum Hall states at fill-
ing fractions of the form ν = nφ0/B = p/(2mp + 1) to
integer quantum Hall states for the composite fermions
at filling fraction νeff = nφ0/|Beff | = |p|. We will denote
such composite fermions with 2m flux quanta attached
to them as 2mCF.

Jain’s original approach to composite fermions2 con-
structed highly accurate trial wavefunctions by taking
simple wavefunctions for the noninteracting (composite)
fermions in the effective magnetic field, multiplying by
Jastrow factors, and then projecting the result into the
lowest Landau level. The early successes of this method
were impressive2, despite the fact that the method was
limited by the extreme numerical difficulty of perform-
ing projections for systems with more than roughly 10
electrons.

A major theoretical breakthrough came when Jain
and Kamilla3 discovered a new way of writing composite
fermion trial wavefunctions (described below), which in-
volves a very minor modification of the projection. These
new trial states seemed to be just as good as the origi-
nally proposed wavefunctions and could be numerically
generated even for systems with many electrons (40 elec-
trons or more). Since that time, many important studies
have been achieved using this method4–7. However, so
far this method has been restricted to cases where the
effective magnetic field has the same sign as the external
magnetic field. Results using this method have been pub-
lished for filling fractions of the form ν = p/(2mp + 1)
with p > 0 but not for p < 0. In the current paper,

we extend the work of Jain and Kamilla3 so that we are
able to handle states with p < 0. The p < 0 states take
more computational resources than the case of p > 0, and
the difference in the computational resources between the
two cases increases with the absolute value of the effec-
tive flux. However, the computational problems turn out
to be more severe for the smallest |p|, where the num-
ber of particles in the system increases most slowly with
each flux added. Fortunately, we probably need not go
to particularly large systems to understand the physics
of small |p|. For large |p|, describing the approach to the
Fermi liquid-like composite fermion state, the system size
is already large for relatively small effective flux, i.e. the
differences of the computational requirements in the case
of p > 0 and p < 0 become relatively less important.

Although the case of negative p has not previously been
studied for large systems, we point out that for m =
1 the series of states with negative p and the series of
states with positive p are essentially equivalent due to
an exact particle-hole symmetry in the lowest Landau
level. In fact, below, we exploit this symmetry to check
the validity of our method. Once we have verified the
method, we can study the properties of the m = 2 series
for negative p and compare the results to those of the
positive p members of this same series as well as to those
of the m = 1 series.

The outline of this paper is as follows. In section II we
briefly review the Jain-Kamilla method. As mentioned
above, the method has only been used previously for the
case of positive p. In appendix A we show in detail how
the crucial projection scheme of Jain-Kamilla can easily
be generalized to handle negative p also. It is easy to see
from the result how much additional numerical complex-
ity is involved for negative p. In section III we test our
approach by examining the 2CF series ν = p/(2p+1). In
particular, we examine ground state energies, excitation
spectra, and energy gaps. We pay particular attention to
the mass of the composite fermion and the scaling of the
gap with p. For p > 0, results are already available in
the literature3–7. For p < 0 we use our generalization of
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the Jain-Kamilla method to calculate energies directly,
and we compare these energies to energies obtained by
particle-hole conjugating the p > 0 series. Appendix B
describes the particle-hole conjugation transformation in
depth. This comparison establishes the accuracy of our
method. In section IV we move on to examine the 4CF
series of states ν = p/(4p+ 1). Again, for p > 0 some re-
sults are already available in the literature3–7. However,
for p < 0 our results are new. Again, we examine ground
state energies, excitation spectra, energy gaps, and com-
posite fermion effective masses. (By using particle-hole
conjugation, we could give results for filling fractions
ν = 1 − p/(4p + 1)) similarly). We are able to make
some comparison of our energy gaps to the experimental
work of Pan et al.8.

Throughout this paper we assume complete spin-
polarization of the electrons. This should be a reason-
able assumption for real experiments at sufficiently high
magnetic fields.

II. THE JAIN-KAMILLA METHOD

Jain’s original proposal2 was to construct trial wave-
functions for fractional quantum Hall states by writing

ΨJain = P
{

det [ψi(~rj)] Φ2m
0

}
, (1)

where the determinant is a Slater determinant of non-
interacting single fermion wavefunctions ψi in effective
magnetic field Beff = B − 2mnφ0, and P indicates pro-
jection to the lowest Landau level. Here, Φ0 is the wave-
function of a completely filled Landau level

Φ0 =
∏
i<j

(zi − zj), (2)

where zj = (xj + iyj)/`0 is the dimensionless complex

coordinate on the plane, `0 =
√
~c/eB and the usual

Gaussian factors exp(− 1
4

∑
|zi|2) are understood to be

included in the measure of the Hilbert space and will not
be written explicitly for simplicity of notation.

Choosing a set of single particle wavefunctions ψi to
fill the p lowest effective Landau levels (i.e., such that
det[ψi(~rj)] represents the ground state of an integer quan-
tum Hall state ν = p), one obtains through Eq. 1 ex-
tremely good trial wavefunctions for fractional quantum
Hall states ν = p/(2mp + 1). As discussed above, the
projection in Eq. 1 is exceedingly hard to implement for
systems with more than roughly 10 electrons. For this
reason, Jain and Kamilla3 looked for an essentially equiv-
alent formulation that would be computationally simpler.
In their approach they begin by rewriting the wavefunc-
tion as

ΨJain = P
{

det
[
ψi(~rj)J

m
j

]}
, (3)

where

Jj =
∏
k 6=j

(zk − zj) (4)

and then make the approximation that one can inter-
change the order of projection and taking the determi-
nant to obtain a new trial wavefunction

ΨJK = det
[
ψ̃i(~rj)

]
Φ2m

0 (5)

with

ψ̃i(~rj) = J−mj P
{
ψi(~rj)J

m
j

}
. (6)

Although ΨJK appears to be a single Slater determinant,
it is somewhat more complicated because each ψ̃i(~rj) is
actually a function of all of the particle positions through
Jj . Nonetheless, this new trial wavefunction is far sim-
pler to evaluate numerically. Furthermore, extensive nu-
merical work3–7 has shown that for small systems ΨJK

is just as good a trial state as ΨJain and that both are
extremely accurate16. In the original work by Jain and
Kamilla, it was shown how to calculate ψ̃ on a sphere
for the case when Beff has the same sign as the mag-
netic field B (i.e., p > 0). In Appendix A we repeat the
derivation for the case where Beff has the opposite sign
from B (i.e., p < 0). A discussion is also given there of
the relative computational effort required to perform the
relevant computations numerically.

This technique allows one to also obtain low energy
spectra of these fractional quantum Hall states, by simi-
larly composite-fermionizing low energy excited states of
noninteracting fermions as discussed in Ref. 4.

In this paper we will perform all calculations using a
spherical geometry9 with a monopole of charge Nφ flux
quanta at the center. The composite fermions then see
an effective flux 2q = N eff

φ = Nφ − 2m(N − 1). In the
presence of this effective flux, single particle states are
described by two quantum numbers, l and m. Here l =
|q| + n is the angular momentum with n = 0, 1, 2, . . .
corresponding to the “Landau level number” or “shell”
index, and m is the z-component of angular momentum.
A state with p filled composite fermion Landau levels
corresponds to n = |p| − 1.

A low energy exciton is now formed by taking a com-
posite fermion out of the highest occupied shell (or Lan-
dau level) l = lF = |q|+ |p|−1 with some mh and putting
it in the lowest unoccupied l = lF +1 shell with some me.
Choosing to work with states of zero total z-angular mo-
mentum, we take the state withme = −mh and write this
state as |me〉. Using vector coupling (Clebsh-Gordon)
coefficients12 we can construct exciton eigenstates of an-
gular momentum L as4

Ξexciton
L =

lF∑
me=−lF

|me〉〈lF ,−me; lF + 1,me|L, 0〉, (7)

which serve as extremely accurate trial wavefunctions for
the low energy excited states of the above discussed com-
posite fermion ground states.
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Negative p Trial Wavefunction Positive p Trial Wavefunction

Nφ p Neff
φ N Eg MR-gap large k gap p Neff

φ N Eḡ : P-H conj MR-gap large k gap

9 -2 -1 6 −0.5391(1) 0.0906(9) 0.118(1) 1 3 4 −0.53949(2) 0.0928(2) 0.118(2)
12 -2 8 −0.5338(1) 0.091(1) 0.115(1) 4 5 −0.53412(2) 0.0931(2) 0.1124(4)
15 -3 10 −0.5303(1) 0.083(2) 0.109(2) 5 6 −0.53090(2) 0.0838(3) 0.1079(4)
18 -4 12 −0.5282(1) 0.080(2) 0.104(3) 6 7 −0.52873(2) 0.0801(4) 0.1040(5)
21 -5 14 −0.5266(1) 0.078(2) 0.101(2) 7 8 −0.52721(2) 0.0824(4) 0.1021(4)
24 -6 16 −0.5257(1) 0.079(5) 0.100(3) 8 9 −0.52607(2) 0.0768(5) 0.1013(6)
∞ -∞ ∞ −0.5173(1) 0.070(3) 0.089(3) ∞ ∞ −0.51803(3) 0.069(4) 0.0907(9)

21 -3 -1 12 −0.4985(1) 0.061(2) 0.067(2) 2 3 10 −0.49870(5) 0.061(1) 0.069(1)
26 -2 15 −0.4980(1) 0.056(3) 0.063(3) 4 12 −0.49826(5) 0.054(1) 0.066(1)
31 -3 18 −0.4979(1) 0.061(3) 0.067(3) 5 14 −0.49803(5) 0.053(1) 0.063(1)
36 -4 21 −0.4979(1) 0.056(3) 0.069(3) 6 16 −0.49804(5) 0.053(1) 0.065(1)
41 -5 24 −0.4976(1) 0.048(4) 0.058(4) 7 18 −0.49797(6) 0.050(2) 0.064(2)
∞ -∞ ∞ −0.4968(2) 0.042(8) 0.060(8) ∞ ∞ −0.4972(2) 0.041(3) 0.058(2)

37 -4 -1 20 −0.4847(1) 0.052(3) 0.052(3) 3 3 18 −0.48467(5) 0.051(1) 0.053(2)
44 -2 24 −0.4851(1) 0.050(3) 0.050(3) 4 21 −0.48525(7) 0.041(2) 0.052(2)
51 -3 28 −0.4855(1) 0.042(4) 0.048(4) 5 24 −0.48564(8) 0.041(3) 0.048(3)
58 -4 32 −0.4857(1) 0.036(4) 0.043(4) 6 27 −0.48593(6) 0.041(3) 0.046(3)
∞ -∞ ∞ −0.4875(1) 0.014(7) 0.030(6) ∞ ∞ −0.48802(4) 0.022(8) 0.036(3)

TABLE I: Numerical results for energies and gaps at filling fractions ν = p/(2p + 1), given in units of e2/ε`0. Calculations
were performed using Monte-Carlo for 2CF trial wavefunctions described in the text using 107 samples. Particle-hole conjugate
pairs should give precisely the same excitation energies (and the same ground state energies once Eq. 8 is used, as it is here,
see below). In other words, if our results were exact, the right hand columns with positive p should precisely match the left
hand columns with negative p. Here, since we have used trial wavefunctions which are approximate (albeit extremely good),
the agreement is not quite perfect, but it is extremely close. We note that the energies obtained by using the positive p states
are slightly lower, which means that the trial wavefunctions with positive p (positive flux seen by the composite fermions)
yield slightly better trial states. The number of electrons N for particle-hole conjugate pairs sums to Nφ + 1, which is one
filled Landau level. In this table, the ground state energy Eg is presented for the negative p case. For the positive p case,
in the column labeled “Eḡ: P-H conj” we have put the calculated ground state energy into Eq. 8 and presented the result
for comparison with the corresponding negative p states. The mageto-roton gap (MR-gap) is defined to be the lowest energy
neutral excitation. The large k gap is the gap measured at the highest possible angular momentum L that we can construct
using Eq. 7 which is Lmax = 2lF + 1. All values indicated for the thermodynamic limit have been extrapolated by a simple
linear regression over the inverse particle number using this set of data only.

III. PARTICLE-HOLE SYMMETRY AND
RESULTS FOR ν = p/(2p+ 1)

Using particle-hole symmetry of the lowest Landau
level, one can exactly map states at filling fraction ν
into states at filling fraction 1 − ν (so long as we main-
tain complete spin polarization). As mentioned above,
in this paper we perform all calculations using a spher-
ical geometry9. On the sphere, the lowest Landau level
has Nφ + 1 single particle eigenstates with Nφ the to-
tal number of flux quanta penetrating the sphere. Thus
states with N electrons can be precisely mapped to their
particle-hole conjugate states with Nφ + 1−N electrons
(i.e. with N holes). In Appendix B we show that, on a
sphere, given an eigenstate Ψ with N electrons and en-
ergy EΨ one can write the energy EΨ̄ of its particle-hole
conjugate wavefunction Ψ̄ as

EΨ̄ =
(

1− 2N

Nφ + 1

)
Efilled + EΨ, (8)

where Efilled is the energy of the completely filled Lan-
dau level. This, of course, implies that the excitation
spectrum of any given state is precisely the same as the

excitation spectrum of its particle-hole conjugate state.

We will now focus on 2CF states of the form ν =
p/(2p+ 1). The state with p is particle-hole conjugate of
the state with p→ (−p−1). (For example, ν = 1/3 which
is p = 1 is conjugate of 2/3 which is p = −2). Extensive
numerical work has already been performed for positive
p, calculating accurate ground state energies and energy
gaps3–7. Using Eq. 8 this means that we already know
the ground state energies and energy gaps for negative p.
Here, however, we calculate these quantities directly us-
ing our negative p trial wavefunctions and compare to the
particle hole conjugated results to establish the validity
of our approach.

Table I summarizes the numerical results for the
ground state energies of states in this series calculated
using Monte-Carlo3–717.

The ground-state energies we obtain using negative p
trial wavefunctions show an outstanding agreement with
the values obtained by particle hole conjugating positive
p trial wavefunctions. We observed slight differences on
the fourth significant digit, that show that the trial state
with composite fermions in positive effective flux is very
slightly better than the one with negative effective flux
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FIG. 1: (color online) Quantum Hall states that are particle-
hole conjugate of each other, are expected to have the same
excitation spectrum. The low energy spectra shown here for
for ν < 1

2
have been calculated with the method of Jain and

Kamilla4. The spectra for the particle-hole conjugate states
with ν > 1

2
are calculated using the new negative effective

flux trial wavefunctions described in this paper. If the cal-
culations were exact (rather than just approximate) the cor-
responding spectra of the particle-hole conjugate pairs would
match exactly. Although our calculations, being based on ap-
proximate trial wavefunctions for 2CFs, are not exact, we still
see remarkably good agreement, suggesting that our new trial
wavefunctions are approximately as accurate as the previously
described trial wavefunctions for ν < 1

2
. The spectra shown

here correspond (as marked) to particle hole conjugate pairs
at filling fractions, from top to bottom 1/3↔ 2/3, 2/5↔ 3/5
and 3/7 ↔ 4/7 corresponding to flux 24, 41 and 58φ0 re-
spectively. Note that our new trial wavefunctions show an
excellent reproduction of the increasingly nontrivial features
as ν = 1/2 is approached. In the top panel the data points
have been shifted slightly horizontally from integer angular
momentum values for better distinguishability.

introduced here.

The excellent agreement of our negative p wavefunc-
tions with particle-hole conjugation of positve p wave-
functions extends to the excited states, generated as out-
lined in section II. As examples, Figure 1 shows excita-
tion spectra for ν = 1/3, 2/5 and 3/7 and their respective
particle-hole conjugate states. We also give, in Table I
values for magnetoroton gaps (which are the lowest en-
ergy neutral excitations) as well as large k gaps (which
are presumably the transport gap). These results, along
with the excellent results for the ground-state energies

confirm the validity of our approach to calculating CF
wavefunctions at negative effective flux, which enables us
to consider in the following section filling fractions above
1/4 in the series ν = p/(4p + 1), that were previously
inaccessible.

IV. RESULTS FOR ν = p/(4p+ 1)

The 4CF series of composite fermion states, corre-
sponding to filling fractions around ν = 1/4, has been
the subject of some recent experimental work8, yet the
branch of filling fractions above 1/4 has been mostly in-
accessible to numerical investigations. The numerical ap-
proach we took for examining these states permits us to
calculate the excitation spectra for systems with a mod-
erate number of effective magnetic flux quanta N eff

φ = 2q
for the CF-system. For negative p, the calculational com-
plexity of the wavefunction increases with q, consequently
the achievable system size is reduced compared to the
systems with positive p. For this very reason, extrapola-
tion of the results to infinite system size in order to obtain
the gap in the thermodynamic limit, and thus the mass of
the CF, is difficult for these states. Nonetheless, interest-
ing observations can be made already from the finite size
data. The excitation spectra associated with p and −p
show a striking similarity in structure at the same system
size (see Fig. 2). These similarities, though apparent al-
ready for |p| = 2 become even more clear as |p| increases
and ν = 1/4 is approached. Note that same values for
the relative angular momentum L translate into different
absolute wave vectors of the corresponding excited state
for different filling factors, since k ∝ L/

√
Nφ.

Table II summarizes the numerical results for the
groundstate energies and gaps of states around ν = 1/4,
and Figure 2 shows several examples of excitation spectra
revealing the above mentioned similarity.

It is interesting to note that the p ↔ −p similar-
ity in spectra found here differs from the particle-hole
symmetry correspondence of p with the −p − 1 states
in the ν = p/(2p + 1) series shown above in section
III. One might naively expect that the particle-hole
symmetry p ↔ −p − 1 for states in the 2CF series
ν = p/(2p + 1) above survives the composite fermion-
ization attachment of two more Jastrow factors and re-
sults in an approximate symmetry for ν = p/(4p + 1)
states. For example, we could take the symmetry related
m = 1 pair (p = −3, N = 12) and (p = 2, N = 10)
at Nφ = 21 on Table I and add two Jastrow factors
so Nφ → Nφ + 2(N − 1) resulting in an approximate
symmetry relating (p = −3, N = 12, Nφ = 43) to
(p = 2, N = 10, Nφ = 39) in Table II. However, when
we examine the overall shape of the resulting excitation
spectra, we find very little relation between the two spec-
tra related by p↔ −p−1 for 4CFs. In contrast we see in
Figure 2 that the p ↔ −p related states have quite sim-
ilar dispersions, and the similarity appears to increase
with increasing |p|.
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Negative p Trial Wavefunction Positive p Trial Wavefunction

N p Neff
φ Nφ Eg MR-gap large k gap p Neff

φ Nφ Eg MR-gap large k gap

4 -1 -3 9 −0.47481(3) 0.0929(3) 0.1241(3) 1 3 15 −0.37706(1) 0.0169(1) 0.0305(1)
5 -4 12 −0.45940(3) 0.0939(4) 0.1224(4) 4 20 −0.36501(1) 0.0203(1) 0.0276(1)
6 -5 15 −0.44996(3) 0.0837(4) 0.1183(4) 5 25 −0.35800(1) 0.0132(1) 0.0251(1)
7 -6 18 −0.44355(3) 0.0812(3) 0.1135(4) 6 30 −0.35303(1) 0.0147(2) 0.0241(2)
8 -7 21 −0.43895(3) 0.0830(4) 0.1110(5) 7 35 −0.34955(1) 0.0151(2) 0.0243(2)
9 -8 24 −0.43540(4) 0.0781(5) 0.1083(5) 8 40 −0.34686(2) 0.0124(3) 0.0245(3)
20 − − − − − 19 95 −0.33577(2) 0.0109(5) 0.0242(5)
-∞ ∞ ∞ −0.40999(4) 0.0668(5) 0.097(3) ∞ ∞ −0.32748(8) 0.009(2) 0.021(1)

6 -2 -1 19 −0.40432(3) 0.0243(2) 0.0243(2) 2 1 21 −0.38699(1) 0.0182(2) 0.0182(2)
8 -2 26 −0.39826(3) 0.0231(3) 0.0257(3) 2 30 −0.37411(1) 0.0186(2) 0.0193(2)
10 -3 33 −0.39484(3) 0.0190(3) 0.0283(3) 3 39 −0.36726(1) 0.0142(4) 0.0220(3)
12 -4 40 −0.39257(3) 0.0207(4) 0.0288(4) 4 48 −0.36276(2) 0.0128(3) 0.0219(4)
14 -5 47 −0.39092(3) 0.0179(5) 0.0275(5) 5 57 −0.35969(2) 0.0125(4) 0.0208(5)
16 -6 54 −0.38976(3) 0.0203(4) 0.0268(5) 6 66 −0.35742(2) 0.0129(5) 0.0183(5)
18 -7 61 −0.38885(3) 0.0176(8) 0.0235(9) 7 75 −0.35569(2) 0.0108(6) 0.0179(4)
∞ -∞ ∞ −0.38163(3) 0.0151(1) 0.0276(2) ∞ ∞ −0.34277(5) 0.0077(13) 0.020(2)

12 -3 -1 43 −0.38486(3) 0.0152(5) 0.0152(5) 3 1 45 −0.37306(2) 0.0132(4) 0.0132(4)
15 -2 54 −0.38266(3) 0.0154(7) 0.0169(7) 2 58 −0.36765(3) 0.0137(6) 0.0137(6)
18 -3 65 −0.38126(3) 0.0140(8) 0.0190(8) 3 71 −0.36427(3) 0.0119(7) 0.0171(6)
21 -4 76 −0.38017(3) 0.0126(8) 0.0192(10) 4 84 −0.36182(2) 0.0120(8) 0.0175(8)
24 -5 87 −0.37940(3) 0.0126(10) 0.0196(9) 5 97 −0.36006(4) 0.012(1) 0.017(1)
27 -6 98 −0.37883(3) 0.0134(14) 0.0195(14) 6 110 −0.35869(2) 0.010(1) 0.016(1)
∞ -∞ ∞ −0.37404(3) 0.010(1) 0.0238(8) ∞ ∞ −0.34842(4) 0.0088(12) 0.021(2)

20 -4 -1 75 −0.37206(3) 0.0123(6) 0.0123(6) 4 1 77 −0.36788(3) 0.0109(7) 0.0109(7)
24 -2 90 −0.37172(4) 0.010(1) 0.0117(10) 2 94 −0.36491(3) 0.0118(9) 0.013(1)
28 -3 105 −0.37165(4) 0.010(1) 0.0148(7) 3 111 −0.36285(3) 0.011(1) 0.012(1)
32 -4 120 −0.37142(3) 0.010(1) 0.013(1) 4 128 −0.36133(3) 0.0093(9) 0.014(1)
36 -5 135 −0.37138(2) 0.012(1) 0.016(1) 5 145 −0.36021(3) 0.011(1) 0.014(2)
∞ -∞ ∞ −0.3705(1) 0.010(3) 0.019(3) ∞ ∞ −0.35129(5) 0.0087(19) 0.017(2)

TABLE II: Numerical results from Monte Carlo calculations of 4CF wavefunctions for groundstate energies and gaps at filling
fraction ν = p/(4p+ 1), given in units of e2/ε`0. Alongside the newly calculated negative p Quantum Hall states of this series
above ν = 1/4, we give the results for states with the respective positive p and equal particle number for comparison. We find
that the similarity between the results for p and −p increases with increasing p. Two excitation energies are given from the
spectra of neutral excitations: the magneto-roton gap as the lowest lying excitation and the large k gap measured at the highest
possible angular momentum. Extrapolation to the thermodynamic limit has been performed using the above given data by a
simple linear regression over the inverse particle number (see Figure 3). In the case of groundstate energies, this extrapolation

is based on density corrected values13 (Ecorr
g = Eg

√
νNφ/N).

The existence of this similarity is perhaps not com-
pletely unexpected. Within a mean-field version Chern-
Simons theory of composite fermions14 one would expect
the gaps to have this p↔ −p symmetry as well as having
a symmetry in the excitation spectrum. However, beyond
mean field theory, there is no clear reason to expect the
symmetry to be preserved except for at large |p|.

We comment that another interesting test of our ap-
proach can be obtained by constructing a trial wave-
function for ν = 1/3 as the p = −1 member of the
ν = p/(4p + 1) series. We find that the ground state
energy of this wavefunction is, within numerical preci-
sion, precisely the same as that of the Laughlin ν = 1/3
trial wavefunction, which leads us to believe that we have
precisely constructed that state. Similarly, we can exam-
ine the excitation spectrum of ν = 1/3 by using a 2CF
wavefunction of the series p/(2p + 1) with p = 1 or by
using a 4CF wavefunction of the series p/(4p + 1) with

p = −1. We find that the spectra obtained in these two
approaches are quite similar to each other (albeit not
quite identical), which gives us still further confidence in
our approach. The values of the magneto-roton gap ap-
pear to be almost exactly the same in both cases. Yet,
examining the large k gap, the 4CF trial wavefunction us-
ing negative flux (p = −1) yields a slightly larger value,
which decreases slightly more rapidly with the system
size though, and seems to extrapolate to almost the same
value at infinite N (see Figure 3).

Figure 3 shows the extrapolation to the thermody-
namic limit of the data given in Table II, comparing gaps
at p with those of states at −p. A comparison of the ex-
citations at ν = 1/3 considered in the two different man-
ners discussed above is also displayed there. Further, this
figure gives us an idea of the quality of our extrapolation.
Where the extrapolation is not particularly smooth, we
cannot claim to deliver more than a rough result. The
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FIG. 2: (color online) The method developed here permits us
to calculate the dispersion curves for the low energy excita-
tions at filling fractions p/(4p+ 1) for negative p, i.e. above a
quarter filling, that were previously inaccessible. A compari-
son to the spectra of states below and above ν = 1/4 shows,
that the excitation spectra for p and −p show very similar
features and seem to become more similar as p is increased.
As above, the p > 0 spectra are calculated using the method
of Jain and Kamilla4 whereas the p < 0 spectra are calculated
using the method discussed in the current paper.

extrapolation of p = ±2 appears to be the most difficult,
since it is not easy to distinguish a clear linear depen-
dence of the large k gap as a function of N−1 for the
initial data set. The reason for this problem appears to
be that the magnetoroton gap is located at a large value
of L, so that in the smaller systems, the magnetoroton
gap is located very close to the largest k available, or even
coincides with this point. For the p = 2 case, we can see
the error in this extrapolation clearly by comparing our
extrapolated result to a result of a similar calculation us-
ing larger system sizes from Ref. 6. This comparison is
show in Figure 4 (see below). We might guess that the
error in extrapolation for p = −2 is of similar magnitude.

In order to obtain the composite fermion effective
mass, we equate the activation gap ∆ (determined from
the excitation energy at the maximum angular momen-
tum, i.e. biggest particle-hole separation) to the cyclotron

0
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0
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0,01

0,015
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ν=4/15
ν=4/17

p=±1 to come

FIG. 3: (color online) This figure illustrates the extrapolation
of the gaps to the thermodynamic limit for different filling
fractions in the series p/(4p+ 1) by means of a simple linear
regression of the available data points over the reciprocal par-
ticle number. States with p and −p are displayed together.
The state at ν = 1/3 can be obtained in two different man-
ners, i.e. as 4CF in negative flux or as 2CF in positive flux,
which accounts for the two additional sets of data in the up-
per left. The magnetoroton gaps of these different ν = 1/3
states are close to indistinguishable, whereas the large k gap
is slightly bigger for negative effective flux. As discussed in
the text, extrapolation is least certain for p = ±2 due to finite
size effects.

energy of CFs in their effective magnetic field:

∆ν(m,p) =
~e|Beff |
m∗ c

=
~2

|2mp+ 1|m∗ `20
. (9)

Since the gap is measured in units of the Coulomb in-
teraction, we write ∆ = (e2/ε`0)δ. Further taking
into account εr = 12.8 for GaAs and the free electron
mass as our point of reference, we find the dimension-
less normalized18 effective mass m∗nor = m∗/(me

√
Bν [T ])

to be given by m∗nor = 0.0264/(|2mp + 1| δ). The 4CF-
masses we obtain are displayed in Figure 4 together with
the large k gaps from which they are deduced. In addi-
tion, for ν < 1/4 (positive p) we have shown data from
Ref. 6 where larger systems were used than we have used
here (When we also use larger system sizes, our results
agree very will with those of Ref. 6). For ν = 1/3, as dis-
cussed above, we have shown results that treat this either
as a p = −1 point of the p/(4p+1) series or a p = 1 point
of the p/(2p+ 1) series. For the latter case, we have like-
wise included the result from the above mentioned larger
system calculation.

In Figure 4, we have intentionally displayed data ex-
trapolated from a restricted set of small systems sizes
with positive p so as to match the same set of system
sizes that we study for negative p where we cannot go to
very large systems. One can estimate the finite size error
for our negative p calculations by examining the devia-
tions between these restricted extrapolations at positive
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FIG. 4: (color online) Masses of the composite fermions near
ν = 1/4 and extrapolated large k gaps from which they were
deduced at filling fractions of the series ν = p/(4p+ 1). Data
from Ref. 6 is from larger system size calculations and should
be considered to be more accurate. Comparing these more
accurate results to our smaller system calculations gives us
an estimate of the finite size errors of our results which pre-
sumably will hold even in the p < 0 case. Except for the
marked asymmetry between ν = 1/3 and ν = 1/5 we do
not see much sign of an asymmetry around ν = 1/4 which
is observed experimentally8. We also do not see signs of the
experimentally observed diverging effective mass as ν = 1/4
is approached. Our values of the effective mass are somewhat
less than that obseved experimentally in general. However,
it is known that finite well width corrections tend to increase
the effective masses6. Two additional data points are shown
in this figure (not mentioned in the legend) which give results
obtained by treating ν = 1/3 as a 2CF state.

p compared to the larger system calculations of Ref. 6
(also displayed in our figure).

The behavior of the negative p fractions seems to
roughly mirror the behavior of the positive p fractions,
at least for |p| ≥ 2. As was seen previously in Ref. 6
for p > 0 it is seen that the effective mass increases with
|Beff|. As ν = 1/4 is approached from either side, it
is not clear if the effective mass will converge to a con-
stant as would be predicted by theory (up to logarithmic
corrections14). In the experiments of Ref. 8, a striking
asymmetry of the effective mass beween the high field
and low field sides of ν = 1/4 has been observed. While
we cannot rule out some asymmetry from our data, we
certainly cannot claim to see the extremely strong dif-
ferences that are observed experimentally. This, how-
ever, is not surprising. Experimentally, the asymmetry
is attributed to the proximity of a Wigner crystal state8.
Since we are using a trial wavefunction approach, we
should not see the effects of any imminent phase tran-
sition.

Perhaps the most interesting data point in Figure 4 is
the one at ν = 1/3. Whether we treat this point as the
p = −1 member of the series p/(4p + 1) or the p = 1
member of the series p/(2p+ 1), we find almost identical

results of a very large gap, which establishes a continuity
between the CF masses around ν = 1/2 and ν = 1/4.
Furthermore, we note that this point is quite asymmetric
with its reflection at ν = 1/5. Certainly the hypothesis
of constant effective composite fermion mass does not
extend all the way from ν = 1/4 out to both ν = 1/5 and
ν = 1/3. Below quarter filling, one observes a continuous
increase of this mass. A similar trend appears at small
values of the effective magnetic field above this point,
but then the mass drops down again at ν = 1/3, the
final point of this series.

Generally, our values for the effective mass seem to be
lower than those measured in the experiments of Ref. 8
by a factor of roughly 2.5. This error is rather expected,
since similar discrepancies have been observed in previous
studies based on the composite fermion picture6. It is
known, however, that taking into account the finite width
of the 2D electron gas changes the interaction so as to
increase the effective mass6.

We note that we are not able to find any evidence of
the divergence of m∗ as we approach ν = 1/4 from either
side, which is observed experimentally in Ref. 8. This
is not surprising for several reasons. First of all, the
experiment only sees strong divergences extremely close
to ν = 1/4 – which we cannot access numerically. Fur-
thermore, one might suspect that the disorder might be
the source of the divergences in the measurements used
by Pan. More importantly, however, even if there were
genuine infra-red divergences14 of the effective mass as
ν = 1/4 is approached, one would not necessarily expect
such divergences to be properly represented in a trial
wavefunction approach.

We emphasize that the most important achievement
of this paper is not any particular numerical result. If
genuine numbers were desired for comparison to exper-
iment, we would want to use a more realistic interac-
tion, accounting for finite well width6, as well as perhaps
Landau-level mixing, and we would want to use a more
powerful computer to analyze ever larger systems. In-
stead we would like to emphasize in this paper that we
have clearly demonstrated that we can extend the ap-
proach of Jain and Kamilla3 to treat negative effective
magnetic field, and we can study these negative p com-
posite fermion wavefunctions for reasonably large sys-
tems, which has not been done before. In this paper we
have tested this method by using particle-hole symme-
try for the 2CF series and we have found our method to
be quite accurate. We have then applied this method to
4CFs to study, for the first time, large systems for filling
fractions p/(4p + 1) with negative p. Our main physical
result is that the effective mass appears to be roughly
symmetric around and close to ν = 1/4 although larger
system calculations would be desirable.

The authors acknowledge helpful conversations with E.
H. Rezayi. G.M. acknowledges support from the French
Ministry of Science, and thanks both the Ecole Doctorale
de Paris and Lucent Technologies for their support that
made participation in this research project possible.
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Appendix A: CF wavefunctions with negative
effective flux

The starting point for the composite fermion trial
wavefunctions3 are the single particle eigenfunctions of
the quantum mechanical problem of a particle in a mag-
netic monopole field on a sphere. (We use spherical co-
ordinates with the azimuth θ ranging from 0 to π, and
φ the longitude ranging from 0 to 2π). The monopole
harmonics are given by10

Y qn,m(Ω) = 2mMq,n,m(1− x)α/2(1 + x)β/2Pα,βg (x)eimφ

with α = −q−m, β = q−m, g = |q|+ n+m, x = cos θ,

Mq,n,m =

√
2|q|+ 2n+ 1

4π

(|q|+ n−m)!(|q|+ n+m)!

n!(2|q|+ n)!

and Pα,βg (x) are the Jacobi polynomials. This monopole
harmonic represents an eigenstate of a particle on a
sphere in a radial magnetic field with 2q flux quanta
penetrating the sphere, where a positive sign refers to
outwards pointing flux. Here, the angular momentum of
the eigenstate is l = |q|+ n and the z component of the
angular momentum m ∈ {−l, . . . , l}. Further, n is the
LL index n = 0, 1, . . .. The above expression assumes
the Haldane gauge9, where the singularities of the vec-
tor potential are chosen to be located symmetrically on
both north- and southpole of the sphere. Here, we focus
on the case where q < 0, since the q > 0 case has al-
ready been discussed in detail in Ref. 3. For the rest of
this paragraph, we thus assume q < 0. Expanding the
Jacobi polynomials in terms of the spinor coordinates
u = cos(θ/2)e−iφ/2 and v = sin(θ/2)eiφ/2, one obtains

Y q<0
n,m (Ω) = (−1)nMq,n,m (u∗)−q+m(v∗)−q−m ×
n∑
s=0

(−1)s
(
n

s

)(
2|q|+ n

|q|+m+ s

)
(u∗u)s(v∗v)n−s. (A1)

This expression can equally well be obtained from
the relation for complex conjugation of the monopole
harmonics11, if one corrects Kamilla’s formula by re-
placing q by |q| in the appropriate places. We now use
the Y qn,m as single particle wavefunctions (written as ψi
in the main text) and composite fermionize by attach-
ing Jastrow factors. As discussed in the main text, we
can construct the many particle composite fermion trial
wavefunctions by bringing the Jastrow factors inside the
Slater determinant of single particle states, which may
then be projected individually. Note, that in the spheri-
cal geometry, the Jastrow factor becomes

Jj =
∏
k 6=j

(ukvj − ujvk). (A2)

The details of the required projection
P(Y qn,m(ui, vi)J

p
i (u1, v1, . . . , uN , vN )) are discussed

next.

First, we remark that the Jastrow factor19 Jpi is a LLL
function, with q′ = p(N − 1) zeros in ui, i.e. it is a LLL
wavefunction for flux q′ > 0. Since N is in general a big
number, we have q′ � |q|. The resulting wavefunction, in
turn, has to be a valid wavefunction for a total number of
flux Q = q+ q′ > 0. Secondly, since projection is a linear
operation, we may consider the action of projection on

each of the basis states Y q
′

0,m′ separately, by expanding Jpi
in this basis. In general multiplication by a basis state
Y qn,m followed by projection can be described as a linear

operator called hereafter Yq′

q,n,m.

PY qn,mY
q′

0,m′ = Yq′

q,n,mY
q′

0,m′ (A3)

Since we know the entire basis of the subspace that we
project upon, namely the LLL for flux Q with states |M〉,
and |M | ≤ Q, the projection operator is

∑
M |M〉〈M |.

We now show, how this leads to an expression for Yq′

q,n,m

as a differential operator in the coordinate representa-
tion, in which (A3) becomes

Q∑
M=−Q

Y Q0,M (Ω)

∫
dΩ′ Y Q ∗0,M (Ω′)Y qn,m(Ω′)Y q

′

0,m′(Ω
′)

= Yq′

q,n,mY
q′

0,m′(Ω). (A4)

Integration over the longitudinal angle φ singles out one
nonzero scalar product for M = m+m′, and the one re-
maining integral over the azimuthal angle θ yields a well
known binomial coefficient. Simplifying the normaliza-

tion factors of Y q
′

0,m′ on both sides, we have:

(−1)nMq,n,m

∑
s

(−1)s
(
n

s

)(
2|q|+ n

|q|+m+ s

)
×(NQ,0,M )24π

(q′ −m′ + s)!(q′ +m′ + n− s)!
(2q′ + n+ 1)!

×uq−m+q′−m′
vq+m+q′+m′

= Yq′

q,n,mu
q′−m′

vq
′+m′

. (A5)

Using the explicit form of the normalization

(NQ,0,M )2 =
(2Q+ 1)!

4π(Q+M)!(Q−M)!
(A6)

and remarking that the fractions of factorials that are left
in this expression equal those that appear by the multiple
derivation of a monomial uk(

∂

∂u

)s−q+m
uq

′+m′+s =
(s+ q′ +m′)!

(Q+M)!
uQ+M , (A7)

we may deduce Yq′

q,n,m by comparison of both sides:

Yq′

q,n,m =
(2Q+ 1)!

(2q′ + n+ 1)!
(−1)nMq,n,m×

n∑
s=0

(−1)s
(
n

s

)(
2|q|+ n

|q|+m+ s

)
×

(
∂

∂u

)|q|+m+s

us
(
∂

∂v

)|q|−m+n−s

vn−s. (A8)
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Let us remark that this result reproduces the known re-
sult, that the projection on the LLL is achieved by per-
forming the habitual procedure of moving all u∗’s and
v∗’s to the far left, and replacing them with derivatives
according to

u∗ → ∂

∂u
, and v∗ → ∂

∂v
. (A9)

Nevertheless, performing this explicit projection gives us
a supplementary information in the form of a weight fac-

tor (2Q+1)!
(2q′+n+1)! for the different Landau levels before pro-

jection, which of course does not matter for the problems
discussed here, but may play a role in other cases15.

Practically, we would like to obtain a form of (A8) with
the derivatives moved to the extreme right, which may
be calculated using a straightforward application of the
Leibniz rule for multiple derivatives in both u and v:(

∂

∂v

)β
vγ =

β∑
α=0

β!

α!

(
γ

β − α

)
vγ−β−α

(
∂

∂v

)α
. (A10)

This yields a triple sum with the inner summation ranges
being dependant on the outer summation index s. One
finds that the summation ranges can be made indepen-
dent of s since the summand becomes zero outside of the
given intervals. As such the sum over s may be evaluated
using

n∑
s=0

(−1)s
(
n− α− α′

s− α

)
= (−1)αδn,α+α′ . (A11)

Since the result yields a Kronecker delta, one of the re-
maining sums becomes trivial, and after shifting the re-
maining summation index, the final result is revealed to
be exactly like (A8), but with all derivatives placed at
the very right.

The projected composite fermion wavefunction is noth-
ing but this operator applied to the single particle Jas-
trow factor:

Y q CF
n,m (Ωi) = Yq′

q,n,mJ
p
i . (A12)

In order to perform numerical calculations with this
wavefunction, we need to evaluate the derivatives explic-
itly. One may use Jain and Kamilla’s approach3, to com-
mute the derivatives through the Jastrow factors as(

∂

∂ui

)s(
∂

∂vi

)t
Jpi = Jpi [Ûsi V̂

t
i 1] (A13)

with

Ûi = J−pi
∂

∂ui
Jpi , and V̂i = J−pi

∂

∂vi
Jpi . (A14)

Constructing a many-particle wavefunction out of these
projected CF wavefunctions in the form of a Slater de-
terminant, one may factor out the Jastrow factors again,

and thus obtains a form which resembles single particle
wavefunctions, on a basis of projected states Ỹ qn,m with:

Ỹ qn,m(Ωi) =
(2Q+ 1)!

(2q′ + n+ 1)!
(−1)nMq,n,m×

n∑
s=0

(−1)s
(
n

s

)(
2|q|+ n

|q|+m+ s

)
×

usiv
n−s
i [Û

|q|+m+s
i V̂

|q|−m+n−s
i 1]. (A15)

Of course, this only appears to be a one particle wave-
function, since there is an implicit dependence of the po-
sitions of all other electrons in the system hidden in the
operators Ûi and V̂i. The complexity of this expression
increases with the total number of derivatives per term,
given by Nq<0

∂ = 2|q| + n for negative q compared to

Nq>0
∂ = n for positive effective flux.

Appendix B: Particle-hole Conjugation

In the lowest Landau level, on the sphere, there are
Nφ + 1 single particle eigenstates where Nφ is the flux
through the sphere. We label these eigenstates by the
z-component of their angular momentum m.

For a two-body interaction we can write the Hamilto-
nian as

H =
∑

m1,m2,m3,m4

Vm1,m2,m3,m4
c†m1

c†m2
cm3

cm4
. (B1)

As usual, the normal ordering of the operators ac-
counts for the uniform positive background. As usual,
the fermion operators have anticommutation relations

{c†i , cj} = δi,j . The interaction matrix V must have the
following symmetries

Vm1,m2,m3,m4
= −Vm2,m1,m3,m4

= −Vm1,m2,m4,m3

= V ∗m4,m3,m2,m1
. (B2)

Furthermore, for any rotationally (translationally) invari-
ant interaction, we must have angular momentum con-
servation, which implies that the matrix element is zero
unless

m1 +m2 = m3 +m4. (B3)

We define the vacuum state |0e〉, to be the state which
contains no electrons at all. The filled Landau level,
which we can also think of as the vacuum for holes is
written as |0h〉 = |Fillede〉 =

∏
m c
†
m|0e〉. It is convenient

to introduce creation and annihilation operators d, d† for

holes, given by di = c†i , d
†
i = ci which also obey the

usual anticommutations {d†i , dj} = δi,j . We now rewrite
the Hamiltonian in terms of these hole operators. Us-
ing the commutation relations as well as above described
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symmetries of V we obtain

H =
∑

m1,m2,m3,m4

Vm1,m2,m3,m4dm1dm2d
†
m3
d†m4

= 2
∑
m

Um(1− 2 d†mdm) +Hd, (B4)

where

Um =
∑
m2

Vm,m2,m2,m (B5)

and

Hd =
∑

m1,m2,m3,m4

V ∗m1,m2,m3,m4
d†m1

d†m2
dm3

dm4
. (B6)

We show below that for any rotationally invariant in-
teraction, Um is actually independent ofm. Furthermore,
it is very easy to show that the energy of the entirely filled
Landau level is given by

Efilled = 2
∑
m1,m2

Vm1,m2,m2,m1
= 2

∑
m

Um. (B7)

Thus we have

H =
(

1− 2Nh
Nφ + 1

)
Efilled +Hd, (B8)

and Nh is the number of holes (i.e., the eigenvalue of∑
m d
†
mdm).

A general state containing N electrons in the LLL can
be written as:

|Ψ〉 =
∑
{mi}

am1,...,mN
c†m1
· · · c†mN

|0e〉. (B9)

To particle-hole conjugate this state we construct

|Ψ̄〉 =
∑
{mi}

a∗m1,...,mN
d†m1
· · · d†mN

|0h〉, (B10)

which is now a state containing N holes, or Nφ + 1−N
electrons. Note that both of these states “live” in the
same lowest Landau level which has Nφ+1 single particle
eigenstates (indexed by m).

Now, if Ψ is an eigenstate of H with eigenvalue EΨ

(assumed to be real), then, since Hd has precisely the
same structure as H we see that Ψ̄ is an eigenstate of Hd

with the same eigenvalue. Thus, we obtain the particle
hole conjugation relation

EΨ =
(

1− 2Nh
Nφ + 1

)
Efilled + EΨ̄. (B11)

Lemma: Um is independent of m:

If an interaction is rotationally invariant, we can choose
any rotation R and write

Vm1,m2,m3,m4 =
∑

m′
1,m

′
2,m

′
3,m

′
4

Dl
m1,m′

1
(R)Dl

m2,m′
2
(R) Vm′

1,m
′
2,m

′
3,m

′
4

[Dl
m3,m′

3
(R)]∗[Dl

m4,m′
4
(R)]∗, (B12)

where the D’s are rotation matrices as in Ref. 12 and
l = 2Nφ. Setting m2 = m3, and m1 = m4 = m and
summing over m2 as prescribed in Eq. B5 we obtain

Um =
∑
m′

1,m
′
2

Dl
m,m′

1
(R) Vm′

1,m
′
2,m

′
2,m

′
1

[Dl
m,m′

1
(R)]∗,

(B13)
where we have used the orthogonality12∑

m2

Dm2,m′
2
(R)[Dm2,m′

3
(R)]∗ = δm′

2,m
′
3

(B14)

as well Eq. B3. Since Eq. B13 must be true for any
rotation, we can integrate over all rotations and use12

∫
dRDl

m,m′
1
(R)[Dl

m,m′
1
(R)]∗ = constant, (B15)

independent of m, which shows that Um is independent
of m.
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