Skip to main content

Elevational Distribution and Extinction Risk in Birds

White, Rachel L., Bennett, Peter M. (2015) Elevational Distribution and Extinction Risk in Birds. PLoS ONE, 10 (4). Article Number 121849. ISSN 1932-6203. E-ISSN 1932-6203. (doi:10.1371/journal.pone.0121849) (KAR id:53869)

Abstract

Mountainous regions are hotspots of terrestrial biodiversity. Unlike islands, which have been the focus of extensive research on extinction dynamics, fewer studies have examined mountain ranges even though they face increasing threats from human pressures – notably habitat conversion and climate change. Limits to the taxonomic and geographical extent and resolution of previously available information have precluded an explicit assessment of the relative role of elevational distribution in determining extinction risk. We use a new global species-level avian database to quantify the influence of elevational distribution (range, maximum and midpoint) on extinction risk in birds at the global scale. We also tested this relationship within biogeographic realms, higher taxonomic levels, and across phylogenetic contrasts. Potential confounding variables (i.e. phylogenetic, distributional, morphological, life history and niche breadth) were also tested and controlled for. We show that the three measures of elevational distribution are strong negative predictors of avian extinction risk, with elevational range comparable and complementary to that of geographical range size. Extinction risk was also found to be positively associated with body weight, development and adult survival, but negatively associated with reproduction and niche breadth. The robust and consistent findings from this study demonstrate the importance of elevational distribution as a key driver of variation in extinction dynamics in birds. Our results also highlight elevational distribution as a missing criterion in current schemes for quantifying extinction risk and setting species conservation priorities in birds. Further research is recommended to test for generality across non-avian taxa, which will require an advance in our knowledge of species’ current elevational ranges and increased efforts to digitise and centralise such data.

Item Type: Article
DOI/Identification number: 10.1371/journal.pone.0121849
Subjects: Q Science > QH Natural history > QH75 Conservation (Biology)
Divisions: Divisions > Division of Human and Social Sciences > School of Anthropology and Conservation > DICE (Durrell Institute of Conservation and Ecology)
Depositing User: Peter Bennett
Date Deposited: 27 Jan 2016 12:49 UTC
Last Modified: 09 Jan 2024 19:30 UTC
Resource URI: https://kar.kent.ac.uk/id/eprint/53869 (The current URI for this page, for reference purposes)

University of Kent Author Information

Bennett, Peter M..

Creator's ORCID:
CReDIT Contributor Roles:
  • Depositors only (login required):

Total unique views for this document in KAR since July 2020. For more details click on the image.