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Abstract

Many rescarchers believe that it is inappropriate to rely on routing
docisions when locating depots. Such a conception has unfortunately
led to a shortage of published work in this area. In this study we
briefly reviow the recent work on location-routing heuristics and show
using robustness analysis that these models are as reliable as location-
first routing-second methods. We employ simulation to show that
combined models consistently produce solutions of Ligher quality than
sequential ones. Sclection criteria based on simulation are developed
for choosing the most appropriate locational solution. Computational
resulta based on problem sets of 400 customers and 15 to 25 depots
are reported.
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1 Introduction

In distribution management the location of the depots, the size of the vehicle
fleet and the schedule of the delivery routes play an important part in the
success of the company. These transportation-related activities are usually
addressed independently, although in practice they are interrclated. The
assumption usually used when sclving the plant location problem is that a
tour consists of a visit to a single customer. This ‘strong’ hypothesis may be
appropriate only when customers require full truck loads.

The combined location-routing problem (CLVRP) is an agglomeration of
two alrcady difficult problems, namely depot location and vehicle routing.
We note that both sub-problems and the CLVRP itself are all NP-hard.
Locational decisions, which correspond to long-term commitments, are usu-
ally taken at a strategic level due to their high investment, whereas routing
decisions are solved at an operational level.

In the O.R. literature applied to distribution studies, there is relatively
little about the combination of routing and depot location when compared
to the intensive material produced in depot location {see Mirchandani and
Francis (1990), and also Drezner {1995)) and in vehicle routing (sce La-
porte (1992)). An interesting survey paper, which addresses both exact and
heuristic approaches for the CLVRP, is given by Laporte {1988). Balakrish-
nan, Ward and Wong (1987) also survey location-routing and highlight some
interesting rescarch avenues in this area. The CLVRP has a large variety of
applications which arise from different areas of distribution such as public
and private sectors, engineering, environment, etc. A recent summary of past
work on the CLVRP as well as new developments and possible applications
can be found in Salhi and Fraser (1996).

The slow progress in the development of location-routing methodology is
mainly due, in our view, to the fact that many location scientists believe that
CLVRP models are not easily or directly usable. The question which strikes
many researchers is how to rely on routing decisions, which are likely to
change from time to time, when solving the problem of location which is of a
more strategic nature. They may believe that it is unjustifiable to use CLVRP
models because of the above difference in the nature of its sub-problems. We
think that the above observation does not invalidate the CLVRP as a research
topic; however it needs to be investigated how the CLVRP model works on
a time horizon.

Thus, the aim of this study is to
(i} demonstrate how important it is to integrate location and routing, by
showing that location-routing methods consistently produce better solution
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than sequential algorithms,

(i) propose a selection rule for choosing the most appropriate locational
solution based on simulation, and

(iii) show, using robustness analysis, that location-routing models are
stable enough to be reliable for practical use.

The papoer is organised as follows. In section 2, we review the literature on
location-routing with an emphasis on recently developed nested methods. Tn
section 3, we analyse the consistency of Iocation-routing methods and present
two selection rules o choose high quality locational solutions. Robustness
analysis is dealt with in scction 4. Computational results are provided in
scetion 5 and we summarise our conclusions and highlight some research
issues in section 6.

2 Location-routing models

The CLVRP can be formulated as a 0-1 ILP problem and can be solved op-
timally only for small sized problems. Heuristics seem to be the best way
forward to approach these hard combinatorial problems. Heuristics have the
advantage of producing more than one single solution so providing the user
with flexibility in choosing the right solution which may include other un-
quantifiable and urgent factors. In addition, heuristics are capable of finding
good solutions in a reasonable amount of computing time. They are also easy
to understand, to modify and to implement. In this section, we review three
main heuristic approaches for location-routing problems, namecly sequential,
iterative and nested. Since the first two approaches are well known in the
literature (see Laporte (1988)) we shall discuss these briefly and concentrate
more on the third one which is recently developed by the authors and also it
is the one which we consider for asscssing the consistency and the robustness
of location-routing,

Sequential models:

One commonly used way to approach the CLVRP is to decompose the
problem into two distinet subprobiems namely location and routing. In the
first stage the locational problem is solved and the arising set of depots is then
used to give a vehicle routing problem which is solved in the second stage. -
Usually, exact methods are used in the first stage and heuristic algorithms in
the second. Such an approach - although it is simple and easy to implement
- suffers from the drawback of suboptimising the whole problem, as noted by
Rand (1976). The effect of ignoring the routing aspect when locating depots
was also shown in Salhi and Rand (1989).
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Herative models:

Most combined location-routing heuristics in the literature fall into this
category. These arc extension of the sequential models where the information
on routing is fed back into an approximate location problem which is then
solved to find the new sclected depots. The process is repeated until there is
no change in the solution ecither in routing or in location. A notable excep-
tion is the "tree-tour heuristic” of Jacobsen and Madsen (1980). They also
developed two iterative methods which combine existing routing heuristics
with some known location methods. Per] and Daskin (1984} used an iterative
approach consisting of three phases, namely location, allocation and routing.
A combination of heuristics and exact methods were used to solve these three
subproblems. The iterative process is repeated until no further improvement
is detected. Salhi and Fraser (1995) developed an iterative process similar to
the one of Pexl and Daskin {1984) except vehicles of different capacities arc
used and the updating at the location phase is carried out using a different
approximation of the route configuration. Encouraging results were obtained
when compared to the sequential method.

Nested models:

The iterative approaches, though they have recently been shown to pro-
duce better quality solutions than the sequential mothods, still have some
drawbacks. They let the locational algorithm run until the end and then re-
start it using some more routing information. Thus, if the routing solution
does not provide enough information at a given iteration for the location
phase, the new solution found by the method may not be as informative
as one would have hoped for. From the modelling point of view, there is
another shortfall of iterative methods. These methods treat the two con-
stitiuent components of the location-routing problem as if they were on the
same footing. Observe, that a location-routing problem is essentially a loca-
tion problem, with the routing factor taken into consideration. So, instead of
treating the two sub-problems as equal we observe a hierarchical structure,
with loeation as the main problem and routing as a subordinate one. We
refer to this approach *nested” because the routing stage is embedded inte
the location phase. These nested methods for the CELVRP were successfully
developed by Nagy and Salhi (1996a, b). This concept of hierarchy was also
strongly emphasised by Balakrishnan, Ward and Wong (1987). These three
methodologies - namely sequential, iterative and nested - are shown in Figure
L.
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Figure 1. An illustration of the three types of solution methods
for location-routing problems.

Since nested methods are not as widely known as the previous two ap-

proaches we shall provide the main points of the method. A gencral skeleton
of a nested method for location-routing problems can be described as follows:

1
2.

Obtain an initial locational selution.

Use a suitable multi-depot routing algorithm to find the routing cost for
the whole system.

. Find a neighbouring locational solution for exploration.

. Define a subset of the set of all depots and customers using a suitable

rule.

. Apply either a suitable multi-depot routing method or an appropriate

route length approximation technique for the above set of cities to find
the routing cost for this subsct.

. Repeat steps 3 to 5 until the neighbourhood is completely explored.

Sclect the best neighbouring location (even if it does not lead to an
improving solution).
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8. Repeat steps 2 to 7 until a suitable stopping rule is met.

In step 2, the multi-depot routing problem is solved using the algorithm
of Salhi and Sari {1997). This was chosen for its specd {as several runs have
to be exccuted}, and for its capability of producing good quality solutions.

In step 3, the neighbourhood of a current solution is defined by dropping
an existing depot, adding a new depot to the existing set of open depots, and
finally simultancously closing a given depot and opening a new depot from
the set of customers served by such a depot. This step originates from the
local search heuristic initially introduced by Kuehn and Hamburger (1964},

In step 4, we rely on the assumption that the influence of a change in
location is a subset of the set of all cities, incorporating the depot concerned
and its customers, and also some neighbouring depots with their associated
customers. Such an area is referred to as a "region”. The reason behind
using these "regions” is that they save us having to re-calculate routing costs
for the entirc system, when we know that routing is unlikely to change ev-
crywhere in the system. A good choice of region would aveid both excessive
computational time associated with too large regions and loss of accuracy
associated with too small regions. There are several ways of constructing
these regions. Nagy and Salhi (1996a) developed two variants of these meth-
ods; one using the idea of "distance”, the other using the idea of " proximity”
inspired by computational geometry.

In step 5, two approaches may be used to compute the routing cost. One
applics the routing algorithm of Salhi and Sari (1997), the other is based on a
new route length approximation formula recently developed by the authors,
see Nagy and Sathi {1996)). Variants of the nested method using the routing
algorithm are referred to as REGIONAL and the ones using route length
approximation are called ESTIMATE. Empirical testing has shown that both
approaches perform better than the sequential method which is used here as
a benchmark. In addition, ESTIMATE was {ound to be significantly faster
than REGIONAL.

3 Analysing the consistency of location-routing
methods

Balakrishnan, Ward and Wong (1987) observed that modelling difficulties
may arise whenr combining the long-term strategic problem of loeation with
the short-term tactical vehicle routing problem., Customer demands may
change aver time, and the routing solution can be changed from time to
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time, to cater for such changes in demand. Depot locations, however, cannot
be modified at short notice,

The issuc of consistency and robustness is addressed in the seminal papers
by Gupta and Rosenhead (1968) and by Rosenhead, Elton and Gupta (1972).
A review of robustness and of a number of related methodologies for dealing
with issues of uneertainty is given in Rosenhead (1989). In these works,
robustness is considered to be the flexibility of a plan, ie. its ability to
accommodate changes due to changed input values.

In our investigation, we seek a solution to the location-touting problem,
such that the locational solution is unchanged over some given time period,
but the routing solution may change following changes in customer demand.
We divide our time horizon into a number of time intervals and consider
that demands may be different for these intervals. We assume that the time
intervals are of cqual length and that demands are constant within these
intervals. Furthermote we assume that the customer set remains unchanged
throughout the time horizon. Note that in the literature a growing demand is
usually assumed; however, we consider here the case of fluctuating demand.
Each time interval corresponds to a {simulated) location-routing problem.
Before we present an overview of the different solutions, we describe the
notation we use in this section.

Notation:
T is the sct of all cities (depots and customers), |I| =m

J is the sct of time intervals, [J |=n,

th

Q) is the average demand of the i*" city during our time horizon.

th

@ denotes the demand of the i*? city during the jf'h time interval, i € I,
J

jed

A number of solutions are looked at. 'They are explained in some detail in
the remainder of this section. We provide a brief introduction here. Firstly,
we investigate the basic solutions provided by the location-routing and the
sequential methods, say solutions A and O respectively. Then, we generate
a lower bound (solution B), which is a good but infeasible solution. Finally,
two selection rules are developed for creating solutions € and D, which are
better than the basic solution A. Figure 2 gives an illustration of the different
solutions.
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Figure 2. A representation of the analysis
The basic solution (Solution A):

‘We first simulate the scenario when a decision on depot locations is made
on the basis of average (forecasted) demand values, while in reality demands
fluctuate around these average values. Now, we wish to know how much our
costs are over a time horizon consisting of m simulated problems, cach with a
demand set (QF,1 € I, j € J). The pseudo-code for this simulation procedure
s

- solve location-routing problem using average demands Q

- take arising set of open depots Dy

-fori=1,...,mdo

- solve routing problem with depot set [); using demands Q;

- cost of {cach) solution is CY

m e

- final (average) cost is C) = Lo

This simulation is calied "short” simulation because it ertails running the
location-routing algorithm only once, with a number of additionat calls to the
routing algorithm. If we made a decision on depot locations using average
values and chose the set of depots I to be opened, we would face a cost
€. This simulation is based on the idea of evaluating the solution produced
by our solution methods, w.r.t. the ”new” information on changing demand
levels, but not taking this information into account when finding the solution
to the locational problem. This is practical as we do not have to change the
locational solution every time. We note that the above simulation procedure
using the output of the sequential method will give us solution O, with depot
set Dy and cost €y, We also wish to compare our solution Cy with the
solution Cy. According to our results, which will be presented later, C, < Cj.
Furthermore, in most cases we found that ¢ < CJ(j € J}. This shows that
over the m simulated problems the solution based on our location solution
using the location-routing method is consistently superior to the one found
by the sequential method.

Although our solution is found to be better, we need to assess how good
such a solution is and whether it is possible to find another locational solution
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that improves on the existing one. The remainder of this section deals with
this issue.

Obtaining o lower bound (Selution B):

One way to examine the goodness of a solution is to compare against
a lower bound solution. This is obtained by solving the location-routing
problem m times, cach time with a different demand set. The procedure
provides a high quality solution which is infeasible: it violates the assumption
that the depot set cannot be changed. We present a pscudo-code for this
approach,

-fori=1,...,mdo

- solve location-routing problem using demands Q;

- cost of {each) solution is C4 and the arising set of open depots is D

- final (average) cost is Oy = 2—:7;:&

The above procedure is called "long” simulation as it entails running the
location-routing algorithm m times. We observe that if we were able to
change the depot set from time to time, than we should choose the scts
D}, D% ..., D in succession, yielding a cost of Cy. While this may not be
possible in reality, the values of Cy produced here are useful as lower bounds.
The real cost, say Cs, would be obviously higher since the rostriction of
having the same locational solution is required. It is desirable now to seck
a fow other locational solutions which are both feasible and have a cheaper
total cost than Cy.

A simple selection rule (Solution C):

One obvious way is to apply the short simulation model using the lo-
cational solution for cach depot set DI, D2 ..., DS and then select the sot
Dy € {Di: 5 € J} that yields the cheapest total cost over the time horizon.
This is similar to solution A except that the short simulation model is used
for a number of locational solutions rather than only for the "basic” solution.
The pseudo-code for this approach is as follows:

- exccute long simulation to find the sets D}

-foreachi=1,...,mdo

- execute short simulation for depot set Df, cost is denoted by Cf

- finat cost is C3 = Min {C%,¢ € J} and choose Dy as the configuration
that

produces the cost Cy.
The location solution found above is a solution of one of the m simulated
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problems. Such a restriction has a serious effect as it limits the search and
hence the obtained solution can be suboptimal and misleading. Nevertheless,
such a solution can be casily implemented and we shall sce later that it yields
a cheaper total cost than ). Our aim now is to generate a solution which
relies on all the solutions to each of the m simulated problems, not just on
one of them.

A more sophisticated selection rule {Solution D):

Observing the depots sets D3, DZ,..., DI, we may be able to find a set
Dy, which yields a lower cost than Dy, We wish to create such a set Dy using
the output of the "long” simulation. Before we describe the selection rule we
decided to adopt for creating such a new solution, we present some notation.
Notation:

1 and g are two threshold values; 0 S vy <1y €1

Vi = { 1 if city ¢ occurs as a depot in the solution to the jth
=

problem
D otherwise.
P; is the probability of a city being a depot, and is calculated as:

Pi={EL Yy)/m
Note that both ¥ and P; may be generated as by-products of the long

sitnulation.
Our selection rule is realised by the following pseudo-code:

- apply the long simulation
- compute the probability of a city being a depot Fforalli €I
- divide the set of citics into three subsets:
- the set of citics with high Py Sa = {{ e L, F; > 1}
- the set of citics with medium P;Sp={i € Ly < F; < 11}
- the sct of cities with low P; Sg = {i € [ i < 1}
- determine Dy € {S4U5;¥S C Sg}, Le. the configuration which consists
of:
- ail of the citics from 54,
- some of cities from Sg, and
~ none of the cities from S¢,
such that C}y, the cost of the solution with depot set Dy, is
minimal.

Note that the cardinality of Sz depends on the parameters 11 and 12, but
is usually quite small since our location-routing method is stable enough as
will be shown in scction 4. The probability values are cither too high (near
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1) or too small (near 0) but there are not many lying in the middle range.
Thus, it is easy to caleulate C,.

‘We shall sec in section 5, that Cy < Cy, thus the solution we recommend
for implementation is Iy.

4 Robustness analysis

Having now shown that it is possible to choose a good location which yiclds
good quality solutions when applying routing, it is also interesting as a sec-
ondary study to demonstrate how robust our CLVRP solution algorithms
are. In other words, we would like to have a method which provides a set
of depots which does not change dramatically when some castomers change
their demands. For instance, the sequential method is very robust since the
location will not be altered if customers demand change. However, we should
not be obsessed by having a very robust method which in reality yields very
inferior results. In this section we will show that location-routing methods
are robust enough while producing good quality solutions.

We define robustness as the ability of a method to produce similar solu-
tions under slight perturbations to its input. This arises from the definition
of the robustness of a plan or decision. A method will be considered robust
in our paper if the decision it produces is robust as described in Roscnhead
ct al. In our case, the "slight perturbation” is the changing demand, while
a "solution” is & set of depots D. We note that while consistency was based
on cost (an inherently continuous measurc), robustness is based on a discrete
measure, the set of depots produeed by the location-routing methods. Thus,
"similarity” of solutions is more difficult to define. Two solutions are con-
sidered *similar”, if the symmetric difference of their depot sets Dy and Dy
has low cardinality. This means that there arc only a few cities which belong
to either D) or to D, but not to both. This can be readily generalised for
m depot sets Dy, Dy, ..., D,,. We introduce a penalty for cities belonging to
some depot sets but rot to all using the probability of a city being chosen
for a depot site. This measure was defined in earlier and can be found using
"long” simulation. If it is one or zero, then there is no penalty; otherwise the
penalty is proportional to the difference of the probability from either one
or zero (whichever is the amaller). Putting together these penalty values we
get the robustness measure of a method:

R=(2%L, | Pi-05]/n)

We note that 0 € R < 1. For instance, if R = 1, then for all sets of customer
demands, the same locational solution is produced. An example of this is
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the sequential method, as its output is not influckced by changes in customer
demand. However, had we generated completely random solutions for each
of the time intervals with approximately the same number of depots, then
for 400 cities and about 20 depots we would still have B ~ 0.9, This is due to
the fact that the number of cities is much larger than the number of depots
and thus most cities tend to be not used as depots, making the solution
more robust. We also note that even if the number of depots is allowed to
vary between 0 and 400, we would still get R = 0.25 for a completely random
solution. We can illustrate the robustness measure with an example. Suppose
that in 9 out of 10 of our simulation runs the same solution is produced (say 20
depots out of 400 cities), however, in the tenth run we have an cxtra depot in
the solution. The robustness measure of the method providing these solutions
would then be 0.999. We also wish to note that robustness may sometimes be
a misleading measure. Both Gupta and Rosenhead {1968} and Rosenhead,
Elton and Gupta {1972) mention an example where a number of nearby and
approximately equally good depot locations cause the robustress value to
go down, as slight perturbations can change the solution set to include a
different depot from this cluster. The concept of robustness can be extended
to climinate this distortion.

5 Computational results

The heuristics proposed here were written in VAX Fortran and executed on a
VAX 4000-500 computer at the University of Birmingham. They were eval-
nated using empirical testing. We first present our data gencration. Our re-
sults are analysed under three headings, namely comparison within methods,
comparison between methods, and robustness. To demonstrate the consis-
tency of the CLVRP models we based our analysis on the nested methods.
A similar investigation could also be carried out for the iterative methods.

Data generation and plen for comparison:

Two scts of coordinates and demands, each consisting of 400 customers,
are tested with three levels of fixed depot casts to provide solutions around
25, 20 and 15 depots respectively: this gives 15 problems in total. These data
scts are gencrated using some of the problems given by Christofides, Mingozal
and Toth (1979). We used problems 3 and 11 to produce larger problems with
400 customers. The problem sets are numbered as 11, 12, 13, 21, 22 and 23:
problem 11 is the first problem set with low depot costs, cte. We also note
that customers arc clustered for problems 21 to 23. Furthermore, maximum
capacity and maximum distance constraints were chosen so that they are
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tight for all problems. Ten consecutive time intervals were considered, with
ten different demand values. These values were generated randomly, using
standard distribution with the demands given by Christofides, Mingozzi and
Toth (1979) as the average demands and a standard deviation of 0.01. In
this study we have sct the parameters »; and v to 0.1 and 0.9 respectively.

Three methods were examined, namely the sequential method denoted
hy CLASSIC, and the recently developed nested methods REGIONAL and
ESTIMATE. The results of the different simulation runs are given in Table
1.

1l 12 13 21 22 23 | Average
CLASSIC (| 5035 5225 6226 | 6491 6789 7558 6221
C, | 4877 5101 5967 | 6132 6395 7009 | 5914
REGIONAL ¢ 4811 5011 5832 | 6103 6233 6953 | 5824
;14863 3101 5943 | 6132 6388 7009 5900
C, | 4854 5101 5909 [ 6132 6357 6099 5892
C, [ 4818 5101 5903 | 5955 6400 6989 5862
ESTIMATE . | 4793 5032 5785|5803 6357 6939 | 5802
C, | 4818 5101 5877 | b959 6388 6977 5841
C, | 4811 5077 5832 | 5933 6388 6953 5832

Table 1. Simulation results
Comparison within methods:

It can be shown that the theorctically predicted relationship between
G, Oy, Cs and Gy holds for both REGIONAL and ESTIMATE and for all
the six problem sets. (For CLASSIC, alt the simulated solutions would still
give Cg and are thus not tabulated,) Quantifying the above relationship, we
calculate percentage improvements in order to sce how much improvement
(e, Cy and €y represent w.r.t. Ch. On average, C, is about 1.52% better
than C, in the case of REGIONAL; for ESTIMATE, this figure is 1.02%.Cs
produces ¢0.23% and a0.36% improvement for REGIONAL and ESTIMATE
respectively. € is on average 0.37% better than C if we use REGIONAL; it
gives 20.51% improvement for ESTIMATE. While the gap between ) and
Oy is already quite small, the solution producing Cy may cut this gap up to
half its original size. Thus we may conclude that while using no simulation
and relying on average values for future levels of demands gives already sat-
isfactory solutions, the sclection rule developed carlier preduces even more
desirable solutions, which are very near to the solution values of the lower
bound Cy. We remember that these values are likely to be unattainable by
using a constant sct, of solutions and therefore surmise that our selection rule
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provides the best way of finding a single set of depots which behave well
under changing conditions.

Compurison befween methods:

According to Table 1, the costs Cy produced by CLASSIC are always
higher than the highest costs €| given by the nested methods. This serves as
yot another justification for the usc of nested methods. Comparing RE-
GIONAL and ESTIMATE the picture is not so clear any more. While
pairwise comparison of the respective values in almost all cases shows ES-
TIMATE being marginally better than REGIONAL, the range of values
{Cy, Ca, €y, Cy) for REGIONAL overlaps with the range for ESTIMATE.

CLASSIC | REGIONAL | ESTIMATE
11 1.00 06.987 0.995
12 1.00 0.981 0.987
13 1.00 0.978 0.980
21 1.00 0.996 0.991
22 1.00 0.975 0.993
23 1.00 0.992 0.993
Avcrage 1.00 0.985 0.990

Table 2. Robustness scores
Robustness results:

The robustness values of CLASSIC, REGIONAL and ESTIMATE are
tabulated in Table 2. We have already noted that the robustness valuc of
CLASSIQ is always 1. The average robustness values of REGIONAL and
ESTIMATE are 0.985 and 0.990, respectively. This shows that both methods
are robust. ESTIMATE is slightly more robust, perhaps due to the fact that
it is morc similar to CLASSIC than REGIONAL. In other words, small
changes in customer demand do not influence the output of the location-
routing methods used here significantly.

6 Conclusions and future research directions

A comparison which entailed simulating the behavieur of a distribution sys-
tem over a period of time was earried out for the case ol location-routing,
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Selection criteria for choosing the most appropriate location within the frame-
waork of location-routing were proposed. These criteria were based on simu-
lation. We found that the new results have enhanced the benefit of location-
routing methods over sequential methods in all the test problems we looked
at. A similar exercise could also be performed to see how consistent the iter-
ative methods are, but in our view it is most likely that the same conclusion
would be obtained.

The selection rules we nsed seem to us both logical and flexible. Although
they produced good solutions, other suitable measures can also be worth
considering. For instance, debility, which is the opposite of robustness, could
be introduced into our selection rute. Debility (see Caplin and Kornbluth
{1975)), is a measure to guide the decision maker to exclude the bad solutions
from the analysis. In other words, a decision with a high value of debility is a
bad decision and should not be pursued. Other measures may combine both
robustness and debility as recently used by Giannikous and Rizakou (1995}
for locating obnoxious facilities.

Iu this study, the same importance (weight) is given to each of the simu-
lated problems {time intervals). A further investigation may consider differ-
ent weights based on historical data and other factors to assess further the
impaet of variability of customer demand.

Our robustness score was based on individual sites without considering
the cffect of interference arising between neighbouring sites. This is impor-
tant as the sites close to each other may compete between themselves for the
allocation of customers and hence share the benefit. Such cities may therefore
produce a less attractive robustness score although if they were considered as
a single location, their contribution to the robustness score would increase,

Acknowledgments We would like to acknowledge the financial support
of the Committee of Vice-Chancellors and Principals of the United Kingdom
(ORS Awards) and of the School of Mathematics and Statistics, The Uni-
versity of Birmingham. We are also grateful to the referee whose comments
improved the presentation of the paper.

References

(1] A. BavLAkrisHNAN, J. E. Warp and R. T. WoNg (1987), Intc-
grated facility location and vehicle routing models: recent work and future
prospects, American Journal of Methematics and Management Science, T,
35-61



18 S, Salhi & G. Nagy

[2] D. A. CaPLIN and J. S. H. KorNBLUTH (1875), Multiple investment
planning under uncertainty, Omege, 3, 423-441

[3] N. CHRIsTOFIDES, A. MiNgozzl and P, Tota (1979), The vehicle
routing problem, in N. Christofides, A. Mingozzi, P. Toth and C. Sandi
(eds) Combinatorial Optimization, Wiley, Chichester, 315-338.

[4] Z.Drezner (Ed.), {1995}, Facility location: A survey of applications
and methods, Springer, Berlin

[5] 1. Gianwikos and E. Rizaxou (1995), The use of a flexible plan-
ning methodology in making lacation decisions under uncertainty, paper
presented at EWGLAS, Lambrecht, Germany.

[6] Su. K. Gupra and J. ROSENHEAD (1968), Robustness in sequential
investment decisions, Management Seience 15, D18-B29.

f7] 8. K. JacoBsEN and O. B. G. MapseN (1980}, A comparative study
of heuristics for a two-level routing-location problem, European Journal of
Operational Research 5, 378-387.

[8] A. A. Kuean and M. J. HAMBURGER (1963), A heuristic program
for loeating warchouses, Management Science 9, 643-666.

(9) G. LarorTE (1988}, Location-routing problems, in Vehicle Routing:
Methods end Studies, B. L. Golden and A. A. Assad (eds), Elsevier, Ams-
terdam, 163-197

[10] G. LAPORTE (1992), The vehicle routing problem: an overview of cxact
and approximate algorithms, FEuropean Journal of Operational Rescarch
59, 345-358

[11] P. B! MmrcHANDANI and R. L. FRaNcIS ({(eds) (1980), Discrete
Location Theory, Wiley, New York.

[12] G. NagY and 8. SapH1 (1996a), Nested heuristic methods for the
location-routing problem, Journal of the Opeartional Research Socicty 47,
1166-1174.

[13] G. NaGY and S. Sarmt (1996b), A nested location-routing heuristic
using route length estimation, Studies in Locational Analysis 10, 109-127.

f14] J. Pert, and M. 8. DASKIN (1984), A unified warehouse location-
routing methodology, Journal of Business Logistics &, 92-111.



Consistency and Robustnress in Location-Routing 19

[15] G. K. RaND (1976) Methodological choices in depot location studies,
Operational Research Quarterly 27, 242-240.

[16] J. ROSENHEAD , (1989) Rational Analysis for a Problematic World:
Problem structuring methods for complezity, uncertainty end conflict, Wi-
ley, Chichester.

[17] 3. RoseNuEAD, M. ELron and S, K. Gurra (1972}, Robust-
ness and optimality as criteria for strategic decisions, Operational Research
Quarterly 23, 413-431.

[18] S. SarHi and M. FRASER (1996), An integrated heuristic appreach
for the combined location-vehicle fieet mix problem, Studies in Locational
Analysis 8, 3-22.

[19} S. SaLur and G. K. RAND (1989) The effect of ignoring routes when
locating depots, European Journal of Operational Research 39, 150-156.

[20} S. SacHr and M. SARI (1997) A multi-level composite heuristic for the
multi-depot vehicle fleet mix problem, Buropean Journal of Operalional
Research 103, 78-95.






