Skip to main content
Kent Academic Repository

Magnetic-crystallographic phase diagram of the superconducting parent compound Fe1+xTe

Rodriguez, E.E., Stock, C., Zajdel, P., Krycka, K.L., Majkrzak, C.F., Zavalij, P., Green, M.A. (2011) Magnetic-crystallographic phase diagram of the superconducting parent compound Fe1+xTe. Physical Review B - Condensed Matter and Materials Physics, 84 (6). 0-0. ISSN 1098-0121. (doi:10.1103/PhysRevB.84.064403) (The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided) (KAR id:50974)

The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided.
Official URL:
http://dx.doi.org/10.1103/PhysRevB.84.064403

Abstract

Through neutron diffraction experiments, including spin-polarized measurements, we find a collinear incommensurate spin-density wave with propagation vector k= [0.4481(4)012] at base temperature in the superconducting parent compound Fe1+xTe. This critical concentration of interstitial iron corresponds to x?12% and leads to crystallographic phase separation at base temperature. The spin-density wave is short-range ordered with a correlation length of 22(3) Å, and as the ordering temperature is approached its propagation vector decreases linearly in the H direction and becomes long-range ordered. Upon further populating the interstitial iron site, the spin-density wave gives way to an incommensurate helical ordering with propagation vector k= [0.3855(2)012] at base temperature. For a sample with x?9(1)%, we also find an incommensurate spin-density wave that competes with the bicollinear commensurate ordering close to the Néel point. The shifting of spectral weight between competing magnetic orderings observed in several samples is supporting evidence for the phase separation being electronic in nature, and hence leads to crystallographic phase separation around the critical interstitial iron concentration of 12%. With results from both powder and single crystal samples, we construct a magnetic-crystallographic phase diagram of Fe1+xTe for 5%<x<17%

Item Type: Article
DOI/Identification number: 10.1103/PhysRevB.84.064403
Additional information: Unmapped bibliographic data: C7 - 064403 [EPrints field already has value set] LA - English [Field not mapped to EPrints] J2 - Phys. Rev. B Condens. Matter Mater. Phys. [Field not mapped to EPrints] AD - NIST Center for Neutron Research, NIST, 100 Bureau Drive, Gaithersburg, MD 20878, United States [Field not mapped to EPrints] AD - Indiana University, 2401 Milo B. Sampson Lane, Bloomington, IN 47408, United States [Field not mapped to EPrints] AD - Division of Physics of Crystals, Institute of Physics, University of Silesia, Katowice, 40-007, Poland [Field not mapped to EPrints] AD - Department of Chemistry, University of Maryland, College Park, MD 20742, United States [Field not mapped to EPrints] AD - Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, United States [Field not mapped to EPrints] DB - Scopus [Field not mapped to EPrints]
Subjects: Q Science > QC Physics > QC173.45 Condensed Matter
Q Science > QD Chemistry > QD478 Solid State Chemistry
Divisions: Divisions > Division of Natural Sciences > Physics and Astronomy
Depositing User: Giles Tarver
Date Deposited: 14 Oct 2015 10:54 UTC
Last Modified: 16 Nov 2021 10:21 UTC
Resource URI: https://kar.kent.ac.uk/id/eprint/50974 (The current URI for this page, for reference purposes)

University of Kent Author Information

  • Depositors only (login required):

Total unique views for this document in KAR since July 2020. For more details click on the image.