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We study the decay of “false” domain walls, that is, metastable states of the quantum
theory where the true vacuum is trapped inside the wall with the false vacuum
outside. We consider a theory with two scalar fields, a shepherd field and a field
of sheep. The shepherd field serves to herd the solitons of the sheep field so that
they are nicely bunched together. However, quantum tunnelling of the shepherd
field releases the sheep to spread out uncontrollably. We show how to calculate
the tunnelling amplitude for such a disintegration. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4947263]

I. INTRODUCTION

The notion of a vacuum in field theory is quite a bit richer than that in everyday language. In
a theory with scalar fields, any state that is a local minimum of the potential energy density is a
vacuum. More than one vacuum can exist, and not all vacua need to have the same energy. The
lowest such state is called the true vacuum; any higher-energy local minimum is a false vacuum.

The most common reason for a multiplicity of vacua is spontaneous symmetry breaking. The
breaking of a discrete symmetry gives rise to discrete vacua whereas the breaking of a continuous
symmetry gives rise to a continuum of vacua. In this paper we restrict ourselves to discrete vacua.
Depending on the model, a number (possibly infinite) of vacua of any energy can exist. Field
configurations that interpolate between different degenerate vacua, true or false, give rise to domain
walls (see, for example, Ref. 1) which themselves are stable or metastable. Domain walls are very
important in cosmology1,2 and in condensed matter physics,3 where they quite often arise in the
study of first-order phase transitions. A full review of domain walls and their applications is beyond
the scope of this article, and we refer the reader to the cited literature.

In this paper we consider the special case of domain walls interpolating between distinct false
vacua, with true vacuum in the core of the domain wall. The very existence of domain walls in our
model is due to a subtle interplay between the energetics of two fields. The domain wall we consider
entraps several quanta of a quantum field, φ, which we call the sheep field. These on their own
would separate to infinity, leaving behind regions of true vacuum. It is the sheep field that is in the
false vacuum outside the domain wall, but it is in regions passing through the true vacuum inside
the domain wall. These sheep are herded into staying together, inside the domain wall, by a field we
call the shepherd field, ψ. ψ is in its true vacuum outside the domain wall and in its false vacuum
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inside the domain wall. The shepherd field is unstable to quantum tunnelling to its true vacuum;
once this occurs, the sheep are without a shepherd and will spread out to infinity. We compute
the amplitude for such a decay in a specific model analytically, aided by numerical calculations,
within the collective coordinate approximation scheme. Thus, the sheep and shepherd field will be
assumed to maintain fixed profiles while interacting and the locations of each domain wall in the
system become the degrees of freedom. This approximation will provide an upper bound on the
Euclidean action of the bounce and consequently a lower bound on the domain wall decay rate, as
will be explained below. We have also studied an analogous model4 which shares some features of
the model studied here; in particular, in the earlier work there are not multiple quanta of one field
trapped inside the domain wall.

II. THE MODEL

Consider the model defined by the Lagrangian density

L = 1
2
�
∂µψ∂

µψ + ∂µφ∂
µφ

�
− V (ψ,φ), (1)

where the potential is

V (ψ,φ) = Vψ(ψ) + Vφ(φ) + Vψφ(ψ,φ) − V0 (2)

with

Vψ(ψ) = β(ψ + a)2 ((ψ − a)2 + ϵ2
ψ

)
, (3)

Vφ(φ) = α �
sin2(πφ) + ϵφsin2(πφ/2)� , (4)

Vψφ(ψ,φ) = λ
(ψ − a)2 ((ψ + a)2 + ϵ2

ψ

)
(Vφ(φ) − Vφ(1/2))2 + γ2 . (5)

λ is considered to be very small compared to β; γ is considered small compared to Vφ(1/2). We
impose that V (ψ,φ) ≥ 0. The first three terms are positive semi-definite, and then V0 is chosen so
that V (ψ,φ) vanishes at its global minimum. The φ field is essentially a sine-Gordon field (with
alternating true and false vacua) while the ψ field has a rather standard double-well potential
with a small asymmetry. Both fields admit kink-type solitons when ϵφ = ϵψ = 0. The interaction
between the two fields is constructed to disallow the passage of the φ solitons through the ψ
solitons. The specific potential that we use is not important; the only feature that is crucial is this
“non-commutativity” of solitons, and any potential that achieves the result is adequate.

It is easy to see that the global minimum of Vψ occurs at ψ = −a while a local minimum occurs
near ψ = a, as can be seen in Fig. 1. The minimum of Vφ(φ) occurs at even integers φ = 2k with a
slightly higher local minimum occurring at odd integers φ = 2k + 1; degenerate local maxima occur
at each half-odd integer, as can be seen in Fig. 2. The positions of these extrema are displaced by
Vψφ(ψ,φ), but by choosing λ small the displacements can be made arbitrarily small. Fig. 3 illustrates

FIG. 1. The potential Vψ for the field ψ with a = 1, β = 3, ϵψ = 0.2.
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FIG. 2. The potential Vφ for the field φ with α = 1, ϵφ = 0.1.

a three-dimensional plot of full potential (2) for a representative set of parameters. The potential is
taken to be periodic in φ-direction.

Obviously for λ = 0, the true vacua correspond to {ψ = −a, φ = 2k} while {ψ = −a, φ =
2k + 1} or {ψ = a, φ = 2k or 2k + 1} correspond to the false vacua. Of course with λ non-zero,
the values of the fields at the minima will be slightly modified, however the structure of the false
and true vacua will remain unchanged. In the ensuing discussion, we will identify the vacua by the
values that the fields take when λ = 0, but always with the understanding that the actual values that
the fields take are slightly perturbed.

Since there are distinct vacua, we can imagine configurations corresponding to domain walls.
Consider a domain wall interpolating between two false vacua φ = 2k + 1 and φ = 2k ′ + 1 with
ψ = −a remains at its true minimum. Such a domain wall passes through true vacua with φ even,
so it is unstable, separating into several subsidiary domain walls. To be more concrete, consider
the specific example where φ interpolates from φ = −1 → φ = 1 with ψ = −a (easily visualized
in Fig. 3). Such a domain wall will be unstable, separating into two halves that interpolate from
φ = −1 → φ = 0 and then from φ = 0 → φ = 1 while the ψ field remains always at ψ = −a. The
intermediate region being the true vacuum, the two half-domain walls feel a repulsive force and will
accelerate away from each other leaving behind them true vacuum.

However, we can construct metastable domain walls between the same false vacua (that is,
domain walls that are classically stable but unstable via quantum tunnelling) by making a “detour”
in field space. To see how this can be done (referring to Fig. 3), imagine a field configuration which
consists of three branches (joined in some smooth manner), where, as x goes from minus to plus
infinity, (φ,ψ) undergoes the sequence (−1,−a) → (−1,+a) → (+1,+a) → (+1,−a) thus encircling
two of the “fins” of the full potential. The fields avoid the true vacuum (φ,ψ) = (0,−a) and so the

FIG. 3. 3d plot with a = 1, β = 3, ϵφ = 0.2, α = 1, ϵφ = 0.1, λ = 0.1, γ = 0.1. Along the line ψ =−1, there are true minima
at even values of φ and slightly higher-energy false vacua at odd values of φ. The situation is similar along the line ψ =+1,
although all the vacua are raised in energy (so they are all false vacua) since Vψ(1) > 0.
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instability described above no longer applies. Furthermore, in order to “straighten” the soliton out in
field space, the fields have to pass through the fins, which then provide a potential barrier preventing
the straightening from occurring classically.

This field configuration can be described as a soliton of the ψ field followed by one of the φ
fields and finally an anti-soliton of the ψ field. Fig. 4 illustrates just such a configuration, which is in
fact a numerical solution of the following equations of motion:

φ′′ = 2βπ
(

sin (πφ) cos (πφ) + ϵφ
2

sin (πφ/2) cos (πφ/2) )
+ 2λ

(
Vφ(φ) − Vφ(1/2)

) (
βπ

�
sin(2πφ) + ϵφ

2
sin(πφ)�) (ψ − a)2(ψ + a)2 + ϵ2

ψ((Vφ(φ) − Vφ(1/2))2 + γ2
)2 , (6a)

ψ ′′ = 2α(ψ + a)�(ψ − a)2 + ϵ2
ψ

�
− 2α

�
ψ + a

�2(ψ − a)

− 2λ
(ψ − a)�(ψ + a)2 + ϵ2

ψ

�
+ (ψ − a)2(ψ + a)

((Vφ(φ) − Vφ(1/2))2 + γ2 , (6b)

where the prime denotes differentiation with respect to the spatial coordinate. Eqs. (6) were solved
using the gradient flow method5 with the boundary conditions chosen as stated above. Note that the
same parameter values were used throughout the rest of the paper.

In the stability analysis, the interaction term makes the following crucial contribution. The
point is that if φ passes through the value 1/2 when ψ is such that the numerator in the interaction
term is not very small or zero (this means that ψ , ±a), then the denominator of the interaction term
becomes γ2, which is chosen to be very small, and thus, the interaction term can be made to blow
up. In this way, the contribution to the energy of the interaction term can be made arbitrarily large,
which we assume, and therefore, such a situation will be energetically disfavoured. What this means
specifically is that the φ solitons may not pass through the ψ solitons (in which necessarily regions
occur where the ψ field is significantly different for ψ = ±a) without the energy blowing up. There
is an energy barrier to such a process. Thus if ψ is forced to make a transition from −a to a only
before or after φ makes its transitions, the solitons of the φ field cannot pass through those of the ψ
field without encountering an insurmountable energy barrier. But then the solitons of the φ field, the
sheep, are trapped within the solitons of the ψ field, the shepherd.

Inside the domain wall, two adjacent φ half-solitons (say, one going from φ = 2k to 2k + 1
and the other from 2k + 1 to 2k + 2) attract each other. This is because the energy is minimized by
reducing the region over which φ is in its false vacuum, φ = 2k + 1. Thus the net φ soliton passes
from even integer to even integer. But then these full solitons further minimize their energy by
separating as far as possible from each other, as this minimizes any gradient energies that occur due
to their proximity; hence, they have a repulsive interaction. The half-solitons on either ends are also
simply repelled by the adjacent full solitons.

FIG. 4. The metastable domain wall configuration, φ passing from −1→ 1 and ψ passing from −1→ 1→ −1. For this and
all subsequent figures, the parameters were chosen as a = 1, ϵφ = 0.01, ϵψ = 0.5, λ = 0.1, α = 0.5, β = 0.5,γ = 0.01.
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FIG. 5. The metastable domain wall configuration, φ passing from −3→ 3 and ψ passing from −1→ 1→ −1.

Thus in the example shown in Figure 5, in which φ interpolates from −3 to +3, the half-soliton
from −3 to −2 is repelled by the full soliton from −2 to 0, which also repels the subsequent full
soliton from 0 to +2 which in turn repels the final half-soliton from +2 to +3. The ψ (shepherd)
solitons have the false vacuum ψ ≈ a in between them, so they attract one another. The sheep want
to separate as far as possible from one another, but they cannot do so without pushing the shepherd
solitons further and further apart. The energy in doing so increases linearly with the separation of
the shepherd solitons. The competing energy decrease coming from the separating sheep is at best
decreased to a constant value (the total mass of sheep) as the separation between the sheep becomes
large. Hence, energetically, the shepherd solitons force the sheep solitons to be herded together at a
finite size where the outward pressure from the sheep is balanced against the inward vacuum pressure
pushing the shepherds together. The whole system forms a classically stable configuration. An even
more extreme example is given in Figure 6 and the corresponding zooms in Figure 7, which contains
31 sheep.

However, quantum mechanically, the herded sheep are actually in a metastable configuration.
Tunnelling processes can permit the ψ field to make a quantum transition to its true vacuum at
all points where the φ field is near its true vacuum (and specifically away from values where
V (φ) = V (1/2)). Such transitions truly liberate the sheep, which can after the tunnelling transition
move apart freely.

III. ANALYTICAL CALCULATION OF THE DECAY RATE IN THE FREE KINK
APPROXIMATION

As we have just noted, the soliton is metastable: it will decay via quantum tunnelling. The
tunnelling transition is mediated by an instanton, which is called a bounce. The bounce corresponds

FIG. 6. The metastable domain wall configuration with 31 sheep, φ passing from −15→ 15 and ψ passing from −1→ 1→
−1.
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FIG. 7. (a) Zoom of the metastable domain wall configuration with 31 sheep for the field φ. (b) Zoom of the metastable
domain wall configuration with 31 sheep for the field ψ.

to a trajectory in Euclidean time, t → −iτ. This changes the sign of the kinetic energy, T → −T , and
therefore, bounce configuration can be thought of as motion in the potential −V where we include
the spatial gradient terms as part of the potential. The Euclidean action can be written as SE = T + V
and the conserved Euclidean “energy” is E = T − V . The bounce begins at the metastable configu-
ration, arrives at the configuration which will materialize upon the event of the quantum transition,
and then “bounces back,” that is, returns to the initial configuration. Therefore, the bounce will
begin at the metastable soliton as in Fig. 8(a) followed by an evolution during which the field
ψ which is initially equal to a in the region in between the two half-solitons sinks down until it
finally makes it to ψ = −a, corresponding to a configuration of two free half-solitons as depicted in
Fig. 8(b). The two half-solitons must be created, however, with some kinetic energy, since during
the Euclidean evolution, the “energy” T − V is conserved, and −V is more negative at this config-
uration of two essentially free solitons. The solitons will then separate and rise up the (negative)
potential until they stop, after which they bounce back. When they reach the bounce point, that is,
the configuration at which they will materialize when the quantum tunnelling transition occurs, and
from that point on, Minkowski evolution takes over.

The Euclidean Lagrangian is given by

LE =


dx

(
1
2
φ̇2 +

1
2
ψ̇2 +

1
2
φ′2 +

1
2
ψ ′2 + V (φ,ψ)

)
. (7)

The fields depend on time only through their dependence on the positions of the solitons. Indeed, in
a first approximation, the fields depend independently on the positions of the solitons, which is the
appropriate collective coordinate describing their evolution. This means that we can approximate
φ(x, ξ1, ξ2) = φ1(x − ξ1) + φ2(x − ξ2) + φ0 while ψ(x, ξ1, ξ2) = ψ1(x − ξ1) + ψ2(x − ξ2) + ψ0, where
φ0 and ψ0 are necessary constant offsets. This approximation is certainly valid when the solitons are
separated from one another. It is not valid when they are very close, and we will have to resort to
numerical/approximate calculations to find the action there, but we leave that for later. For example,
for ψ̇ we get

ψ̇ = ∂ξ1ψ(x, ξ1, ξ2)ξ̇1 + ∂ξ2ψ(x, ξ1, ξ2)ξ̇2

= ∂ξ1ψ1(x − ξ1)ξ̇1 + ∂ξ2ψ2(x − ξ2)ξ̇2

= −∂xψ1(x − ξ1)ξ̇1 − ∂xψ2(x − ξ2)ξ̇2. (8)

∂xψ1(x − ξ1) = ψ ′1 is a function that is sharply peaked around ξ1 while ∂xψ2(x − ξ2) = ψ ′2 is sharply
peaked around ξ2; thus, the product of these functions essentially vanishes. This gives

LE =


dx

(
1
2
φ′21 ξ̇

2
1 +

1
2
φ′22 ξ̇

2
2 +

1
2
ψ ′21 ξ̇

2
1 +

1
2
ψ ′22 ξ̇

2
2 +

1
2
�
φ′21 + φ

′2
2 + ψ

′2
1 + ψ

′2
2

�
+ V (φ,ψ)

)
. (9)

Furthermore, the nature of the solitons at ξ1 and ξ2 in each field is essentially identical: they are
simply the “kink”-type solitons of an (almost) doubly degenerate (actually multiply degenerate, but
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FIG. 8. (a) Metastable soliton configuration (ξ = 0). (b) Solitons just touching (ξ = 0.15). (c) Solitons separated by a
macroscopic amount (ξ = 2). (d) Solitons separated by a macroscopic amount (ξ = 8). Here, we used parametrization (28) of
the bounce trajectory with a = 1,ω = 10,Ω= 100.

only adjacent minima are relevant here) potential. Therefore we will compute the contribution of
the kinks in the limit that the potential is exactly degenerate, and we note that kink or antikink
obviously gives an equal contribution. Thus we write

dx
1
2
φ′21 =


dx

1
2
φ′22 ≡

mφ

2
and


dx

1
2
ψ ′21 =


dx

1
2
ψ ′22 ≡

mψ

2
. (10)

mφ and mψ should not be confused with the actual masses of the perturbative excitations of each
respective field. The contribution of the potential to the action can also be easily deconstructed.
There will be a contribution from around the region of each soliton and there will be a contribution
from the region in between the solitons when they separate. We find that the interaction potential
plays no role in evaluating the action. We will assume this for the moment and discuss it in more
detail in Subsection III C.

A. Free kink approximation

We can write 
dx V (φ,ψ) ≈


x≈ξ1

dx
�
Vφ + Vψ

�
+


x≈ξ2

dx
�
Vφ + Vψ

�
(11)

and we will compute each term in (10) and (11) in the free kink approximation. For a field χ, which
satisfies an equation with solution given by a free kink, we have a Lagrangian

L =
1
2
χ′2 + V (χ) (12)

and equation of motion
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χ′′ − V ′(χ) = 0. (13)

The first integral of the equation of motion is conservation of energy,

1
2
χ′2 − V (χ) = C → 0, (14)

where C is a constant which we normalize to zero. Therefore χ′ =


2V (χ). Then the integrals that
appear in the action above are reduced to quadrature x f

xi

dx
1
2
χ′2 =

 x f

xi

dx
1
2


2V (χ)χ′ =

 χ f

χi

dχ


V (χ)

2
(15)

and  x f

xi

dxV (χ) =
 x f

xi

dx
1
2


2V (χ)χ′ =

 χ f

χi

dχ


V (χ)

2
, (16)

evidently, the integrals are equal.

B. Analytical evaluation of the Euclidean action

For φ, the potential is Vφ = α sin2(πφ) which gives

mφ

2
=

 x f

xi

dx
1
2
φ′2 =

 x f

xi

dxVφ(φ) =

α

2

 0

−1
dφ(− sin(πφ)) =


α

2
cos(πφ)

π

�����

0

−1
=

√
2α
π

.

(17)

The minus sign in front of the sin(πφ) comes from the square root since for the first kink φ ∈ [−1,0]
where sin(πφ) ≤ 0. For the field ψ we have Vψ = β

�
ψ2 − a2�2 which gives

mψ

2
=

 x f

xi

dx
1
2
ψ ′2 =

 x f

xi

dxVψ(ψ) =


β

2

 a

−a
dψ(a2 − ψ2) = 2

3


2βa3. (18)

We note the sign change in the intermediate equation as (ψ2 − a2) is negative for ψ ∈ [−a,a] and the
limits xi and x f are assumed to be both close to ξ1 or ξ2 as required.

We will evaluate the energy, first in the metastable configuration and second in the configu-
ration at the top of the potential barrier, so that eventually we can normalize the Euclidean ac-
tion properly and then evaluate it. For the metastable configuration, the energy essentially obtains
contributions from the locations of the kink solitons, two for φ and two for ψ, hence

E0 =
1
2


dx

�
φ′21 + φ

′2
2 + ψ

′2
1 + ψ

′2
2

�
+


x≈ξ1
x≈ξ2

dxV (φ,ψ)

= (mφ + mψ) +

x≈ξ1

dx (V (φ) + V (ψ)) +

x≈ξ2

dx(V (φ) + V (ψ))

= 2(mφ + mψ) (19)

using (17) and (18). We will subtract E0 from the potential so that we normalize the initial configu-
ration to vanishing energy.

For the configuration at the top of the potential barrier, which is actually at the bottom of a
potential well since we invert the potential in the Euclidean dynamics, we must take into account
the following differences: the solitons must have kinetic energy in order to conserve energy, we have
two additional kinks in the ψ field, and if the solitons separate by a distance |ξ2 − ξ1| the energy
increases by

 ξ2
ξ1

dxV (φ,ψ). For the metastable configuration, we did not imagine that the solitons
can separate; it is assumed that they are herded together by the shepherd field. If the solitons at the
top of the potential barrier separate, they leave behind the true vacuum. Since we will normalize the
vacuum energy so that the false vacuum outside the shepherd-sheep soliton has zero energy density,
the true vacuum of the φ field between two sheep will have negative energy, so this contribution in
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fact increases the energy in the Euclidean dynamics. The ψ field is in its true vacuum outside the
shepherd soliton; thus there is no energy density difference for it. However, the φ field is in its false
vacuum outside the shepherd soliton; hence, looking at potential (4), we see that the contribution
will be  ξ2

ξ1

dx V (φ,ψ) = −αϵφ |ξ2 − ξ1|. (20)

Then the energy for the configuration at the top of the barrier will be

ET − E0 =
1
2
(mφ + 2mψ)(ξ̇2

1 + ξ̇
2
2) + 2(mφ + 2mψ) − 2(mφ + mψ) − αϵφ |ξ2 − ξ1|

=
1
2
(mφ + 2mψ)(ξ̇2

1 + ξ̇
2
2) + 2mψ − αϵφ |ξ2 − ξ1|

= T + V. (21)

The Minkowski action is SM =


dt (T − V ) while the energy is E = T + V . Analytically continu-
ing to Euclidean time, T → −T and SM → −


dτ (T + V ) = −SE. Then the Euclidean action is

SE =


dτ (T + V ) and is easily read off as

SE =


dτ

(
1
2
(mφ + 2mψ)(ξ̇2

1 + ξ̇
2
2) + 2mψ − αϵφ |ξ2 − ξ1|

)
, (22)

where the overdot now means the derivative with respect to τ. The Euclidean trajectory, which
we can compute analytically, starts at the configuration at the top of the barrier. The solitons
separate until they reach the bounce point, and then they come back together and coalesce. We
define center of mass and relative coordinates X = (ξ1 + ξ2)/2 and ξ = ξ2 − ξ1; in terms of these,
ξ̇2

1 + ξ̇
2
2 = 2Ẋ2 + 1

2 ξ̇
2. We take the center of mass coordinate to be constant, X = Ẋ = 0 so that

ξ̇2
1 + ξ̇

2
2 =

1
2 ξ̇

2. The Euclidean “energy,” T − V , is conserved and normalized to zero

0 = T − V =
1
2

(mφ

2
+ mψ

)
ξ̇2 − 2mψ + αϵφξ, (23)

where we restrict ξ > 0. The solitons separate until ξ̇ = 0, hence at that point which corresponds to
the bounce point, ξ = ξB which is given by

ξB =
2mψ

αϵφ
. (24)

Then the contribution to the action from this part of the trajectory will be

SE =


dτ

1
2

(mφ

2
+ mψ

)
ξ̇2 + 2mψ − αϵφ |ξ |. (25)

Energy condition (23) implies

ξ̇ = 2


(2mψ − αϵφξ)

mφ + 2mψ
. (26)

Replacing in the usual way as in (12)-(16) for ξ̇ in the first term of (25) we find

SE =


dτ

1
2

(mφ

2
+ mψ

)
2


(2mψ − αϵφξ)

mφ + 2mψ
ξ̇ +


2mψ − αϵφξ

1
2


mφ + 2mψ ξ̇

=


dτ


2mψ − αϵφξ


mφ + 2mψ ξ̇

=

 ξB

ξT

dξ


2mψ − αϵφξ


mφ + 2mψ =
−2


mφ + 2mψ(2mψ − αϵφξ)3/2

3αϵφ

������

ξB

ξT≈0

=
2


mφ + 2mψ(2mψ)3/2
3αϵφ

, (27)
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where ξT is the value of ξ at the top of the barrier, which is of the order of the size of the solitons,
but we can approximate it as zero. This is the contribution to the action of the part of the instanton
from the top of the barrier to the bounce point.

C. Contribution of the interaction potential

In this subsection we give an argument why the interaction potential Vφψ does not contribute
significantly to the energy and the action. If we imagine the sheep solitons separating, then between
them the φ field will be in its true vacuum but the ψ field will be in its false vacuum. Thus as they
separate, the total energy will grow linearly. Thus the shepherd solitons give a compression that
holds the sheep together. However as the shepherd solitons compress the sheep more and more,
there will be an increase in the pressure, and the system will come to an equilibrium. There are
many contributions to the pressure forces, and the φ kinks becoming steeper than their natural slope
will add energy and hence pressure. But there will be a contribution coming from the interaction
term. Effectively the shepherd solitons would like to approach each other and annihilate completely
in order to minimize their energy. The sheep solitons get in the way. The energy diminishes linearly
as the separation of the shepherd solitons goes to zero, with coefficient βϵψ. If one forces the
shepherd solitons closer and closer, the value of the ψ field at the point where φ ≈ 1/2 starts to move
significantly away from ±a, the values for which the numerator of the interaction term vanishes.
This will make the energy increase, to first approximation linearly, however with much greater
coefficient κ ≫ βϵψ. Thus the dynamics can be simply modelled as given by an effective potential
of the form

Veff =



βϵψξ for ξ > ξ0

βϵψξ − κ(ξ − ξ0) for ξ < ξ0
,

where the second term is valid only for ξ → ξ−0 and ξ0 is smaller than the size of the free solitons.
For even smaller values of ξ, the repulsion quickly becomes large and quite non-linear. However,
the energy in the compression term is comparable to βϵψξ0, which, along with the corresponding
pressure, for small ϵψ can be made very small. This compression will be balanced by an equal, and
hence small, but opposing, repulsive force. Thus this contribution to the energy of the solitons is
arbitrarily small in the limit ϵψ → 0, which is what we assume. Therefore, we conclude that the
interaction term does not contribute significantly to the energy of the solitons. The most physical
analogy can be made to nuclei, which have intrinsic mass energy, proportional to the number of
nucleons, but which is modified by the binding energy of the nucleons. For precision measurements
the binding energies are important, but in the values of the overall masses, they are quite negligible.

D. Contribution of the trajectory from the initial metastable state to the top of the barrier

The Euclidean evolution from the initial metastable configuration corresponds to a complicated
evolution until the system reaches a configuration at the point that we have called the top of the
barrier. Although for the Euclidean time evolution which occurs in the inverted potential, a more
accurate nomenclature for this point would be the “bottom of the well,” we will continue to call it
the top of the barrier as that is what it is in the real time dynamics. The configuration at the top of
the barrier corresponds to two distinct sheep and shepherd solitons that are separated by the minimal
amount required so that there is no appreciable deformation of their profiles due to the interaction
between them. The subsequent Euclidean evolution can be well approximated by the free kinks,
which we can then treat analytically giving the contribution to the action in Eq. (27). In principle
would have to resort to numerical methods to calculate the contribution to the action of the part of
the trajectory from the initial configuration to the top of the barrier, however, in practice, we will be
able to analytically compute an upper bound to it and then be able to conclude that it is negligible
compared with contribution Eq. (27). With a simple parametrization of the configuration in terms
of hyperbolic tangents, which are the free kinks of the (ψ2 − a2)2 potential and inverse tangents of
exponential argument, which are the free kinks of the sin-Gordon model, we can get this upper
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bound of the contribution to the action from the initial part of the trajectory. Taking

ψ(x, ξ) = a


tanhΩ
�
x + (ξ/2 + 2/ω)� − tanhΩ

�
x − (ξ/2 + 2/ω)�

−
(

tanhΩ(x + ξ/2) − tanhΩ(x − ξ/2)) − 1

,

φ(x, ξ) = 2
π


tan−1e

ω
(
x+
�
ξ/2+1/ω

�)
+ tan−1e

ω
(
x−
�
ξ/2+1/ω

�)
− 1, (28)

where Ω =


2βa and ω =
√

2απ, while ξ is the separation parameter, this function is depicted in
Figs. 8(a)–8(d).

The numerically evaluated effective potential for parametrization (28) is shown in Figure 9.
The actual exact instanton trajectory may involve very much more complicated configurations, such
as exciting shape deformations, breather modes, and radiating waves; however, the exact trajectory
will give the minimum value for the Euclidean action. Therefore any value that we compute using
the explicit parametrization of Eq. (28) will simply give an upper bound for the action, and subse-
quently a lower bound for the decay rate. We will find that the upper bound that we obtain for
the contribution to the action from the initial part of the instanton trajectory is in fact negligible in
comparison to the contribution from the remainder of the trajectory, where the two solitons separate,
reach the turning point, and bounce back, computed in Eq. (27). The behaviour of the potential for
separation of the solitons greater than their intrinsic size is completely understandable in terms of
the energy found in (21), which corresponds to the part of the potential starting at the top of the
barrier and descending along a very slightly sloped straight line. The bounce point is achieved at
ξB = 2mψ/αϵφ, which obviously behaves as o(1/ϵφ). The trajectory from the initial metastable state
to the top of the barrier, in the parametrized set of configurations of Eq. (28), achieves the top of
the barrier with ξ varying from 0 to ≈4/Ω, starting from where the two φ solitons are just touching
each other and there are no ψ solitons between them to a separation of the order of the width of
the two ψ solitons that subsequently appear between the two φ solitons. We emphasize that this
is a size which is o(1) when compared with o(1/ϵφ). The Euclidean action, for the parametrized
configuration can be evaluated analytically or numerically, we will be content with a combination of
the two. Compared to the evaluation in Eq. (27) the following complication arises. The ψ solitons
between the two sheep solitons are not initially well separated, hence the arguments given after
Eq. (8) are not valid. But we can easily calculate the action explicitly and we find

SE =


dτdx

(
1
2
�
∂ξφ

2 + ∂ξψ
2� ξ̇2 +

1
2

(
φ′2 + ψ ′2

)
+ V (φ,ψ)

)
=


dτ

(
1
2

M(ξ)ξ̇2 + Veff.(ξ)
)
, (29)

FIG. 9. Potential Veff .(ξ) for parametrization (28) of the bounce trajectory with the same parameter choice as in Fig. 8. We
have checked that the potential is perfectly smooth at the top of the barrier. The parameters are chosen as a = 30, α = β =
5, Ω= 94.86, ω = 9.93, γ = 0.01, λ = 0.1, ϵφ = 0.01, ϵψ = 0.5.
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where

M(ξ) = ω

π2 + 2a2
Ω

(
1
3
+ (ξ coth(ξ) − 1)csch2(ξ) + 1

3

)
(30)

is now a ξ dependent mass and Veff.(ξ) is evaluated numerically and is shown in Fig. 9. It is of
course completely possible to evaluate Veff.(ξ) analytically, but this does not shed any more light
on the situation. The potential rises robustly to the top of the barrier, what we have calculated
approximately as 2mψ in Eq. (21). Most importantly, there are only minor, perturbative corrections
in ϵφ or ϵψ, which we can obviously neglect in lowest approximation. The ξ dependent mass is a
smooth function of ξ, which is maximal at ξ = 0 and quickly achieves a constant asymptotic value
as ξ increases. Action Eq. (29) being independent of Euclidean time gives equations of motion that
conserve “energy” and hence admits a first integral even though the mass depends on ξ,

1
2

M(ξ)ξ̇2 − Veff.(ξ) = 0. (31)

Then using the by now familiar procedure, we obtain

SE =

 ξ≈(2/Ω)

0
dξ


2M(ξ)Veff.(ξ) ∼ o(1). (32)

Thus we conclude that the contribution to the action from the initial part of the bounce configuration
is at most of o(1), and comparing with the contribution to the action from the remainder of the
bounce trajectory, Eq. (27) which is of o(1/ϵφ), it is perfectly reasonable to neglect this contribution
to the Euclidean action.

IV. DISCUSSION

We have computed the decay of a domain wall which traps the true vacuum inside the false
vacuum. At first glance, one would think that such a domain wall would be classically unstable to
dissociation; however, it is easy to conceive of interactions which keep the soliton classically stable.
The model presented here may be artificial; however, the general idea is clear. Any potential which
prevents the passage of the sheep solitons through the shepherd solitons will do.

There is furthermore no analogous surface energy that occurs in two6,7 and three8 spatial
dimensional examples, which could trap the true vacuum inside, at least classically. However, in
this paper we find that we can build on the analogy with the two spatial dimensional models.6,7 In
those models, the true vacuum was separated from the false vacuum by a thin wall. The thin wall
was achieved by having several topological quanta of one of the fields trapped inside the wall. The
pressure of these quanta made the wall thin. It may well be that the thin wall monopole suggested in
Ref. 8 in fact only occurs for large monopole charge as has been found in several large charged BPS
monopoles.9

In the present paper, we also trap N solitons of the field φ inside the confining soliton of
the field ψ. The N solitons in principle exert a pressure and the overall size of the full soliton is
proportional to N . The decay of the soliton can occur through tunnelling transitions. In the initial
metastable configuration, the external false vacuum is due to the φ field; the ψ field is in its true
vacuum. However, inside, the ψ field goes to its false vacuum while the φ field interpolates from
the false vacuum to the true vacuum and back to the false vacuum multiple times, finally exiting
the confining region in its false vacuum. Tunnelling transitions, essentially in the field ψ inside the
confining soliton, will cut the soliton into two parts. The region between the two parts is in the true
vacuum for both fields. This could happen at any point within the confining soliton where the φ
field crosses its true vacuum, which occurs multiple times if there are multiple φ solitons confined.
It will continue to occur until all the φ solitons are free. The configuration will then resemble one
half-soliton, linking the false vacuum on the outside to the true vacuum, followed by a string N of
full solitons, in which the φ field makes the transit from true to adjacent false to the subsequent true
vacua while the ψ field makes the transition true to false and back to true vacua, followed by a final
half-soliton interpolating from the true vacuum to the false vacuum on the outside at the other end.
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However, after any one transition, the false vacuum outside will be unstable to the groups of herded
solitons from separating apart, converting false vacuum to true vacuum. We have computed the
decay rate for the “fundamental” meta-stable soliton consisting of a bound state of two half-solitons,
where the φ field goes only once, from false vacuum to true vacuum to false vacuum. The decay rate
is proportional to

Γ ∼ e−2
√

mφ+2mψ(2mψ)3/2/3αϵφK, (33)

where K is the usual determinant prefactor.10,11 We note that parametrically for α large enough, this
decay rate can be unsuppressed.

The decay rate for each tunnelling transition for the decay on N herded sheep must be calcu-
lated separately for each process, by essentially the same methods as we have done above. The
calculation of the effective potential is essentially identical to our analysis, and only the zero of
the energy has to be defined corresponding to the original N sheep meta-stable soliton. The inertia
terms will however be different. The masses of the daughter solitons formed after the decay process
depend on where the ψ field makes its transition to its true minimum and cuts the original soliton
into two pieces. In general they will be different from the masses that we have calculated Eqs. (17)
and (18), and this will affect the value of the euclidean action for the tunnelling process. The
calculation is straightforward and left to the reader, we do not expect any surprises.
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