A New Multi-Expert Decision Combination Algorithm and its Application to the Detection of Circumscribed Masses in Digital Mammograms

Constantinidis, A.S. and Fairhurst, Michael and Rahman, Ahmad Fuad Rezaur (2001) A New Multi-Expert Decision Combination Algorithm and its Application to the Detection of Circumscribed Masses in Digital Mammograms. Pattern Recognition, 34 . pp. 1527-1537. ISSN 0031-3203. (The full text of this publication is not available from this repository)

The full text of this publication is not available from this repository. (Contact us about this Publication)
Official URL
http://dx.doi.org/10.1016/S0031-3203(00)00088-1

Abstract

A new multiple expert fusion algorithm is introduced, designated the “augmented behaviour-knowledge space method”. Most existing multiple expert classification methods rely on a large training dataset in order to be properly utilised. The proposed method effectively overcomes this problem as it exploits the confidence levels of the decisions of each classifier. It will be shown that this new approach is advantageous when small datasets are available, and this is illustrated in its application to the detection of circumscribed masses in digital mammograms, with very encouraging results.

Item Type: Article
Subjects: T Technology
Divisions: Faculties > Science Technology and Medical Studies > School of Engineering and Digital Arts > Image and Information Engineering
Depositing User: J. Harries
Date Deposited: 19 Dec 2007 18:16
Last Modified: 17 Jul 2014 08:13
Resource URI: http://kar.kent.ac.uk/id/eprint/467 (The current URI for this page, for reference purposes)
  • Depositors only (login required):