cAMP/PKA signaling balances respiratory activity with mitochondria dependent apoptosis via transcriptional regulation

Leadsham, Jane E and Gourlay, Campbell W. (2010) cAMP/PKA signaling balances respiratory activity with mitochondria dependent apoptosis via transcriptional regulation. BMC Cell Biology, 11 (92). pp. 1471-2121. ISSN 1471-2121. (The full text of this publication is not available from this repository)

The full text of this publication is not available from this repository. (Contact us about this Publication)
Official URL
http://dx.doi.org/10.1186/1471-2121-11-92

Abstract

Background Appropriate control of mitochondrial function, morphology and biogenesis are crucial determinants of the general health of eukaryotic cells. It is therefore imperative that we understand the mechanisms that co-ordinate mitochondrial function with environmental signaling systems. The regulation of yeast mitochondrial function in response to nutritional change can be modulated by PKA activity. Unregulated PKA activity can lead to the production of mitochondria that are prone to the production of ROS, and an apoptotic form of cell death. Results We present evidence that mitochondria are sensitive to the level of cAMP/PKA signaling and can respond by modulating levels of respiratory activity or committing to self execution. The inappropriate activation of one of the yeast PKA catalytic subunits, Tpk3p, is sufficient to commit cells to an apoptotic death through transcriptional changes that promote the production of dysfunctional, ROS producing mitochondria. Our data implies that cAMP/PKA regulation of mitochondrial function that promotes apoptosis engages the function of multiple transcription factors, including HAP4, SOK2 and SCO1. Conclusions We propose that in yeast, as is the case in mammalian cells, mitochondrial function and biogenesis are controlled in response to environmental change by the concerted regulation of multiple transcription factors. The visualization of cAMP/TPK3 induced cell death within yeast colonies supports a model that PKA regulation plays a physiological role in coordinating respiratory function and cell death with nutritional status in budding yeast.

Item Type: Article
Subjects: Q Science
Divisions: Faculties > Science Technology and Medical Studies > School of Biosciences
Depositing User: Sue Davies
Date Deposited: 08 Oct 2012 11:15
Last Modified: 09 Aug 2013 08:04
Resource URI: http://kar.kent.ac.uk/id/eprint/31355 (The current URI for this page, for reference purposes)
  • Depositors only (login required):