New symbolic computation methods for the exact solution of two-point boundary value problems

Rosenkranz, Markus (2005) New symbolic computation methods for the exact solution of two-point boundary value problems. In: Hassi, S. and Keranen, V. and Kallman, C.-G. and Laaksonen, M. and Linna, M., eds. Proceedings of the algorithmic information theory conference. Selvityksia ja Raportteja, 124 . Vaasan Yliopiston Julkaisuja, pp. 157-176. ISBN 9524761246. (The full text of this publication is not available from this repository)

The full text of this publication is not available from this repository. (Contact us about this Publication)
Official URL
http://www.zentralblatt-math.org/ioport/en/?q=an%3...

Abstract

A linear two-point boundary value problem is given by a linear ordinary differential equation together with a set of linear boundary conditions set up at the two boundary points of a finite real interval. The given differential equation is inhomogeneous, and its right-hand side is regarded as a symbolic parameter, so solving it can be seen as finding a linear operator (the so-called “Green’s operator") that maps the symbolic parameter to the symbolic solution of the boundary value problem (assuming existence and uniqueness). Up to now, boundary value problems have not received much attention in symbolic computation since they may be subsumed under the heading of differential equations. However, standard methods from there will often not be effective due to the presence of the symbolic parameter. Moreover, it seems more natural to work directly on the level of operators since boundary value problems are, as described above, operator problems in disguise. We present a new solution approach that takes these issues into account and sheds some light on the essence of integral operators in symbolic computation.

Item Type: Book section
Uncontrolled keywords: Noncommutative Groebner bases
Subjects: Q Science > QA Mathematics (inc Computing science) > QA150 Algebra
Q Science > QA Mathematics (inc Computing science) > QA372 Ordinary differential equations
Q Science > QA Mathematics (inc Computing science) > QA 76 Software, computer programming,
Divisions: Faculties > Science Technology and Medical Studies > School of Mathematics Statistics and Actuarial Science > Applied Mathematics
Depositing User: Markus Rosenkranz
Date Deposited: 27 Jul 2012 17:38
Last Modified: 13 Aug 2012 10:42
Resource URI: http://kar.kent.ac.uk/id/eprint/29976 (The current URI for this page, for reference purposes)
  • Depositors only (login required):