Evseev, A. and Paget, R. and Wildon, M. (2012) Character deflations and a generalization of the MurnaghanNakayama rule. Arxiv . (Submitted) (Full text available)
PDF  Submitted Version  
Download (268kB)
Preview



Official URL http://arxiv.org/abs/1202.0067 
Abstract
Given natural numbers m and n, we define a deflation map from the characters of the symmetric group S_{mn} to the characters of S_n. This map is defined by first restricting a character of S_{mn} to the wreath product S_m \wr S_n, and then taking the sum of the irreducible constituents of the restricted character on which the base group S_m \times ... \times S_m acts trivially. We prove a combinatorial rule which gives the values of the images of the irreducible characters of S_{mn} under this map. This rule is shown to generalize the MurnaghanNakayama rule. We also prove a number of analogous results for more general deflation maps in which the base group in the wreath product is not required to act trivially.
Item Type:  Article 

Subjects:  Q Science > QA Mathematics (inc Computing science) > QA165 Combinatorics Q Science > QA Mathematics (inc Computing science) > QA171 Representation theory 
Divisions:  Faculties > Science Technology and Medical Studies > School of Mathematics Statistics and Actuarial Science Faculties > Science Technology and Medical Studies > School of Mathematics Statistics and Actuarial Science > Pure Mathematics 
Depositing User:  Rowena E Paget 
Date Deposited:  25 Apr 2012 09:42 
Last Modified:  25 Apr 2012 11:08 
Resource URI:  http://kar.kent.ac.uk/id/eprint/29323 (The current URI for this page, for reference purposes) 
 Export to:
 RefWorks
 EPrints3 XML
 CSV
 Depositors only (login required):