ATR (ataxia telangiectasia mutated- and Rad3-related kinase) is activated by mild hypothermia in mammalian cells and subsequently activates p53

Roobol, Anne and Roobol, Jo and Carden, M.J. and Bastide, Amandine and Willis, Anne E. and Dunn, Warwick B. and Goodacre, Royston and Smales, C.M. (2011) ATR (ataxia telangiectasia mutated- and Rad3-related kinase) is activated by mild hypothermia in mammalian cells and subsequently activates p53. Biochemical Journal, 435 (2). pp. 499-508. ISSN 0264-6021. (The full text of this publication is not available from this repository)

The full text of this publication is not available from this repository. (Contact us about this Publication)
Official URL
http://dx.doi.org/10.1042/BJ20101303

Abstract

In vitro cultured mammalian cells respond to mild hypothermia (27–33 °C) by attenuating cellular processes and slowing and arresting the cell cycle. The slowing of the cell cycle at the upper range (31–33 °C) and its complete arrest at the lower range (27–28 °C) of mild hypothermia is effected by the activation of p53 and subsequent expression of p21. However, the mechanism by which cold is perceived in mammalian cells with the subsequent activation of p53 has remained undetermined. In the present paper, we report that the exposure of Chinese-hamster ovary-K1 cells to mildly hypothermic conditions activates the ATR (ataxia telangiectasia mutated- and Rad3-related kinase)–p53–p21 signalling pathway and is thus a key pathway involved in p53 activation upon mild hypothermia. In addition, we show that although p38MAPK (p38 mitogen-activated protein kinase) is also involved in activation of p53 upon mild hypothermia, this is probably the result of activation of p38MAPK by ATR. Furthermore, we show that cold-induced changes in cell membrane lipid composition are correlated with the activation of the ATR–p53–p21 pathway. Therefore we provide the first mechanistic detail of cell sensing and signalling upon mild hypothermia in mammalian cells leading to p53 and p21 activation, which is known to lead to cell cycle arrest.

Item Type: Article
Uncontrolled keywords: ataxia telangiectasia mutated- and Rad3-related kinase (ATR), Chinese-hamster ovary cell (CHO cell), cold shock, hypothermia, lipidomics, metabolomics, p53.
Subjects: Q Science
Divisions: Faculties > Science Technology and Medical Studies > School of Biosciences
Depositing User: Sue Davies
Date Deposited: 27 Mar 2012 15:00
Last Modified: 28 Mar 2012 10:23
Resource URI: http://kar.kent.ac.uk/id/eprint/29211 (The current URI for this page, for reference purposes)
  • Depositors only (login required):