Relative Invariants, Ideal Classes and Quasi-Canonical Modules of Modular Rings of Invariants

Fleischmann, Peter and Woodcock, Chris F. (2011) Relative Invariants, Ideal Classes and Quasi-Canonical Modules of Modular Rings of Invariants. Journal of Algebra, 348 (1). pp. 110-134. ISSN 0021-8693. (The full text of this publication is not available from this repository)

The full text of this publication is not available from this repository. (Contact us about this Publication)
Official URL
http://dx.doi.org/10.1016/j.jalgebra.2011.09.024

Abstract

We describe “quasi-canonical modules” for modular invariant rings R of finite group actions on factorial Gorenstein domains. From this we derive a general “quasi-Gorenstein criterion” in terms of certain 1-cocycles. This generalizes a recent result of A. Braun for linear group actions on polynomial rings, which itself generalizes a classical result of Watanabe for non-modular invariant rings. We use an explicit classification of all reflexive rank one R-modules, which is given in terms of the class group of R, or in terms of R-semi-invariants. This result is implicitly contained in a paper of Nakajima (1982).

Item Type: Article
Subjects: Q Science > QA Mathematics (inc Computing science) > QA150 Algebra
Divisions: Faculties > Science Technology and Medical Studies > School of Mathematics Statistics and Actuarial Science > Pure Mathematics
Depositing User: Chris F Woodcock
Date Deposited: 02 Jan 2012 01:02
Last Modified: 19 May 2014 13:26
Resource URI: http://kar.kent.ac.uk/id/eprint/28565 (The current URI for this page, for reference purposes)
  • Depositors only (login required):