Compensations for diminished terminal oxidase activity in Escherichia coli: cytochrome bd-II-mediated respiration and glutamate metabolism.

Shepherd, Mark and Sanguinetti, Guido and Cook, Gregory M and Poole, Robert K (2010) Compensations for diminished terminal oxidase activity in Escherichia coli: cytochrome bd-II-mediated respiration and glutamate metabolism. Journal of Biological Chemistry, 285 (24). pp. 18464-72. ISSN 0021-9258. (The full text of this publication is not available from this repository)

The full text of this publication is not available from this repository. (Contact us about this Publication)
Official URL
http://dx.doi.org/10.1074/jbc.M110.118448

Abstract

Escherichia coli possesses cytochrome bo' (CyoABCDE), cytochrome bd-I (CydAB), and cytochrome bd-II (AppBC) quinol oxidases, all of which can catalyze the terminal step in the aerobic respiratory chain, the reduction of oxygen by ubiquinol. Although CydAB has a role in the generation of DeltapH, AppBC has been proposed to alleviate the accumulation of electrons in the quinone pool during respiratory stress via electroneutral ubiquinol oxidation. A cydB mutant strain exhibited lower respiration rates while maintaining a wild type growth rate. Transcriptomic analysis revealed a dramatic up-regulation of AppBC in the cydB strain, accompanied by the induction of genes involved in glutamate/gamma-aminobutyric acid (GABA) antiport, the GABA shunt, the glyoxylate shunt, respiration (including appBC), motility, and osmotic stress. Transcription factor modeling suggests that the underpinning regulation is largely controlled by H-NS, GadX, FlhDC, and AppY. The transcriptional adaptations imply that cydB cells contribute to the proton motive force via consumption of intracellular protons and glutamate/GABA antiport. Indeed, supplementation of culture medium with l-glutamate stimulates growth in a cydB strain. Phenotype analyses of the cydB strain confirm decreased motility and elevated acid resistance and also an elevated cytochrome d spectroscopic signal in cells grown at low pH. We propose a mechanism via which E. coli can compensate for the loss of cytochrome bd-I activity; cytochrome bd-II-mediated quinol oxidation prevents the accumulation of NADH, whereas GABA synthesis/antiport maintains the proton motive force for ATP production.

Item Type: Article
Subjects: Q Science
Divisions: Faculties > Science Technology and Medical Studies > School of Biosciences
Depositing User: Mark Shepherd
Date Deposited: 01 Sep 2011 15:53
Last Modified: 29 Apr 2014 08:20
Resource URI: http://kar.kent.ac.uk/id/eprint/28102 (The current URI for this page, for reference purposes)
  • Depositors only (login required):