Skip to main content
Kent Academic Repository

In vitro changes in the structure of a bioactive calcia-silica sol-gel glass explored using isotopic substitution in neutron diffraction

Newport, Robert J., Skipper, Laura J., Fitzgerald, Victoria, Pickup, David M., Smith, Mark E., Jones, Julian R. (2007) In vitro changes in the structure of a bioactive calcia-silica sol-gel glass explored using isotopic substitution in neutron diffraction. Journal of Non-Crystalline Solids, 353 (18-21). pp. 1854-1859. ISSN 0022-3093. (doi:10.1016/j.jnoncrysol.2007.02.015) (Access to this publication is currently restricted. You may be able to access a copy if URLs are provided) (KAR id:2661)

PDF
Language: English

Restricted to Repository staff only
[thumbnail of in_vitro_bioactive_calcia_silica_sol_gel.pdf]
Official URL:
http://dx.doi.org/10.1016/j.jnoncrysol.2007.02.015

Abstract

Bioactive sol-gel derived glass scaffolds bond to bone and their dissolution products stimulate new bone growth in vitro and in vivo; they may therefore be used to regenerate diseased or damaged bone to its original state and function in bone tissue engineering applications. We seek herein to cast light upon these reaction mechanisms by attempting to quantify changes in the atomic-scale structure of the glass scaffold as a result of in vitro reaction with simulated body fluid (SBF). We report the results of a study using neutron diffraction with isotopic substitution (NDIS) to gain new insights into the nature of the atomic scale calcium environment in bioactive sol-gel glasses. This is augmented by high-energy X-ray total diffraction. We have thereby begun to explore the nature of the principal stages to the generation of hydroxyapatite (i.e. the mineral 'building block' of bone) on the bioactive glass surface. The data are examined in light of our complementary solid-state NMR and computer modelling studies. The results reveal that the Ca-O environment in an SBF exposed (CaO)(0.3)(SiO2)(0.7) sol-gel glass, which initially comprises three distinct but partially overlapping correlation shells centered at 2.3 angstrom, 2.5 angstrom and 2.75 angstrom, preferentially loses the shortest length correlation. A (CaH)-H-... correlation appears at 2.95 angstrom. The surface deposited (CaP)-P-... environment consists of three partially overlapping, but nonetheless distinct, correlation shells, at 3.15 angstrom, 3.40 angstrom and 3.70 angstrom.

Item Type: Article
DOI/Identification number: 10.1016/j.jnoncrysol.2007.02.015
Uncontrolled keywords: bioglass; biomaterials; neutron diffraction/scattering; silicates; sol-gels (xerogels); short-range order
Subjects: Q Science > Q Science (General)
Divisions: Divisions > Division of Natural Sciences > Physics and Astronomy
Depositing User: Suzanne Duffy
Date Deposited: 21 Apr 2008 08:05 UTC
Last Modified: 16 Nov 2021 09:41 UTC
Resource URI: https://kar.kent.ac.uk/id/eprint/2661 (The current URI for this page, for reference purposes)

University of Kent Author Information

Newport, Robert J..

Creator's ORCID:
CReDIT Contributor Roles:

Fitzgerald, Victoria.

Creator's ORCID:
CReDIT Contributor Roles:

Pickup, David M..

Creator's ORCID:
CReDIT Contributor Roles:
  • Depositors only (login required):

Total unique views for this document in KAR since July 2020. For more details click on the image.