Electron in a tangled chain: Multifractality at the small-world critical point

Quintanilla, Jorge and Campo, Vivaldo L (2007) Electron in a tangled chain: Multifractality at the small-world critical point. Physical Review B, 75 (14). p. 1441204. ISSN 1098-0121. (The full text of this publication is not available from this repository)

The full text of this publication is not available from this repository. (Contact us about this Publication)
Official URL
http://dx.doi.org/10.1103/PhysRevB.75.144204

Abstract

We study a simple model of conducting polymers in which a single electron propagates through a randomly tangled chain. The model has the geometry of a small-world network, with a small density p of crossings of the chain acting as shortcuts for the electron. We use numerical diagonalization and simple analytical arguments to discuss the density of states, inverse participation ratios, and wave functions. We suggest that there is a critical point at p=0 and demonstrate finite-size scaling of the energy and wave functions at the lower band edge. The wave functions are multifractal. The critical exponent of the correlation length is consistent with criticality due to the small-world effect, as distinct from the previously discussed, dimensionality-driven Anderson transition.

Item Type: Article
Subjects: Q Science > QC Physics
Divisions: Faculties > Science Technology and Medical Studies > School of Physical Sciences > Functional Materials Group
Depositing User: Jorge Quintanilla
Date Deposited: 14 Oct 2010 14:37
Last Modified: 07 Apr 2014 14:30
Resource URI: http://kar.kent.ac.uk/id/eprint/25611 (The current URI for this page, for reference purposes)
  • Depositors only (login required):