Campbell, H.E.A. and Shank, R.J. and Wehlau, D.L. (2010) Vector invariants for the two dimensional modular representation of a cyclic group of prime order. Advances in Mathematics, 225 (2). pp. 10691094. ISSN 00018708. (Full text available)
Download (313kB)



Official URL http://dx.doi.org/10.1016/j.aim.2010.03.018 
Abstract
In this paper, we study the vector invariants, F[mV_2]^(C_p), of the 2dimensional indecomposable representation V_2 of the cylic group, C_p, of order p over a field F of characteristic p. This ring of invariants was first studied by David Richman who showed that this ring required a generator of degree m(p1), thus demonstrating that the result of Noether in characteristic 0 (that the ring of invariants of a finite group is always generated in degrees less than or equal to the order of the group) does not extend to the modular case. He also conjectured that a certain set of invariants was a generating set with a proof in the case p=2. This conjecture was proved by Campbell and Hughes. Later, Shank and Wehlau determined which elements in Richman's generating set were redundant thereby producing a minimal generating set. We give a new proof of the result of Campbell and Hughes, Shank and Wehlau giving a minimal algebra generating set for the ring of invariants F[m V_2]^(C_p). In fact, our proof does much more. We show that our minimal generating set is also a SAGBI basis. Further, our techniques also serve to give an explicit decomposition of F[m V_2] into a direct sum of indecomposable C_pmodules. Finally, noting that our representation of C_p on V_2 is as the pSylow subgroup of SL_2(F_p), we are able to determine a generating set for the ring of invariants of F[m V_2]^(SL_2(F_p)).
Item Type:  Article 

Additional information:  arXiv:0901.2811 
Subjects:  Q Science > QA Mathematics (inc Computing science) > QA150 Algebra 
Divisions:  Faculties > Science Technology and Medical Studies > School of Mathematics Statistics and Actuarial Science > Pure Mathematics 
Depositing User:  R James Shank 
Date Deposited:  21 Jun 2010 13:04 
Last Modified:  06 Sep 2011 04:48 
Resource URI:  http://kar.kent.ac.uk/id/eprint/23885 (The current URI for this page, for reference purposes) 
 Export to:
 RefWorks
 EPrints3 XML
 CSV
 Depositors only (login required):