Radiobiological effects of hypoxia-dependent uptake of (64)Cu-ATSM: enhanced DNA damage and cytotoxicity in hypoxic cells

Weeks, Amanda J and Paul, Rowena L. and Marsden, Paul K. and Blower, Philip J. and Lloyd, Daniel R. (2010) Radiobiological effects of hypoxia-dependent uptake of (64)Cu-ATSM: enhanced DNA damage and cytotoxicity in hypoxic cells. European Journal of Nuclear Medicine and Molecular Imaging, 37 (2). pp. 330-338. ISSN 1619-7089. (The full text of this publication is not available from this repository)

The full text of this publication is not available from this repository. (Contact us about this Publication)
Official URL
http://dx.doi.org/10.1007/s00259-009-1305-8

Abstract

PURPOSE: Hypoxia occurs frequently in cancers and can lead to therapeutic resistance due to poor perfusion and loss of the oxygen enhancement effect. (64)Cu-ATSM has shown promise as a hypoxia diagnostic agent due to its selective uptake and retention in hypoxic cells and its emission of positrons for PET imaging. (64)Cu also emits radiotoxic Auger electrons and beta(-) particles and may therefore exhibit therapeutic potential when concentrated in hypoxic tissue. METHODS: MCF-7 cells were treated with 0-10 MBq/ml (64)Cu-ATSM under differing oxygen conditions ranging from normoxia to severe hypoxia. Intracellular response to hypoxia was measured using Western blotting for expression of HIF-1alpha, while cellular accumulation of (64)Cu was measured by gamma counting. DNA damage and cytotoxicity were measured with, respectively, the Comet assay and clonogenic survival. RESULTS: (64)Cu-ATSM uptake in MCF-7 cells increased as atmospheric oxygen decreased (up to 5.6 Bq/cell at 20.9% oxygen, 10.4 Bq/cell at 0.1% oxygen and 26.0 Bq/cell at anoxia). Toxicity of (64)Cu-ATSM in MCF-7 cells also increased as atmospheric oxygen decreased, with survival of 9.8, 1.5 and 0% in cells exposed to 10 MBq/ml at 20.9, 0.1 and 0% oxygen. The Comet assay revealed a statistically significant increase in (64)Cu-ATSM-induced DNA damage under hypoxic conditions. CONCLUSION: The results support a model in which hypoxia-enhanced uptake of radiotoxic (64)Cu induces sufficient DNA damage and toxicity to overcome the documented radioresistance in hypoxic MCF-7 cells. This suggests that (64)Cu-ATSM and related complexes have potential for targeted radionuclide therapy of hypoxic tumours.

Item Type: Article
Subjects: R Medicine > RC Internal medicine > RC0254 Neoplasms. Tumors. Oncology (including Cancer)
R Medicine > RM Therapeutics. Pharmacology
Divisions: Faculties > Science Technology and Medical Studies > School of Biosciences > Biomedical Research Group
Depositing User: Dan Lloyd
Date Deposited: 29 Jun 2011 13:26
Last Modified: 29 May 2014 12:55
Resource URI: http://kar.kent.ac.uk/id/eprint/23738 (The current URI for this page, for reference purposes)
  • Depositors only (login required):