
��5խ���Q���y�0��q�6|������
��^{K�G���=��$q�a.������a�����O��
���4X��������Xp�]��"ԜȀUP��e�OH����� ��{��*�s����$��������������.� /
�Iʈ}*S�
��!rF�z(,c.�s�[pT�F�����~��A�b�{���������3�4�����9�Ӯ�{�.�%t

Using Constraints to Develop and Deliver Adaptive
Tests

Sophiana Chua Abdullah and Roger E. Cooley
Computing Laboratory

University of Kent at Canterbury
Canterbury

Kent CT2 7NF
The United Kingdom

Email: {sc34,rec}@ukc.ac.uk
Telephone: ++44 1227 823824 Fax: ++44 1227 762811

Abstract
This paper shows how the techniques used to develop knowledge-based
systems can be applied to the construction of adaptive tests. It reports on an
experimental approach to the construction of adaptive tests, and it draws on
work in the fields of Intelligent Tutoring Systems, Expert Systems and
Constraint Logic Programming.

The distinctive features of the work are:

• The use of expert emulation as a basis for the design of tests.
• The use of logic programming and constraints for two purposes. Firstly, to

support knowledge acquisition from an expert tutor during the
development of a test; and secondly, to support the delivery of the test.

The paper, after reviewing the approach to adaptive tests in Intelligent
Tutoring Systems research, presents a case for expert emulation under those
circumstances in which statistically based testing procedures are
inappropriate. The paper then describes how knowledge about the content
and design of an adaptive test can be facilitated by computer support. The
software developed for this task makes use of a constraint solver embedded
in a Prolog system. In the subject area of the adaptive tests, namely
elementary arithmetic, it is shown that this software can be used for several
purposes. It can be used to: describe classes of problems, describe arithmetic
skills, describe student responses to problems and to generate problems. The
paper concludes with a discussion of a procedure for exploring a student’s
knowledge of a syllabus.

Adaptive Testing in Intelligent Tutoring Systems
Though developed independently, computerised adaptive testing (Wainer,
1990) has found a natural home in intelligent tutoring systems. In particular,
ideas from Item Response Theory (Wainer and Mislevy, 1990) have been
very influential. They have formed the basis of a system to assess student
programming abilities (Syang and Dale, 1993), they have influenced Huang’s
content-balanced tests (Huang, 1996), and more recently, their influence can
be seen in a web-based adaptive testing system in the domain of European
vegetable species (Rios et al., 1999). Another strand of development in
adaptive testing is concerned with describing the structure of a body of
knowledge. This has given rise to the work of the ARIES laboratory at the

mailto:{sc34,rec}@ukc.ac.uk

University of Saskatchewan. Here, subject domains such as mathematics
have been represented using the notions of “granularity hierarchies” and
“prerequisite relationships”. This work is also distinguished by the use of a
Bayesian approach to probability to make inferences about students’ states of
knowledge so as to optimise the adaptive testing process (Collins et al.,
1996). Other work, primarily distinguished by its concern with subject domain
representation, has been carried out by Falmagne, Doignon, Koppen, Villano,
and Johannesen, who use the idea of “knowledge spaces” (Falmagne et al.,
1990), and Dowling, Hockemeyer, and Ludwig who augment the idea of
“knowledge spaces” with the concept of “fringes” (Dowling et al., 1996).

The concern of these researchers with representation is motivated by the
desire to automate the progression of a test from one topic to another, and
from one level of complexity to another. In tackling this task, the problem of
the justification for any structuring of a syllabus is ignored. Though there may
be, from some given point of view, an optimal way of structuring a syllabus,
the view adopted in this research is that it is a subjective matter to be
determined by an expert teacher. Studies of intelligent tutoring systems have
shown that, as one would expect, it is difficult to transfer systems from one
setting to another, because there is considerable cultural variation in both
teaching and learning (Payne and Squibb, 1990). This provides the prime
motive for investigating techniques based on expert emulation for the
production of test for local consumption.

This technique has an additional advantage. A lack of homogeneity amongst
a student body can weaken the effectiveness of techniques based on
population statistics; and the target body of students with which this paper has
been concerned are, educationally, not very homogeneous. It is the rather
transient group of adult prisoners who opt for remedial help with elementary
arithmetic.

A Strategy for Knowledge Acquisition
There are several problems to be confronted when adopting an expert
emulation approach to designing an adaptive test. They include the problem
of finding suitable experts (Lightfoot, 1999), and they are compounded by the
possibility that the objectives of a computer delivered adaptive test being quite
distinct from the objectives of a more conventionally delivered test. In
addition, there is a need for knowledge representation: a need for a method of
representing classes of problems that are to form the contents of an adaptive
test. Previous work on knowledge acquisition has been carried out by
Dowling and Kaluscha (1995), and Khuwaja (1996) has discussed acquisition
for general use in the development of intelligent tutoring systems.

The approach to knowledge acquisition in the research described here is to
separate the task of designing an adaptive test into the following sub-tasks:

• describing classes of problems,
• describing skills,
• describing responses to problems,
• problem generation,
• problem progression.

Software has been developed to support these subtasks using Constraint
Logic Programming.

A knowledge acquisition exercise has been carried out to evaluate our
approach. The tutor, who is being studied, teaches mathematics to male
adults who are serving time at a local prison. He aims to enable these
prisoners to obtain qualifications from the Associated Examining Board or the
City & Guilds body. The tutor frequently finds it necessary to evaluate new
students. Interestingly, although he uses some standardised pencil-and-
paper tests, he also uses a manual adaptive testing procedure. By means of
techniques of structured interviewing and task analysis (McGraw and
Harbison-Briggs, 1989), the strategy of the tutor in developing an adaptive
test was elicited. This exercise involved approximately 20 hours of interviews
spread over a period of three months. The exercise was concerned
exclusively with the addition of fractions.

Constraint Logic Programming for Knowledge Acquisition
The history and background of constraint programming is usefully
summarised by Marriott and Stuckey (1998). It has been used in many real
life problems such as airline scheduling and container port scheduling (Abbott,
1995). It is concerned with the use of constraints to simplify the solution of
search problems. Constraint programming modules are available for a range
of programming platforms. The work presented below uses the notation of
clp(FD), "constraint logic programming over finite domains" (Carlsson et al.,
1997), which is integrated with SICStus Prolog. (A commercially available
Prolog systems developed and distributed by the Swedish Institute of
Computer Science). Constraint logic programming provides a language for the
description of relationships in the form of constraints and a mechanism to
calculate a set of values which satisfy those constraints.

Clp(FD) was actively used by the interviewer conducting knowledge
acquisition interviews. The teacher, who is the target of the emulation, is of
course, not expected to write constraints, but is more than likely to take an
interest in them. During discussions, which involve the production of example
problems, the interviewer enters the necessary constraints, or modifies
existing constraints, to describe the particular class of problem under
discussion. The set of constraints is then solved interactively to produce
example problems. These allowed the interviewer to obtain confirmation of
what had been elicited and formed the basis of further rounds of discussion
and modification. For most classes of problems, it is not feasible to expect
the teacher to inspect every example. This means that unexpected and
undesirable examples may be not be revealed during this knowledge
acquisition process. Traditional program testing and additional knowledge
acquisition sessions are needed to reduce the probability of errors.

Using clp(FD), domains can be enlarged or restricted, and constraints can be
added or removed. Easy problems may be characterised by the use of single
digit integers, harder problems may be those in which the use of specific skills
is necessary. As with all knowledge acquisition, good preparation by the
interviewer is extremely valuable. This can conveniently take the form of

developing some speculative constraints, but this should not be allowed to
influence the interviews. The aim of emulating the teacher must be
paramount.

Describing Problem Classes
One of the first tasks of the tutor is to identify an area of curriculum or topic
that is to be tested. The next task for computerised adaptive testing systems
based on the Item Response Theory is usually the construction of test
questions or “items” for an item bank (Linacre, 1995). The strategy adopted
by our tutor is somewhat different. He has chosen to categorise problems into
several classes:

• Add two proper fractions of common denominators
• Add a proper fraction and an improper fraction of common

denominators
• Add two improper fractions of common denominators
• Add two proper fractions of different denominators
• Add a proper fraction and an improper fraction of different

denominators
• Add two improper fractions of different denominators

The description of a class of problems is treated as a set of constraints and
this consists of a set of variables, a statement of the domains of the variables,
and a statement of the relational constraints that hold between the variables.
For example, during an interview, the tutor wanted to represent a class of
problems, which involved the addition of two proper fractions with a common
denominator of the form,

D
N

D
N

D
N =+

2
2

1
1

and he wanted to use single digit integers.

This can be represented in clp(FD) as a code fragment:

domain([N1,D1,N2,D2],1,9), % Single digit integers
N1 #< D1, % First operand - proper fraction
N2 #< D2, % Second operand - proper fraction
D1 #= D2. % A common denominator

Describing Skills
The skills involved in solving problems in addition of fractions were identified
by the tutor as:

• Add equivalent fractions
• Cancel fraction
• Make proper
• Find the lowest common multiple
• Find equivalent fractions

These can be represented in clp(FD). For example, the cancel fraction skill
can be represented as:

% Simplify the fraction N/D into its lowest form to give X/Y
% Example: 63/81 gives 7/9
cancel_fraction(N,D,X,Y) :-

domain([N,D,X,Y,F], 1,99),
F*X #= N,
F*Y #= D,
maximize(labeling([], F,X,Y],), F).

Here, variable F is the common factor to be cancelled. This is specified by
the two relational constraints. The maximize predicate in the final line
ensures that the largest value of F will be found.

Describing Responses to Problems
An adaptive test might only be concerned with the mathematical correctness
of a student’s response to a problem. The following possible answer types
have been identified during knowledge elicitation:

• Proper fraction in its simplest form (e.g. 1/2)
• Whole number = 1 (e.g. 3/3)
• Proper fraction which can be simplified further (e.g. 6/8)
• Improper fraction in its simplest form (e.g. 4/3)
• Improper fraction which can be simplified further (e.g. 10/6)
• Whole number > 1 (e.g. 8/2)

The use of clp(FD) has some advantages when emulation of a teacher
requires a diagnostic approach to characterising students' answers. The non-
procedural nature of constraint programming results in it being just as easy to
check the values of a set of variables, as it is to generate them. For example,
if the intention were to specify a problem with a result that is a proper fraction,
this could be achieved with the addition of another constraint:

N #< D

where N and D can take any integer value from 1 to 99.

These constraints can be added to the previous code fragment, thus:

domain([N1,D1,N2,D2],1,9), % Single digit integers
domain([N,D], 1, 99), % Possible values for the answer
N1 #< D1, % First operand - proper fraction
N2 #< D2, % Second operand - proper fraction
D1 #= D2, % A common denominator
N #< D. % Answer must be a proper fraction

Likewise, if the intention was to have a result that is an improper fraction, the
constraint N #< D can be replaced by N #> D.

Problem Generation
Problems can be generated “on the fly” from placing constraints on what the
tutor wants: problem type, response type and skills used. This is in contrast
to maintaining large test item banks commonly associated with adaptive
testing systems based on item response theory.

For example, a problem can be generated by specifying the problem class
and the required response type. Once the description of a class of problems
and their appropriate responses is treated as a set of constraints, it must be
satisfied by every example of that class. This is achieved by the labeling
predicate which will initiate a search for solutions for all the variables in the
arithmetic expression,

N1/D1 + N2/D2 =:= N/D.

For instance, if we want to a problem where two proper fractions are added to
give another proper fraction, this can be specified as follows:

problem_class(N1,D1,N2,D2,N,D) :-
 domain([N1,D1,N2,D2],1,9), % Single digit integers
 domain([N,D], 1, 99), % Possible values for the answer
 N1 #< D1, % First operand - proper fraction
 N2 #< D2, % Second operand - proper fraction
 D1 #= D2, % A common denominator
 N #< D, % Must be a proper fraction
 labeling([], [N1,D1,N2,D2,N,D]), % Generate values for variables
 N1/D1 + N2/D2 =:= N/D. % The arithmetic expression

A solution from the execution of the above code is:

N1 = 1, D1 = 3, N2 = 1, D2 = 3, N = 2, D = 3

that is, the generation of a problem,
3
2

3
1

3
1 =+ , which satisfies the constraints.

Problem Progression
The structured interviews with the tutor revealed an almost algorithmic
approach to discovering evidence of a student's mastery of relevant skills. The
approach centred on asking problems, which were initially selected to be of
medium difficulty with respect to what was considered to be an appropriate
syllabus. The notion of difficulty was based on the number of identifiable skills
required to solve a problem. This strategy is similar to that of Beck et al.
(1997), though other researchers have developed more complex models (Lee,
1996). The tutor considered a correct answer to support the belief that a
student had mastered the use of a skill for problems at a particular level of
difficulty. Two pieces of positive evidence or two pieces of negative evidence
were required to allow the tutor to reach a firm judgement. Thus at most three
question of a specified level of difficulty requiring a particular skill were
required. This repetition helps eradicate uncertainty due to the possibility of
guesswork or careless slips.

Evidence of the possession of a skill based on performance with problems at
a given level of difficulty was assumed to apply to problems of lesser difficulty.
Similarly, evidence about the lack of a skill derived from tests with problems at
a given level of difficulty was considered to be valid for more difficult
problems. The tutor explored a student's knowledge by moving from
problems at one level of difficulty to another in the manner of a binary search
(that is, by halving the difference of problem difficulties at each step).

The implementation of this strategy is quite straightforward given the problem
generating predicates described above, and the end product of the testing can
be presented as a cross tabulation of skill competence by problem difficulty.

Conclusion
This work arises from research on the use of teacher emulation to construct
an adaptive test for an area in elementary arithmetic. It has discussed the task
of knowledge acquisition for the development of adaptive tests, and it has
shown how constraint logic programming can be used to support the
interaction between a teacher and an interviewer. The central part of this
paper describes how this may be achieved by using a particular constraint
satisfaction system, clp(FD). This system forms the basis of a software tool
used interactively during the acquisition process to capture descriptions of
classes of problems and possible answers. From these descriptions the
software provides examples of problems during the acquisition process. The
examples can be used to clarify or confirm the recorded representations of
problems and answers. The semi-automation of the early stages of
developing adaptive tests should, by reducing their cost, widen their appeal.

References
Abbott, J. (1995) A Matter of Constraint. Unix News 82 18-19.

Beck, J., Stern, M., and, Woolf, B.P. (1997) Using the Student Model to
Control Problem Difficulty in Jameson, A., Paris,C., and, Tasso,C. (eds.),
CISM Courses and Lectures no.383. International Centre for Mechanical
Sciences. User Modeling. Proceedings of the Sixth International Conference
UM97. New York: SpringerWien 277-289.

Carlsson, M., Ottosson, G.,and, Carlson, B. (1997) An Open-Ended Finite
Constraint Solver in Proc. Programming Languages: Implementations, Logic
and Programs.

Collins, J.A., Greer, J.E., and, Huang, S.X. (1996) Adaptive Assessment
Using Granularity Hierarchies and Bayesian Nets in Frasson, C., Gauthier,
G.,and, Lesgold, A. (eds.) Intelligent Tutoring Systems, Third International
Conference, ITS'96, Montréal, Canada, June 1996 Proceedings. Lecture
Notes in Computer Science 1086. Berlin Heidelberg: Springer-Verlag 569-
577.

Dowling, C.E., Hockemeyer, C.,and, Ludwig, A.H. (1996) Adaptive
Assessment and Training Using the Neighbourhood of Knowledge States in
Frasson, C., Gauthier, G.,and, Lesgold, A. (eds.) Intelligent Tutoring
Systems, Third International Conference, ITS'96, Montréal, Canada, June

1996 Proceedings. Lecture Notes in Computer Science 1086. Berlin
Heidelberg: Springer-Verlag 578-587.

Dowling, C.E. and Kaluscha, R. (1995) Prerequisite Relationships for the
Adaptive Assessment of Knowledge in Greer, J. (ed.) Proceedings of AI-
ED'95, 7th World Conference on Artificial Intelligence in Education,
Washington, DC, 16-19 August 1995, AACE 43-50.

Falmagne, J.C., Doignon, J.P., Koppen, M., Villano, M., and, Johannesen, L.
(1990) Introduction to Knowledge Spaces - How to Build, Test, and Search
Them. Psychological Review 97 (2) 201-224.

Huang, S.X. (1996) A Content-Balanced Adaptive Testing Algorithm for
Computer-Based Training Systems in Frasson, C., Gauthier, G.,and,
Lesgold, A. (eds.) Intelligent Tutoring Systems, Third International
Conference, ITS'96, Montréal, Canada, June 1996 Proceedings. Lecture
Notes in Computer Science 1086. Berlin Heidelberg: Springer-Verlag 306-
314.

Khuwaja, R. (1996) A Model of Tutoring: Based on the Behavior of Effective
Human Tutors in Frasson, C., Gauthier, G.,and, Lesgold, A. (eds.) Intelligent
Tutoring Systems, Third International Conference, ITS'96, Montréal, Canada,
June 1996 Proceedings. Lecture Notes in Computer Science 1086. Berlin
Heidelberg: Springer-Verlag 130-138.

Lee, F.L. (1996) Electronic Homework: An Intelligent Tutoring System in
Mathematics. PhD Thesis. The Chinese University of Hong Kong.

Lightfoot, J.M. (1999) Expert knowledge acquisition and the unwilling expert: a
knowledge engineering perspective. Expert Systems: The International
Journal of Knowledge Engineering and Neural Networks 16 (3) 141-147.

Linacre, J.M. (1995) Individualized Testing in the Classroom in Anderson,
L.W. (ed.) International Encyclopedia of Teaching and Teacher Education.
Oxford, New York, Tokyo: Elsevier Science 295-299.

Marriott, K. and Stuckey, P. (1998) Programming with Constraints: An
Introduction, Cambridge, MA: MIT Press.

McGraw, K.L. and Harbison-Briggs, K. (1989) Knowledge Acquisition,
Principles and Guidelines. New Jersey, London: Prentice-Hall, Englewood
Cliffs.

Payne, S.J. and Squibb, H.R. (1990) Algebra mal-rules and cognitive
accounts of errors. Cognitive Science 14 445-481.

Rios, A., Millan, E., Trella, M., Perez-de-la-Cruz, and, Conejo, R.(1999)
Internet Based Evaluation System in Lajoie, S.P. and Vivet, M. (eds.) Artificial
Intelligence in Education. Open Learning Environments: New Computational
Technologies to Support Learning, Exploration and Collaboration. Volume 50
in Frontiers in Artificial Intelligence. Amsterdam:IOS Press 387-394.

Syang, A. and Dale, N.B. (1993) Computerized adaptive testing in computer
science: assessing student programming abilities. Proceedings of the twenty-
fourth SIGCSE Technical Symposium on Computer Science Education,
February 18-19 1993, Indianapolis USA 53-56.

Wainer, H. (1990) Computerized Adaptive Testing: A Primer. New Jersey:
Lawrence Erlbaum Associates.

Wainer, H. and Mislevy, R.J. (1990) Item Response Theory, Item Calibration
and Proficiency Estimation in Wainer, H. (ed.) Computerized Adaptive
Testing: A Primer. New Jersey: Lawrence Erlbaum Associates 65-102.

	Using Constraints to Develop and Deliver Adaptive Tests
	Sophiana Chua Abdullah and Roger E. Cooley
	
	
	Abstract

	Adaptive Testing in Intelligent Tutoring Systems
	A Strategy for Knowledge Acquisition
	Constraint Logic Programming for Knowledge Acquisition
	Describing Problem Classes
	Describing Skills
	Describing Responses to Problems
	Problem Generation
	Problem Progression
	Conclusion
	References

