CONTINUATION COMPILATION FOR
CONCURRENT LOGIC PROGRAMMING

B. Kemp and P. Soper

Dept. of Electronics and Computer Science,

University of Southampton,
Southampton, S09 5NH, UK.

A. King
Computing Laboratory,
University of Kent at Canterbury,
Canterbury, CT2 TNF, UK.

Abstract. A new and powerful approach to threading is proposed, that is designed to

improve the responsiveness of concurrent logic programs for distributed, real-time Al ap-

plications. The technique builds on previously proposed scheduling techniques to improve

responsiveness by synchronously passing control and data directly from a producer to a

consumer. Furthermore, synchronous transfer of data requires less buffering and so less

garbage is produced. Arguments are also passed in registers, further reducing overheads.

Keywords. Concurrent logic programming, responsiveness, garbage collection, program

optimisation and abstract interpretation.

1 Introduction

Real-time telecommunications switching systems can
be expressed elegantly as concurrent logic pro-
grams [Elshiewy 90] and, more generally, symbolic
knowledge-based control applications fit well with the
concurrent logic programming model [Elshiewy 90].
Declaratively, concurrent logic programs inherit a lo-
gical interpretation. Operationally, concurrent lo-
gic programs define asynchronous message-passing
between reactive processing agents. The paradigm
is therefore potentially a distributed Al program-
ming language par excellence. However, although
the concurrent logic programming paradigm has been
distilled into real-time languages like Sandra (which
supports persistence, secure communication, recov-
ery, clocks, etc. [Elshiewy 90]) and RGDC (which
has been compared to a symbolic or logical version
of occam [Cohen™ 91]), the expressiveness of con-
current logic programming does not come without
cost. The efficiency of a traditional (sequential) Al
language like Prolog comes, in part, from its con-
trol strategy. The control strategy of Prolog brings
with it an efficient stack based implementation. Con-
current logic languages, on the other hand, substi-
tute control-flow with a data-flow model based on
asynchronous message-passing which, in turn, incurs
overheads from scheduling, argument copying and an
increased memory turnover. High memory turnover
can, in particular, impede the performance of a dis-
tributed system due to increased garbage collection.
These overheads can compromise the responsiveness
of concurrent logic programs and therefore it is vital
that these overheads are reduced if concurrent logic
languages like Sandra and RGDC are to be widely
used in real-time distributed AI applications.

This paper deals with the thorny issue of improv-
ing the responsiveness of concurrent logic programs.
The approach involves refining thread-based compil-
ation schemes to increase the responsiveness of the
scheduler to incoming messages, reduce argument
copying, and also avoid the generation of unneces-
sary garbage. Basically, thread-based compilation
[King™ 92, Massey™ 93b, Massey™ 93a] automatic-
ally introduces control-flow back into data-flow logic
programs. Specifically, threading boils down to dedu-
cing at compile-time a partial schedule of processes,
or equivalently the body atoms of a clause, which
is consistent with the program behaviour. To avoid
compromising program termination, an ordering of
the atoms i1s determined which does not contradict
any data-dependence of the program. In general the
processes cannot be totally ordered and thus the ana-
lysis leads to a division into threads of totally ordered
processes. In this way the work required of the run-
time scheduler is reduced from ordering processes to
ordering threads and, additionally, memory manage-
ment is improved.

In the thread approach, pairs of coroutining atoms
give rise to cyclic data-dependencies that can only
be resolved at run-time with a scheduler. Corou-
tining atoms are therefore allocated to different
threads and thus incur the usual performance pen-
alty associated with frequently suspending processes.
Threading can only increase throughput by redu-
cing the number of suspensions if the program
gives rise to processes that suspend relatively infre-
quently. Thus threading favours computationally-
intensive programs [Ueda™ 90, Ueda™ 92] but is of
limited use for programs which make extensive use
of back-communication and coroutining [Kingt 92],
programs which [Ueda®™ 90, Uedat 92] dub storage-

as([], Hd, TI) - Hd = TI.

as([N | Ns], Hd, TI):- pt(Ns, N, Lo, Hi), gs(Lo, Hd, [N | Mid]), qs(Hi, Mid, TI).

pt([N | Ns], Mid, Lo, Hi) :- Mid < N | Hi = [N | His], pt(Ns, Mid, Lo, His).
pt([N | Ns], Mid, Lo, Hi) :- Mid >= N | Lo = [N | Los], pt(Ns, Mid, Los, Hi).

pt([]. _, Lo, Hi) -Lo=1[], Hi =[]

Figure 1: The quicksort program qs/3.

intensive. Storage-intensive programs might typ-
ically implement reconfigurable data structures or
capture state as networks of almost always sus-
pending processes [Uedat 90, Uedat 92]. Unfortu-
nately, storage-intensive programs often arise in con-
current logic programming [Taylort 89]. This paper
presents continuation compilation as a way of ad-
dressing this threading deficiency. Continuation com-
pilation refines threading by introducing control-flow
in a way that is applicable to the whole spectrum of
computationally-intensive and storage-intensive pro-
grams. The net effect is improved responsiveness for
a wider class of program.

Continuation compilation adopts a message-oriented
approach to threading. The idea behind message-
orientated scheduling [Ueda®™ 90, Ueda® 92] is to
compile stream communication into procedure calls
to the consumer of a stream to improve the respons-
iveness of a system to message-sends and hence op-
timise storage-intensive programs. A similar control
mechanism is used in continuation compilation. Al-
though communication is asynchronous and there-
fore streams can act as unbounded buffers, continu-
ation compilation endeavours to reduce the overheads
of synchronisation and buffering by transferring con-
trol to the consumer process when the producer pro-
cess writes to a shared variable. The producer and
consumer processes are not restricted to being sib-
lings in the proof tree (i.e. need not arise from the
same clause) as in the previously proposed threading
techniques [Kingt 92, Massey™ 93b, Massey™ 93a],
but instead are permitted to be arbitrary produ-
cer and consumer processes.
compilation in some ways generalises conventional
threading. Continuation compilation also refines
message-orientated scheduling.
scheduling tunes storage-intensive programs for im-

Thus continuation

Message-orientated

proved responsiveness to incoming messages at the
expense of increasing the cost of broadcasting. Ba-
sically, message-orientated scheduling optimises pro-
cess switching for goals which suspend and resume
frequently. Continuation compilation, on the other
hand, applies threading in a partial way to avoid
performance degradation. As a consequence, con-
tinuation compilation can be implemented with a
conventional abstract machine [Kimura®™ 87] embel-
lished with only some basic message-oriented features.
Continuation compilation also augments the message-
oriented scheduling model with a form of compile-
time garbage collection. From an analysis of the pro-
ducers and consumers of data, data-structures con-
structed in a producer that are immediately destruc-
ted in the consumer can be passed in registers. This
can avoid structure manipulation and save on garbage

collection.

The paper is structured as follows. Section 2 illus-
trates the basic ideas behind continuation compila-
tion with a motivating example. In section 3, the
focus is on the analyses which underpin continuation
compilation whereas section 4 presents an abstract
machine which supports the continuation compilation
view of threading. Finally, section 5 presents the re-
lated work and concluding discussion. For reasons of
brevity, the paper assumes a basic knowledge of ad-
vanced Al programming and the optimisation tech-
nique of abstract interpretation [Cousot® 92].

2 Intuition behind Continuation
Compilation

To illustrate the basic ideas behind continuation com-
pilation, consider the execution of the goal gs([2, 3,
1], L, []) and the program qs/3 of figure 1. The pro-
gram qs/3 encodes the recursive quicksort algorithm
using difference-lists to amortise the overhead of list
concatenation. Figure 2 depicts the control-flow for
continuation compilation (marked in thick arrows) su-
perimposed on the proof tree for the goal gqs([2, 3, 1],
L, []) (illustrated in thin lines).

Figure 2 illustrates that under gqs/3, the goal gs([2,
3, 1], L, []) reduces to the sub-goals pt([3, 1], 2,
|_O1, Hi1), qs(Lol, L, [2|MId1]) and qS(Hi1, Mid1, [])
The two consumer processes gs(Lo1, L, [2]Mid;]) and
gs(Hii, Midy, []) suspend on the shared variables
Lo; and Hi; until the producer process pt([3, 1], 2,
Lo;, Hiy) binds either Loy or Hi;. Once Loy or Hi;
are bound the consumers can be resumed. In the
case of Lo;, for instance, control can be passed from
pt([3, 1], 2, Loy, Hiy) to gs(Loi, L, [2IMidi]). In
fact this is always possible since Lo; has a unique
producer and therefore the gs/3 process cannot be
awakened by another process. (Single-threaded ana-
lysis [Sundararajant 92] can be used to detect this
single producer property.)

One characteristic feature of continuation compila-
tion is that transfer of control is (partially) effected
by over-loading the standard suspension mechanism
with special control machinery. Conventionally a sus-
pension is implemented by hooking the suspended
processes off the variable which induced the suspen-
sion [Kimura™ 87]. Specifically, the unbound variable
is adjusted to point to a list of suspended process
descriptors so that on binding the variable, the pro-
cess descriptors can be inserted back into run queue
[Kimura™ 87]. Thus, the processes will eventually be
re-executed. In continuation compilation, the vari-

ables Lo; and Hi; are created with special references
to the process descriptors for gs(Los, L, [2]Midi]) and
gs(Hii, Midy, []), and also, the two qs/3 processes
are omitted from the run queue. Therefore, in one
sense, the qs/3 processes are suspended prematurely
— a technique which has been dubbed pre-suspension.
Thus, on binding either of Loy or Hii, the consumer
can be identified immediately and therefore the con-
trol passed to it.

As a consequence of effecting a fast form of pro-
cess switch, continuation compilation can also refine
memory management. Specifically, in the conven-
tional approach, binding either Lo; or Hi; creates a
list cell in the heap [Kimura®™ 87]. This is because
streams can act as buffers between asynchronous pro-
cesses. Put another way, streams are required to live
as long as the processes which reference them and
thus a run-time garbage collector is needed to free up
the heap. Continuation compilation changes this by
making process interactions more synchronous. For
instance, once Lo; is bound in pt([3, 1], 2, Loy, Hi1),
control is immediately passed to gs(Lo1, L, [21Mid4])
so that because Lo; is not referenced elsewhere and its
life-time is short, the list cell for Loy can be allocated
to registers. In fact, continuation compilation can re-
fine the handling of streams still further. Since pt([3,
1], 2, Loy, Hii) can only bind Lo; to a list cell and
gs(Lo1, L, [2]Mid;]) can only match Lo, against a list
cell, the cell construction is actually redundant. Thus
superfluous structure manipulation is avoided by al-
locating the head of the list to one register and the tail
of the list to another. This improves register usage
and therefore reduces the overhead of argument copy-
ing in conventional abstract machines [Kimura™ 87].

In figure 2, a thick-arrow connects the reduction for
gs([2, 3, 1], L, []) to the reduction for pt([3, 1], 2, Loy,
Hi;). The reduction of pt([3, 1], 2, Loy, Hiy), however,
introduces two further sub-goals, Hix = [3|His1] and
pt([1], 2, Loy, His1). Applying the binding Hi; =
[31His;] passes control to gs(Hiy, Midi, []) which,
in turn, reduces to the sub-goals pt(Hisi, 3, Loo,
Hi2), qs(L02, Mid1, [3|MId2]) and qS(HiQ, Mid2, [])
The variables Lo, and Hiy are created, like before,
with special references to the process descriptors for
gs(Loz, Midy, [31Midz]) and gs(Hiz, Midz, []). To deal
with the variable His;, however, requires slightly more
subtlety. Note that the process pt([1], 2, Loi, His1)
is a unique producer for His; and that because con-
trol is always passed immediately from the unification
Hi; = [31His1] to gs(Hiy, Midy, []), the variable His; is
guaranteed to be unbound when the goal pt(Hisi, 3,
Loz, Hiz) is created. Thus pt(Hisi, 3, Loz, Hiz) can be
created in the suspended form with the variable His;
updated with a special reference to process descriptor
for pt(Hisy, 3, Loz, Hiz). Hence, with a more general
notion of pre-suspension, the process pt(Hisi, 3, Loz,
Hi2) can immediately be located and awakened once
His; is bound.

As a final note, observe that since control is passed
from Hi; = [31His;] to gqs(Hi;, Midy, []), the pro-
cess pt([1], 2, Loi, His1) cannot be reduced imme-
diately. Therefore it is inserted into the run-queue.
In a sequential implementation, pt([1], 2, Loi, His1)
is removed from the run queue after the reduction

of gs(Hiy, Midy, []). This run queue access is reflec-
ted in figure 2 with a circle. More generally, circled
control-flow links in figure 2 indicate enqueuing and
dequeuing operations for the run queue. Alternat-
ively, in a parallel implementation, the thread of con-
trol for gs(Hiy, Midy, []) could be executed by another
processor. Thus, in a multi-processor implementa-
tion, circled control-flow links indicate opportunities
for parallelism.

3 Analysis for Continuation Com-
pilation

Although continuation compilation significantly re-
vises and extends the basic threading model
[Kingt 92], continuation compilation has been de-
signed to be underpinned by existing and well-
understood forms of program analysis. Spe-
cifically continuation compilation can be auto-
mated with the abstract interpretation techniques
of single-threadedness analysis [Sundararajan® 92]
and local suspension analysis [Codisht 93]. Single-
threadedness analysis [Sundararajan® 92] identifies
variables which have a single producer (writer) pro-
cess and a single consumer (reader) process. Single-
threaded variables have nice garbage collection prop-
erties [Sundararajan® 92] but also the producer
and consumer processes implicitly define a data-
dependence. Tracing these data-dependences is, in
essence, continuation compilation.

Continuation compilation translates implicit data-
dependencies of a program into explicit scheduling op-
erations, and therefore, like other forms of threading
[King™ 92], can potentially compromise the termina-
tion characteristics of a program. It is vital, therefore,
that continuation compilation is applied in a prin-
cipled way which ensures safety. Specifically, the op-
timisation must not introduce indefinite suspensions
into any part of the computation. To avoid the in-
troduction of indefinite suspensions, local suspension
analysis [Codish® 93] can be used.

Local suspension analysis is formulated in terms of
the confluence semantics [Codisht 93] for tractabil-
ity. The basic problem is that the complexity of
analysing concurrent programs can quickly become
unmanageable. The naive approach of enumerating
every possible interleaving (or scheduling) of the pro-
cesses of the program is only practical for trivial ex-
amples. In contrast, with the confluent semantics,
any fair scheduling rule will produce an equivalent
set of derivations (modulo the order of clause ap-
plication). Consequently, only one scheduling policy
needs to be considered. A tractable form of local sus-
pension analysis follows because if there are no local
suspensions arising from execution with the confluent
semantics, none are possible in any scheduling with
the standard semantics. Hence, by approximating the
confluent semantics, the program can be proved to be
local suspension free [Codish™ 93].

Local suspension analysis aims to prove that the pro-
gram is locally suspension-free. In effect, it is a bin-
ary analysis. Either the analysis successfully infers
local suspension-freeness, or it fails in the sense that

gs(Hiz, l\/||d2 D —

/

Mido=[]

gs(Hiy, |\/||d1 [— as(Loz, |\/||d1 [31Mid2]) [— Midy=[3]Mid;]

g

pt(HiS1,3,L02,Hi2)

qS(HI3 Mld3 [3|MId1]) —_— Mld3:[1|MId1]

/

gs([2,3,1].L,[]) — qs(Lol,L,[ZII\/Ildl]) — qs(L03,L,[1||\/|id3]) —+—— L=[11Mids]

o

pt(Losi,1,Los,His)

pt([3,1],2,Los Hix) — pt([1],2,Los His;) — pt([].2,

Hia =[]

t

=

—

w

[}

;
Q

—_—
—_

f

S1,HiS1) HIS1:[]

Lo
l t

HI1:[3 | HiS1]

Loi=[1Los1] Los;=[]

C €

Figure 2: Execution of the goal qs([2,3,1], L, []) under continuation compilation

it can only safely conclude that indefinitely suspen-
ded processes may arise. The binary nature of local
suspension analysis, however, can impede the efficient
introduction of continuations. The optimisation can
potentially be applied at many points in the pro-
gram, not all of which are necessarily safe. A naive
strategy for finding a safely optimised version of the
program would be to enumerate and analyse each pos-
sible version. This is potentially inefficient. A more
efficient approach would be to perform the analyses
incrementally as follows. First, the abstract program
is analysed, using continuation compilation wherever
possible. Specifically, a finite graph of abstract states
is constructed with edges representing transitions
between states. If local suspension-freeness does not
follow from the graph [Codish™ 93], instances of con-
tinuation compilation that may have induced the sus-

pensions are identified and removed. The resulting
program is then re-analysed. Re-analysing the pro-
gram is not expensive since large portions of the graph
can be reused in the second phase of analysis. This
technique is applied iteratively until either all con-
tinuations are removed or no local suspensions remain
in the graph. In both cases; the resulting program is
safe.

To illustrate the basic approach, Figure 2 depicts the
execution of the goal gs([2, 3, 1], L, []) for the optim-
ised version of quicksort (introduced in Section 2).
Conveniently, here the confluent coincides with the
concrete semantics (because quicksort is deterministic
[Codisht 93]). Since no indefinite suspensions occur
in the transitions, it follows that the optimisations
are safe for the goal gs([2, 3, 1], L, []). In practice,
to cover all possible goals, an abstraction of the con-

fluent semantics would be used to finitely prove local
suspension-freeness.

4 Abstract Machine beneath Con-
tinuation Compilation

To make concrete the actual mechanisms for the op-
timisations, they are presented as changes to the KL.1
abstract machine [Kimura® 87]. In the KL1 abstract
machine, argument and temporary registers (A and
X) are actually synonymous, and refer to a fixed vec-
tor in the processor’s memory. When a process is
scheduled the first n registers are restored from the
goal record. Thus a process may always assume that
Aj contains the j’th argument. Because the optimisa-
tions proposed here require a large number of context
switches it would not be practical to save and restore
these registers. In view of this, for the modified ab-
stract machine, Aj now refers to the j’th argument
in the goal record. Thus the A and X register sets
are no longer the same and therefore extra instruc-
tions have implicitly been defined. For instance the
instructions set_value Xj, Gi and set_value A}, Gi are no
longer equivalent. For compatibility, the X registers
are initialised from the A registers when a process is
scheduled normally, that is, not via a continuation.

There are six new instructions needed to directly
support the addition of continuation compilation to
the KL1 abstract machine [Kimura®™ 87]. The sus-
pend_XXX instructions are always followed by a re-
store_redo instruction unless the consumer is guar-
anteed to already be suspended on the continuation
structure. The restore_redo would be unnecessary if
(say) the producer and consumer were sibling goals,
as in the second clause of qs/3.

Continuations are implemented as shared structures.
The producer and consumer processes each suspend
on the first argument of the continuation structure
while waiting for the other process. Since data is
passed in abstract machine registers that are not nor-
mally saved on suspension, the remainder of the struc-
ture is used to save the necessary context for a pro-
ducer process.

The suspend_goal and suspend_execute_via instructions
between them implement the pre-suspension of pro-
cesses.

proceed_via Ai The register Ai dereferences to a
functor of arity n + 1 that possibly has a (con-
sumer) process suspended on its first argument.
Atomically, the pointer to this process is saved
and the variable cleared.

If there was no consumer waiting then the cur-
rent process’ code pointer is set to the address of
the next instruction and the first n temporary re-
gisters X1 ...Xn are saved in the 2nd to n+ 1’th
arguments of the functor. Finally, the current
process is suspended on the functor’s first argu-
ment.

Otherwise, the current process is terminated as
if by a proceed instruction except that control
is immediately passed to the consumer process

that was suspended on the first functor argu-
ment.

suspend _or_execute_via p, suspArgNo, Al
The register Ai dereferences to a functor of ar-
ity n+ 1 that possibly has a (consumer) process
suspended on its first argument. Atomically, the
pointer to this process is saved and the variable
cleared.

If there was no consumer waiting then the cur-
rent process’ code pointer is set to the address of
the next instruction and the first » temporary re-
gisters X1 ...Xn are saved in the 2nd to n+ 1’th
arguments of the functor. Finally, the current
process is suspended on the functor’s first argu-
ment.

Otherwise, the current process’ code pointer is
set to the code for procedure p. If argument
suspArgNo dereferences to a bound variable then
the current process is added to the ready queue.
If argument suspArgNo dereferences to an un-
bound term then the current process is suspen-
ded on that variable.

Control is then immediately passed to the saved
(consumer) process.

suspend _execute_via p, suspArgNo, Ai The re-
gister Ai dereferences to a functor of arity n + 1
that possibly has a (consumer) process sus-
pended on its first argument. Atomically, the
pointer to this process is saved and the variable
cleared.

If there was no consumer waiting then the cur-
rent process’ code pointer is set to the address
of the next instruction and the first n tempor-
ary registers are saved in the 2nd to n + 1’th
arguments of the functor. Finally, the current
process is suspended on the functor’s first argu-
ment.

Otherwise, the current process’ code pointer is
set to the code for procedure p. The argu-
ment suspArgNo dereferences to a functor of ar-
ity m + 1. If there is a process suspended on
the first argument of that functor, it is added
to the ready queue. The current process is then
suspended on the first argument of this functor.
Control is then immediately passed to the saved
(consumer) process.

suspend_goal p, suspArgNo The ar-
gument suspArgNo dereferences to a functor of
arity n + 1. If there is a process suspended on
the first argument of the functor, that process
is added to the ready queue. The newly created
process is then suspended on the functor’s first
argument.

save_suspend Ai The register Ai dereferences to a
functor of arity n + 1. The first n temporary
registers, X1 to Xn, are saved into the 2nd to
n 4+ 1’th arguments of the functor. If there is a
process suspended on the first argument of the
functor, it is added to the ready queue. The
current process is then itself suspended on the
functor’s first argument.

restore_redo Ai, lab The register Ai dereferences
to a functor of arity » + 1. Load the 2nd to

pt/4: wait_functor ¢/3,X2,pt/4/3
integer X1, psusp
integer A2, psusp
lesser A2, X1, pt/4/2

L2: suspend_execute_via pt/4,1 A4
restore_redo A4, L2

pt/4/2: greaterequal A2, X1, psusp

L3: suspend_execute_via pt/4, 1, A3
restore_redo A3, L3

pt/4/3: wait_constant [1. X2, psusp
create_goal send_nil, 1
set_value A4, G1
enqueue_goal send_nil/1

L4: proceed_via A3
restore_redo A3, L4

psusp: save_suspend Al
restore_redo Al, pt/4

%

% send_nil(Z) - Z=[]. % Compiler generated

%

send_nil/1: put_constant []. X2

L5: proceed_via Al
restore_redo Al, L5

Figure 3. Abstract machine instructions for pt/4

n + 1’th arguments of the functor into the first
n temporary registers, X1 to Xn. Jump to the
instruction with label lab.

Figures 3 and 4 show the abstract machine code
for the example quicksort program. The automat-
ically generated predicate send_nil/1is included to al-
low more than one continuation to be followed from
within a single clause body. send_nil/1 is passed a
continuation and run as a normal process. When ex-
ecuted, it gives control to the consumer process wait-
ing on the continuation. For example, the third clause
of pt/2 has two assignments but a single process can-
not jump to two different consumers. The send_nil/1
process deals with the second continuation.

Interfacing issues can be simplified by augmenting the
program with auxiliary predicates. The auxiliary pre-
dicates reduce code size by providing a uniform mech-
anism for interfacing between the predicates using
continuations and the rest of the program. Without
an interface predicate, for example pt/4 would take
data from different sources, only some of which ne-
cessarily use continuations to pass control. Detailed
discussion is omitted here for brevity.

5 Related work

Korsloot and Tick [Korsloot™ 91] have presented
some initial ideas on how to introduce sequentiality
into concurrent logic programs. Data-dependencies
are derived by the mode algorithm of [Uedat 90] and
[Korsloot™ 91] give several examples of how the data-
dependencies can be used to order the atoms of a
clause. A more complete description of the mode al-
gorithm is given in [Masseyt 93b]. The procedure for

[1. X2, gs/3/2

as/3: wait_constant

get_value A3, A2
proceed

as/3/2: wait_functor ¢/3, X2, qsusp
create_goal gs, 3
set_functor c/3, X4, G1
write_variable X5
write_variable X5
write_variable X5
set_value A2, G2
set_list G3
write_value X1
write_variable X5
suspend_goal gs, 3,1
create_goal gs, 3
set_functor ¢/3, X6, G1
write_variable X7
write_variable X7
write_variable X7
set_value X5, G2
set_value A3, G3
suspend_goal gs, 3,1
create_goal pt, 4
set_value X2, G1
set_value X1, G2
set_value X4, G3
set_value X6, G4
suspend_goal pt, 4, 1
proceed

qsusp: save_suspend Al
restore_redo Al, qs/3

Figure 4. Abstract machine instructions for qs/3

sequentialisation is ad hoc, has no supporting theory,
and consequently there is no guarantee that deadlock
is avoided. Consequently, additional abstract ma-
chine machinery has been proposed in [Masseyt 93a]
which breaks prematurely deadlocked threads. This
contrasts with the approach of the present paper
which soundly and systematically introduces thread-
ing. Furthermore, continuation compilation gener-
alises the threading framework of [King® 92] by re-
laxing the conditions on the producer and consumer
processes which can be scheduled at compile-time.
Threading 1s no longer confined to sibling processes
but is extended to arbitrary producer and consumer
pairs.

Continuation compilation also refines
message-orientated scheduling [Ueda™ 90, Ueda™® 92].
Message-orientation optimises storage-intensive pro-
grams at the expense of increasing the cost of one-to-
many communication. Continuation compilation, on
the other hand, applies threading in a more conser-
vative way to avoid any possible performance degrad-
ation. Also, to apply message-orientated scheduling,
the program has to conform to a moded language sub-
set [Uedat 90, Ueda™ 92]. Continuation compilation,

% toCont([X | Xs], Ys) :- % Compiler generated
% Ys:=[X|Zs],
% toCont(Xs, Zs).

%

toCont/2: wait_constant

[], AL, te/2/2

put_value Al, X2

LO: proceed_via A2
restore_redo A2, LO

te/2/2: wait_list Al, tesusp
read_variable X1
read_variable Al
put_value A2, X2

L1: suspend_or_execute_via toCont/2,1,A2
restore_redo A2, L1

tesusp: suspend toCont/2

% go(In,Out) :- toCont(In,Cont),qs(Cont,Out,[])

go/2: put_functor ¢/3, X3
write_variable X4
write_variable X4
write_variable X4
create_goal gs, 3
set_value X3, G1
set_value A2, G2
set_constant []. G3
suspend_goal gs, 3,1
create_goal toCont, 2
set_value Al G1
set_value X3, G2
enqueue_goal toCont/2
proceed

Figure 5: Abstract machine instructions for the
top-level predicate go/2

on the other hand, is applicable to any concurrent
logic program. Furthermore, continuation compila-
tion is underpinned by analyses which can be proven
correct. In contrast, message-orientated scheduling
relies on an ad hoc constraint-based mode analysis
algorithm.

Continuation compilation also has a lot in com-
mon with compile-time garbage collection techniques
[Foster® 91, Sundararajan® 92], for instance, the
analysis machinery which is used to identify produ-
cer and consumer pairs. Continuation compilation,
however, develops the compile-time garbage collec-
tion idea by in addition to recycling the memory, also
optimises the control aspects of synchronisation.

A novel approach to threading has been proposed, de-
signed to improve the responsiveness of a wide class
of concurrent logic programs. The technique tar-
gets the overheads of scheduling, argument copying
and increased memory turnover which have tradi-
tionally impeded the usefulness of concurrent logic
languages like Sandra and RGDC for real-time dis-
tributed Al applications. Continuation compilation
refines scheduling by optimising process switching for
goals which suspend and resume frequently. Argu-

ment copying is reduced by passing values in registers.
Memory turnover is minimised because communic-
ation is made (partially) synchronous and therefore
buffering is reduced. Finally, and in contrast to other
threading schemes; continuation compilation is un-
derpinned by analyses which can be proven correct.
Future work will focus primarily on implementation
and benchmarking.

6 References

[Codish™ 93] M. Codish, M. Falaschi, K. Marri-
ott, and W. Winsborough, Efficient Ana-
lysis of Concurrent Constraint Logic Programs.
In 20th International Colloquium on Automata,
Languages, and Programming, Springer-Verlag,
1993.

[Cohen™ 91] D. Cohen, M. M. Huntbach, and G. A.
Ringwood, Logical occam. Technical report,
Dept. of Computer Science, Queen Mary and
Westfield College, 1991.

[Cousot® 92] P. Cousot and R. Cousot, Abstract in-
terpretation and application to logic programs.
J. of Logic Programming, 13(1, 2, 3 and 4):103-
179, 1992.

[Elshiewy 90] N. A. Elshiewy, Sandra: Robust Co-
ordinated Reactive Computing. PhD thesis,
Dept. of Telecommunications and Computer
Systems, 1990.

[Foster® 91] 1. Foster and W. Winsborough, Copy
avoidance through compile-time analysis and
local reuse. In SLP’91, pages 455-469, San
Diego, USA, 1991. MIT Press.

[Kimura®™ 87] Y. Kimura and T. Chikayama, An ab-
stract KL.1 machine and its instruction set. In
SLP’87, pages 468-479, 1987. IEEE Press.

[King® 92] A. King and P. Soper, Serialisation ana-
lysis of concurrent logic programs. In ALP’92
Pisa, 1992. Springer-Verlag.

[Korsloot™ 91] M. Korsloot and E. Tick, Sequen-
tializing parallel programs. In Phoeniz Sem-
wmar and Workshop on Declarative Programming,
Sasbachwalden, Germany, November (1991).
Springer-Verlag.

[Masseyt 93a] B. C. Massey and E. Tick, The
diadorra principle: Efficient execution of fine-
grain concurrent languages. Technical report,
Dept. of Computer Science, University of Ore-
gon, 1993.

[Masseyt 93b] B. C. Massey and E. Tick, Sequen-
tialisation of parallel logic programs with mode
analysis. In LPAR’93, 1993.

[Sundararajan™ 92] R. Sundararajan, A. V. 8.
Sastry, and E. Tick, Variable threadedness ana-
lysis for concurrent logic programs. In JIC-
SLP’92 pages 493-508, Washington, USA, 1992.
MIT Press.

[Taylort 89] S. Taylor and L. Foster, Strand: New
Concepts in Parallel Programming. Prentice-
Hall, (1989).

[Ueda®™ 90] K. Ueda and M. Morita, A new imple-
mentation technique for Flat GHC. In ICLP’90,
pages 3—17, Jerusalem, 1990. MIT Press.

[Ueda®™ 92] K. Ueda and M. Morita, Message-
orientated parallel implementation of model flat
ghc. In FG(CS5’92, pages 799808, Tokyo, Japan,
1992. Ohmsha Ltd.

