Regulation of nucleobase transport in LLC-PK1 renal epithelia by protein kinase C

Griffith, Douglas A. and Jarvis, Simon M. (1996) Regulation of nucleobase transport in LLC-PK1 renal epithelia by protein kinase C. Biochimica Et Biophysica Acta-Biomembranes, 1284 (2). pp. 213-220. ISSN 0005-2736. (The full text of this publication is not available from this repository)

The full text of this publication is not available from this repository. (Contact us about this Publication)
Official URL
http://dx.doi.org/10.1016/S0005-2736(96)00132-0 ...

Abstract

The involvement of protein kinase C (PKC) in the regulation of Na+-dependent and -independent hypoxanthine transport was investigated by exposing confluent monolayers of LLC-PK1 renal epithelia cells to the PKC activator, phorbol 12-myristate 13-acetate (PMA). Chronic exposure (> 2 h) of LLC-PK1 monolayers to 16 nM PMA resulted in approximate to 75% inhibition of Na+-dependent hypoxanthine influx occurring maximally at 8 h and persisting for 72 h. in contrast, PMA had little effect on Na+-independent hypoxanthine influx at 8 h, but longer exposure resulted in stimulation of influx (approximate to 3-fold) that peaked at 24 h and thereafter declined to control levels at 72 h. The effects of PMA were dose-dependent and were associated with changes in V-max of transport (2-4-fold) with no significant change in apparent K-m. 4 alpha-Phorbol, a phorbol ester that does not activate PKC, had no effect on hypoxanthine transport by LLC-PK1 cells. The diacylglycerol kinase inhibitor, R59022 (10 mu M), partially inhibited (28%) Na+-dependent hypoxanthine influx. In addition, the PMA-induced effects on hypoxanthine transport were reversed by Re-31-8220 (1 and 5 mu M) and calphostin C (50 nM), potent and selective inhibitors of PKC. The increase in Na+-independent hypoxanthine influx following exposure to PMA was blocked by the protein synthesis inhibitor, cycloheximide (20 mu M), and correlated with an increase in LLC-PK1 cell proliferation. The PMA-induced decrease in Na+-dependent hypoxanthine transport was independent of PMA effects on cell proliferation and not dependent on protein synthesis. These results are consistent with the proposal that the PMA-induced effects on hypoxanthine transport are due to PKC activation.

Item Type: Article
Subjects: Q Science > QP Physiology (Living systems) > QP517 Biochemistry
Divisions: Faculties > Science Technology and Medical Studies > School of Biosciences
Depositing User: R.F. Xu
Date Deposited: 04 Jun 2009 21:46
Last Modified: 20 Jun 2014 14:01
Resource URI: http://kar.kent.ac.uk/id/eprint/19218 (The current URI for this page, for reference purposes)
  • Depositors only (login required):