Skip to main content

THE CUG CODON IS DECODED IN-VIVO AS SERINE AND NOT LEUCINE IN CANDIDA-ALBICANS

Santos, Manuel, Tuite, Mick F. (1995) THE CUG CODON IS DECODED IN-VIVO AS SERINE AND NOT LEUCINE IN CANDIDA-ALBICANS. Nucleic Acids Research, 23 (9). pp. 1481-1486. ISSN 0305-1048. (doi:10.1093/nar/23.9.1481) (The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided) (KAR id:19021)

The full text of this publication is not currently available from this repository. You may be able to access a copy if URLs are provided.
Official URL:
https://doi.org/10.1093/nar/23.9.1481

Abstract

Previous studies have shown that the yeast Candida albicans encodes a unique seryl-tRNA(CAG) that should decode the leucine codon CUG as serine. However, in vitro translation of several different CUG-containing mRNAs in the presence of this unusual seryl-tRNA(CAG) result in an apparent increase in the molecular weight of the encoded polypeptides as judged by SDS-PAGE even though the molecular weight of serine is lower than that of leucine. A possible explanation for this altered electrophoretic mobility-is that the CUG codon is decoded as modified serine in vitro. To elucidate the nature of CUG decoding in vivo, a reporter system based on the C. albicans gene (RBP1) encoding rapamycin-binding protein (REP), coupled to the promoter of the C. albicans TEF3 gene, was utilized. Sequencing and mass-spectrometry analysis of the recombinant REP expressed in C. albicans demonstrated that the CUG codon was decoded exclusively as serine while the related CUU codon was translated as leucine. A database search revealed that 32 out of the 65 C. albicans gene sequences available; have CUG codons in their open reading frames. The CUG-containing genes do not belong to any particular gene family. Thus the amino acid specified by the CUG codon has been reassigned within the mRNAs of C. albicans. We argue here that this unique genetic code change in cellular mRNAs cannot be explained by the 'Codon Reassignment Theory'.

Item Type: Article
DOI/Identification number: 10.1093/nar/23.9.1481
Subjects: Q Science
Divisions: Divisions > Division of Natural Sciences > Biosciences
Depositing User: I.T. Ekpo
Date Deposited: 29 May 2009 09:42 UTC
Last Modified: 09 Mar 2023 11:31 UTC
Resource URI: https://kar.kent.ac.uk/id/eprint/19021 (The current URI for this page, for reference purposes)

University of Kent Author Information

Santos, Manuel.

Creator's ORCID:
CReDIT Contributor Roles:

Tuite, Mick F..

Creator's ORCID: https://orcid.org/0000-0002-5214-540X
CReDIT Contributor Roles:
  • Depositors only (login required):

Total unique views for this document in KAR since July 2020. For more details click on the image.