South-North and radial traverses through the interplanetary dust cloud

Grun, E. and Staubach, P. and Baguhl, M. and Hamilton, D.P. and Zook, H.A. and Dermott, S. and Gustafson, B.A. and Fechtig, H. and Kissel, J. and Linkert, D. and Linkert, G. and Srama, R. and Hanner, M.S. and Polanskey, C. and Horanyi, M. and Lindblad, B.A. and Mann, I. and McDonnell, J.A.M. and Morfill, G.E. and Schwehm, G. (1997) South-North and radial traverses through the interplanetary dust cloud. Icarus, 129 (2). pp. 270-288. ISSN 0019-1035. (The full text of this publication is not available from this repository)

The full text of this publication is not available from this repository. (Contact us about this Publication)
Official URL
http://dx.doi.org/10.1006/icar.1997.5789

Abstract

Identical in situ dust detectors are flown on board the Galileo and Ulysses spacecraft. They record impacts of micrometeoroids in the ecliptic plane at heliocentric distances from 0.7 to 5.4 AU and in a plane almost perpendicular to the ecliptic from -79 degrees to +79 degrees ecliptic latitude. The combination of both Ulysses and Galileo measurements yields information about the radial and latitudinal distributions of micron- and submicron-sized dust in the Solar System. Two types of dust particles were found to dominate the dust flux in interplanetary space. Interplanetary micrometeoroids covering a wide mass range from 10(-16) to 10(-6) g are recorded mostly inside 3 AU and at latitudes below 30 degrees. Interstellar grains with masses between 10(-14) and 10(-12) g have been positively identified outside 3 AU near the ecliptic plane and outside 1.8 AU at high ecliptic latitudes (>50 degrees). Interstellar grains move on hyperbolic trajectories through the planetary system and constitute the dominant dust flux (1.5 X 10(-4) m(-2) sec(-1)) in the outer Solar System and at high ecliptic latitudes. To compare and analyze the Galileo and Ulysses data sets, a new model is developed based on J. Geophys. Res. 98, 17029-17048, Divine's (1993, ''five populations of interplanetary meteoroids'' model. Both models describe the interplanetary meteoroid environment in terms of dust populations on distinct orbits. Taking into account the measured velocities and the effect of radiation pressure on small particles (described by the ratio of radiation pressure force to gravity, beta), we define four populations of meteoroids on elliptical orbits and one population on hyperbolic orbit that can fit the micrometeoroid flux observed by Galileo and Ulysses. Micrometeoroids with masses greater than 10(-10) g and negligible radiation pressure (beta = 0) orbit the Sun on low to moderately eccentric orbits and with low inclinations (less than or equal to 30 degrees). Populations of smaller particles with mean masses of 10(-11) g (beta = 0.3), 10(-13) g (beta = 0.8), and 5 X 10(-15) g (beta = 0.3), respectively, have components with high eccentricities and have increasingly wider inclination distributions with decreasing mass. Similarities among the orbit distributions of the small particle populations on bound orbits suggest that all are genetically related and are part of an overall micrometeoroid complex that prevails in the inner Solar System. The high-eccentricity component of the small particle populations may actually be beta-meteoroids which are not well characterized by our measurements. Our modeling suggests further that the interstellar dust flux is not reduced at Ulysses' perihelion distance (1.3 AU) and that it contributes about 30% of the total dust flux observed there.

Item Type: Article
Subjects: Q Science > QB Astronomy
Divisions: Faculties > Science Technology and Medical Studies > School of Physical Sciences
Depositing User: M.A. Ziai
Date Deposited: 06 Mar 1914 04:41
Last Modified: 06 Mar 1914 04:41
Resource URI: http://kar.kent.ac.uk/id/eprint/18083 (The current URI for this page, for reference purposes)
  • Depositors only (login required):