Tight single-change covering designs with upsilon=12, k=4

Phillips, N.C.K. and Preece, Donald A. (1999) Tight single-change covering designs with upsilon=12, k=4. Discrete Mathematics, 198 . pp. 657-670. ISSN 0012-365X. (The full text of this publication is not available from this repository)

The full text of this publication is not available from this repository. (Contact us about this Publication)
Official URL
http://dx.doi.org/10.1016/S0012-365X(99)90129-2

Abstract

Standardised tight single-change covering designs with upsilon = 12, k = 4 are enumerated and classified. There are 2554 of them, and these fall into 566 sets such that, within any set, the designs can be regarded as minor variants of one another. The sets pair off naturally, to give 283 classes of the designs. If any one design in a class is row-regular (or element-regular), then all the designs in the class are row-regular (or element-regular). Of the 283 classes, just 10 comprise row-regular designs; these 10 include the only one of the 283 classes that comprises element-regular designs. Representative members of the 10 row-regular classes are tabulated. Other properties of the designs are discussed. An indication is given of how each of the 10 representative row-regular designs can readily be converted into a row-regular tight single-change covering design with upsilon = 13, k = 4.

Item Type: Article
Uncontrolled keywords: classification of designs; complementary sets of designs; element-regular designs; enumeration of designs; row-regular designs; tight single-change covering designs
Subjects: Q Science
Q Science > QA Mathematics (inc Computing science)
Divisions: Faculties > Science Technology and Medical Studies > School of Mathematics Statistics and Actuarial Science
Depositing User: F.D. Zabet
Date Deposited: 28 Apr 2009 17:17
Last Modified: 23 Apr 2014 11:19
Resource URI: http://kar.kent.ac.uk/id/eprint/16453 (The current URI for this page, for reference purposes)
  • Depositors only (login required):