
Multi-session Separation of Duties (MSoD) for RBAC

David W Chadwick1, Wensheng Xu2, Sassa Otenko1, Romain Laborde3, Bassem Nasser1
1University of Kent, UK; 2Beijing Jiaotong University, China; 3IRIT, France

{d.w.chadwick, o.otenko, b.nasser}@kent.ac.uk; xuwsh2002@yahoo.com.cn; laborde@irit.fr

Abstract

Separation of duties (SoD) is a key security

requirement for many business and information
systems. Role Based Access Controls (RBAC) is a
relatively new paradigm for protecting information
systems. In the ANSI standard RBAC model both static
and dynamic SoD are defined. However, static SoD
policies assume that the system has full control over
the assignment of all roles to users, whilst dynamic
SoD policies assume that conflicts of interest can only
arise during the simultaneous activation of a user’s
roles. Unfortunately neither of these assumptions hold
true in dynamic virtual organisations (VOs), or in
business processes that span multiple user sessions, or
where users only partially disclose their roles at each
session. In this paper we propose multi-session SoD
(MSoD) policies for business processes which include
multiple tasks enacted by multiple users over many
user access control sessions. We explore the means to
define MSoD policies in RBAC via multi-session
mutually exclusive roles (MMER) and multi-session
mutually exclusive privileges (MMEP). We propose an
approach to expressing MSoD policies in XML and
enforcing MSoD policies in a policy controlled RBAC
infrastructure. Finally, we describe how we have
implemented MSoD policies in the PERMIS Privilege
Management Infrastructure

1. Introduction

Separation of duties (SoD) is widely considered to
be a fundamental security principle for business and
information systems [1]. The concept of SoD has long
existed in the physical world. For example, staff
members in a bank are assigned to different posts with
different duties. This ensures that cooperation of
multiple staff members is required to perform all the
tasks of a complete business process, either
sequentially or concurrently, so that accountability can
be enforced and damage caused by either a single
member’s mistake, or an accident or deception can be

avoided or minimized. Many organizations require that
the request and approval of a major expenditure be
done by two separate people. SoD is an important
protection mechanism for handling important business
processes or information, and it should be integrated
with all access control mechanisms, such as
discretionary access control (DAC), mandatory access
control (MAC), and especially role based access
control (RBAC) since most tasks within organizations
are performed by roles.

Significant research about the use of SoD policies in
RBAC has been performed and this is reflected in the
ANSI standard [2]. The ANSI standard considers SoD
as constraints on the roles that can be assigned to users
at any time (Static SoD - SSD) or constraints on the
roles that a user can activate simultaneously within one
or more user sessions (Dynamic SoD - DSD). The
ANSI standard assumes that static SoD policies can be
enforced by the administrative function at role
assignment time because the administrative system has
full control over the assignment of all roles to users,
whilst dynamic SoD policies can be enforced at role
activation time because conflicts of interest can only
arise when a user’s conflicting roles are active at the
same time.

Unfortunately neither of these assumptions hold
true in all business environments. In dynamic virtual
organisations (VOs) when multiple independent role
allocating authorities exist, SSD cannot be enforced at
role assignment time since no single administrative
function will know all the roles that have already been
assigned to any single user. In business processes
where conflicts of interest exist over extended periods
of time, during which a user may have invoked and
terminated multiple access control sessions, DSD
cannot be enforced at role activation time because a
user may never activate conflicting roles
simultaneously. When a user only partially discloses
his roles at each session, the standard RBAC policy
constraints cannot solve the SSD or DSD problems. In
both these cases the current access control decision
may depend on previous access control decisions that
took place in some previous user access control

session. Hence the access control system needs to
retain a history of previous access control decisions.

In Section 2 we analyze multi-session SoD (MSoD)
policies in RBAC and propose multi-session mutually
exclusive roles (MMER) and multi-session mutually
exclusive privileges (MMEP) to enforce MSoD
policies. In section 3 we propose a way of expressing
MSoD policies in XML. In Section 4 we describe the
enforcement procedure for MSoD policies in an RBAC
system. In Section 5, we give a practical example of
how we have integrated MSoD policies into the
PERMIS [11] RBAC authorization infrastructure.
Finally, in Section 6, we review related research, give
the limitations of our research, and provide our
conclusions. But first we give two motivating
examples of SoD policies, one SSD and one DSD, in
which the different tasks may be carried out in
different user access control sessions by different roles.
These will be used throughout the paper to highlight
the concepts and designs that we have chosen.

Example 1. Cash processing in a bank. In a bank,
a staff member who is authorized to be a Teller may
not be allowed to be an Auditor of the same bank. That
is, an employee cannot simultaneously hold the roles
of auditor and teller. However, some auditing, e.g. an
annual one, may take place much later than the cash
handling, during which time many staff may have
changed their roles, and a cashier might have been
promoted to an auditor. This is an example of a SSD
policy over multiple user sessions with potentially
many role occupant changes during the operation of
the policy. Obviously a conventional SSD policy
cannot express such a constraint since no user might
ever have been assigned the conflicting roles at the
same period of time and so the conventional SSD
policy will never have been violated.

Example 2. Tax refund taken from [12]. To carry
out a tax refund process, four different tasks need to be
executed sequentially:
Task T1: A clerk prepares a check for a tax refund.
Task T2: A manager can approve or disapprove the
check. This task should be performed in parallel twice
by two different managers.
Task T3: The decisions of the managers are collected
and the final decision is made. The manager who
collects the results must be different from those
executing task T2.
Task T4: A clerk issues or voids the check based on the
result of task T3; the clerk issuing or voiding the check
must be different from the clerk who prepared the
check.

This is an example of DSD which conventional
RBAC policies cannot specify because a user may
activate the manager or clerk role only, but this does
not violate the conventional DSD policy. Whilst a

manager (or clerk) is authorized to perform several
tasks, in this example he may only perform one of
them in one tax refund process instance. Furthermore,
one tax refund process instance might span multiple
user sessions, so a manager (or clerk) who has
performed a task in an earlier session may not be
authorised to perform any task in a subsequent session.
Since the DSD policy must span several tasks over a
period of time, and may involve different user sessions,
then traditional RBAC DSD cannot work in this
scenario because it only controls the simultaneous
activation of user roles. Bertino et al solved the DSD
problem in this workflow environment [12], but their
solution only works in a centralised homogeneous
system and is integrated with the workflow system. In
this paper, we will provide a solution which can deal
with DSD in a multi-session distributed heterogeneous
environment that is not tied to workflows.

2. Multi-session separation of duty (MSoD)

2.1. Static and dynamic SoD in the standard
RBAC model

In its simplest form, a SoD policy states that if a

sensitive business process is comprised of two tasks,
then different people must perform each task. More
generally, when a business process is comprised of n
tasks, a SoD policy requires the cooperation of at least
k (1< k ≤ n) different users to complete the process.
The purpose of separation of duties is to prevent one
person from doing all the tasks of a sensitive process
that should require two or more people in order to
prevent mistakes or fraud.

RBAC is perceived to be one of the most efficient
and flexible approaches to enforcing security policies
in industrial and commercial application systems.
Privilege management in RBAC [2] is described in
terms of users, roles, operations, and objects (Figure
1). Users are assigned to roles in a many to many
relationship. If a user is a person, a role can represent a
job function, a qualification or expertise. Privileges
(termed permissions in ANSI RBAC [2]) represent the
right to perform an operation on an object, and are
granted to different roles in a many to many
relationship. A user may have multiple roles but
activates only a subset of these within any user access
control session. A user must be active in a role before
he can exercise the privileges of that role.

user_sessions
session_roles

Sessions

Users Roles
 Operations

Objects

 Privileges

 (UA)
User Assignment (PA)

Permission
Assignment

 (RH)
Role Hierarchy

Static SoD

Dynamic SoD

Figure 1. The ANSI RBAC Model

If a user is not allowed to be assigned conflicting
roles according to the role assignment policy, this is a
SSD policy. For example, in a bank, normally a staff
member is not allowed to hold both the teller and
auditor’s roles at the same time (Example 1). If on the
other hand, a user is allowed to hold but not to
simultaneously activate conflicting roles (in one or
more user sessions) this is a DSD policy. Standard
RBAC can only provide a solution to the DSD problem
described in Example 2 above by artificially defining
different roles for each of the five tasks.

The above two types of SoD policy ultimately
control the roles a user may activate simultaneously (in
one or more sessions) and so they are not sufficient to
satisfy SoD requirements for more complex situations
in either a process environment or a multi domain
RBAC system. In a multiple domain scenario, e.g. a
virtual organization (VO), where the user roles are
assigned by multiple authorities and used to access
resources in different domains, a user may be assigned
different roles by different domain administrators and
no single RBAC system may know the full set of a
user’s roles. So if a user is assigned two conflicting
roles (conflicting according to the SoD policy of the
resource domain) by two different administrative
domain authorities, but he presents only one role each
time to the resource he wishes to access, then his
access requests will not be against either the static or
dynamic SoD policies of the resource domain. To cater
for this type of security situation, we need a new SoD
policy which we call a multi-session SoD (MSoD)
policy, which can be associated with the multiple
temporal user access control sessions, i.e. access
control decisions in the current session may depend on
accesses that were granted earlier in time in previous
sessions. Thus the user who activates and utilises a role
in one session will be forbidden to activate the
conflicting role(s) in subsequent later sessions. For the
bank cash processing example, the MSoD policy can
state that, if a person has ever acted as a Teller (or an
Auditor) before some event such as the annual audit,
then he will no longer be authorized to activate the role

of Auditor (or a Teller) now. Thus a current access
control decision will depend upon earlier decisions in
previous user access control sessions.

2.2. Business context of MSoD

Whilst MSoD policies implicitly concern multiple
temporal user sessions, the scope of an MSoD policy is
not bound to any particular set of user sessions. Some
MSoD policies may apply for a long period of time,
e.g. for a year, or for as long as a VO persists; but other
MSoD policies may only apply for the execution of a
business process instance, such as the tax refund in
Example 2. In that example, the MSoD policy needs to
state that, for a tax refund process instance, if a clerk
has been authorized to do Task 1, then he/she will no
longer be authorized to do Task 4, regardless of
whether it is in the same user session or not. Note that
this MSoD policy only restricts the clerk’s access
requests within a business process instance; the same
clerk is authorized to do either Task 1 or Task 4 in a
different tax refund process instance within the same or
a different user session. In both cases, the history of
prior access control decisions in the same or previous
user sessions is needed in order to make the correct
current decision.

In order to determine the scope of an MSoD policy,
we introduce the concept of a business context. The
scope of an MSoD policy is specified by reference to a
business context, rather than to user sessions. A
business context (and hence an MSoD policy) may
span multiple user sessions, or a user session may span
several business contexts. In this way we remove
MSoD policies from any dependency on user sessions,
and put the dependency back where it belongs, in the
business context for which the separation of duties
applies.

A business context is therefore the set of business
processes throughout which an MSoD policy must
persist. An MSoD policy can apply across all the
instances of a business context or to each separate
instance of a business context. The former is equivalent
to SSD within a business context, the latter to DSD
within a business context instance. For example, an
MSoD policy for the business context of issuing
cheques, may say either that one group of people must
complete the amounts on cheques and a different group
sign the cheques (i.e. SSD across all business context
instances) or different people must complete and sign
the same cheque (i.e. DSD per business context
instance). We propose that all business contexts are
related together in a context hierarchy. The most
generic business context is the universal context for an
organization (or VO), and this contains all the business

processes carried out by that organization (or VO). The
most refined business context is a business process that
contains at least 2 tasks that have separation of duties
constraints (as in Example 1), or 1 task that cannot be
repeated by the same person (as in task T2 of Example
2). The mechanism we use to relate one business
context to another is by hierarchically naming them,
using a set of type-value pairs, where type is the
business context and value is an instance of the
context. The universal context forms the root of this
context hierarchy and its name is null. Consequently,
there can only be one active instance of the universal
context of an organization (or VO) at any point in time,
but subordinate contexts can have multiple active
instances at any time.

When writing MSoD policies we need to be able to
specify both SSD across all instances of a business
context and DSD per business context instance. We use
the value notation * to signify the former, and ! to
signify the latter. In Example 1 the MSoD policy
applies to the entire bank (the universal context) across
all its branches for each period of an audit, and so the
business context may be referred to in the MSoD
policy as “Branch=*, Period=!” (see Figure 2). If
instead the MSoD policy had applied to each separate
branch of the bank (meaning that an employee could be
a teller in one branch and an auditor in another branch),
then the policy business context for the bank might be
referred to as “Branch=!, Period=!”. If the policy had
applied only to the York branch, the policy business
context might be named “Branch=York, Period=!”.

Figure 2. Various Policy Business Contexts
applied to a Business Context Instance
Hierarchy

If an organization (or VO) needs to enforce MSoD
policies across two sequential business processes, e.g.
cash dispensing followed by cash reconciliation, then
there is always a super-context that joins them together

e.g. cash processing (i.e. there is some super-goal that
the organization wants to achieve) since all business
contexts for an organization (or VO) are always part of
the same universal hierarchy. Note that knowledge of
how the different business contexts relate together
within the hierarchy is part of the application schema
that stores the hierarchy of contexts. The security
policy and access control system do not need to know
this. The security policy contains sufficient knowledge
of how two or more business contexts relate to each
other via the hierarchical names of each context.

When evaluating an MSoD policy, the access
control system needs to know which particular
business context is currently active. Consequently we
propose that each access control request carries the
value of the current business context instance. This is
sufficient for the access control system to evaluate the
MSoD policy (see Section 4). But it is not the most
efficient method of evaluation since a large amount of
unnecessary history information will need to be
retained by the access control system. Consequently
we propose that an MSoD policy optionally contains
the starting task and ending task of a business context,
to indicate during which part of the business process
the context is active from an MSoD perspective, and
during which time history information needs to be
retained. If the starting and ending tasks are missing
from the policy, the access control system must record
history information for each instance of an active
business context from either the first time an instance
is mentioned or the system can infer it has started
(because a contained business context has started),
until either the system can infer that the instance has
finished (because a containing business context
completes, or no longer exists), or management
procedures delete the history information.

2.3. Multi-session mutually exclusive roles

A convenient way to specify SoD policies in RBAC

is by defining mutually exclusive roles (MER). In the
RBAC standard model [2], a MER constraint forbids a
user from holding (SSD) or activating (DSD) m from n
(n ≥ m) (n ≥ 2) different roles (r1, r2, …,rn) at the
same time, so as to enforce a SoD policy. For a set of
n SoD roles (n ≥ 2), a MER constraint can be
expressed as m-out-of-n mutually exclusive roles:
MER({r1,…,rn}, m), where each ri is a role, n and m are
integers, 1 < m ≤ n. A MER constraint defines a set of
conflicting roles in an organization, for example
MER({teller, auditor}, 2) will forbid a user from
possessing or activating 2 conflicting roles in the SoD
role set. Whilst separation of duties is the security
objective and a SoD policy defines which duties must

be separate, MER is a constraint imposed on users’
roles in an RBAC system as a means of implementing
SoD policies. MER obviously fails when it is not
known how many roles a user possesses and the user
chooses to selectively activate different roles in
different sessions, or when there are constraints on
what tasks a role can perform which depend upon the
previous tasks already undertaken by the user.

To express and implement MSoD, we propose a
new type of role constraint, which we call multi-
session mutually exclusive roles (MMER). A MMER
constraint can be denoted as an m-out-of-n constraint,
which contains n MSoD roles in which m or more are
conflicting with each other and cannot be activated by
a user in a particular business context.

For each ri (i=1, .. n) MSoD roles (n ≥ 2), a MMER
rule can be expressed as a set of n MSoD roles with a
forbidden role cardinality m:

MMER({r1,…,rn}, m, BC)
where BC identifies the particular (hierarchically
named) business context to which the m mutually
exclusive roles apply, in which each ri (i=1, .. n, n≥2)
is a role, and 1 < m ≤ n. In this case, a user is forbidden
to activate m or more roles among {r1,…,rn} in the
same business context [instance], so as to enforce an
MSoD policy. For the cash processing example, Teller
and Auditor are mutually exclusive within the bank in
any auditing period, so the policy can be denoted as
MMER({Teller, Auditor}, 2, “Branch=*, Period=!”).
Since contexts are hierarchically related, all contexts
which are equal or subordinate to the context in the
MMER rule should be applied with the MMER rule.

2.4. Multi-session mutually exclusive privileges

To achieve more flexible and finer grained access
controls and MSoD, only part of the privileges (i.e.
operations on certain targets) granted to a role can be
made mutually exclusive. E.g. in example 2, the role of
a manager can have both the privileges of
approving/disapproving a tax refund application and
summarizing tax refund decisions. But
approving/disapproving a tax refund application and
summarizing tax refund decisions for the same tax
refund application are two mutually exclusive
privileges, so the user who has the role of a manager
should not be allowed to perform both Tasks T2 and
T3 for the same tax refund process instance.
Furthermore, Task T2 needs to be performed twice,
and any manager should only perform this task once.
Mutually exclusive privileges for a process instance are
called multi-session mutually exclusive privileges
(MMEP) in this paper.

MMEP constraints are defined as follows. For n
MSoD privileges (n ≥ 2), a MMEP constraint can be
expressed as a set of n MSoD privileges with a
forbidden privilege cardinality m:

MMEP({p1,…,pn}, m, BC)
where BC is the business context [instance] containing
the m mutually exclusive privileges pi (i = 1, .. n),
where 1 < m ≤ n. In this case, a user is forbidden to
perform m or more privileges among {p1,…, pn } in the
same business context [instance]. For the tax refund
example, approving/disapproving a tax refund
application (p1) and summarizing tax refund decisions
(p2) are two mutually exclusive privileges in any
single instance. We may denote this as MMEP({p1,
p2}, 2, “…., taxRefundProcess=!”). (Note. Each
privilege will be expressed as an operation and
associated object in a complete policy). A manager is
also forbidden from exercising the same
approving/disapproving tax refund privilege (p1) more
than once, so this privilege is also mutually exclusive.
We can denote this as MMEP({p1, p1}, 2, “….,
taxRefundProcess=!”).

 3. MSoD policies in XML

Many modern day access control policies are now
being written in XML e.g. XACML [7], X-Sec [14],
PERMIS [11] and Akenti [6]. In this section we
describe a generic XML MSoD policy for RBAC
systems based on MMER and MMEP constraints. The
business context is identified by its unique hierarchical
name, and optionally by its first and last steps
(Operations on Objects i.e. tasks) that are subject to the
MSoD constraints. The first step tells the policy
decision point (PDP) when to start enforcing MSoD
and the last step when to stop enforcing it, for each
business context [instance]. If the first step is omitted,
the PDP must start to enforce MSoD from whatever is
the first operation that is invoked inside the business
context [instance] or any contained context [instance].
If the last step is omitted, the PDP may infer that a
business context is no longer active if a containing
business context [instance] is terminated (since all the
contained ones must also be terminated). Otherwise
termination of the MSoD policy enforcement must be
done by administrative means. We suggest how this
can be implemented in section 4.3. One or more
MMER and/or MMEP constraints can be listed for
each MSoD policy. The MMEP (MMER) constraints
contain sufficient information for the PDP to know if
two or more task steps (roles) are conflicting for the
particular business context instance. The MSoD
policies for the two examples – bank cash processing
and tax refund process, are as follows.

<MSoDPolicySet>

<MSoDPolicy BusinessContext=“Branch=*, Period=!”>
<!-- policy applies for each instance of period across all
branches of the bank -->
 <LastStep operation=“CommitAudit”

targetURI=“http://audit.location.com/audit”/>
 <MMER ForbiddenCardinality = “2”>

<Role type=”employee” value=”Teller”/>
<Role type=”employee” value=”Auditor”/>

</MMER>
</MSoDPolicy>

 <MSoDPolicy BusinessContext=“TaxOffice=!,
taxRefundProcess=!” />
<!-- policy applies for each instance of taxRefundProcess
in each tax office -->

 <FirstStep operation= “prepareCheck”
targetURI=“http://www.myTaxOffice.com/Check”/>

 <LastStep operation=”confirmCheck”
targetURI=“http://secret.location.com/audit”/>

 <MMEP ForbiddenCardinality= “2”>
<Operation value= “prepareCheck”

target=“http://www.myTaxOffice.com/Check”/>
<Operation value= “confirmCheck”

target=“http://secret.location.com/audit”/>
 </MMEP>
 <MMEP ForbiddenCardinality= “2”>

<Operation value= “approve/disapproveCheck”
target=“http://www.myTaxOffice.com/Check”/>

<Operation value= “approve/disapproveCheck”
target=“http://www.myTaxOffice.com/Check”/>

<Operation value=“combineResults”
target=“http://secret.location.com/results”/>
 </MMEP>

</MSoDPolicy>
</MSoDPolicySet>

In the first example, the business context is every
audit period across the entire bank. The first step of the
business context is missing, meaning that the PDP will
start to enforce MMER as soon as any operation in any
period is invoked that contains this or any subordinate
business context. This will forbid any user to invoke
both Auditor and Teller roles until CommitAudit is
invoked in the same period, regardless of which branch
the operation was invoked in. After auditing has been
completed, and the CommitAudit operation is invoked,
MMER enforcement for this business context instance
is finished, and the history information is deleted.

In the second example, the mutually exclusive
privilege constraints contain the same privilege
(approve/disapproveCheck) twice, which means that a
user is only allowed to perform this privilege at most
once in each context instance.

4. Enforcement of MSoD policies

4.1. Access control framework for MSoD
enforcement

A standard RBAC system knows all the roles

assigned to each user, therefore SoD constraints can be
imposed either at the role assignment stage when roles
are being assigned to users, or at the role activation
stage when roles are being activated for a user session,
as depicted in Figure 1. Since MSoD constraints are
associated with multiple tasks in business contexts that
span multiple user sessions, and/or user roles that are
allocated by multiple domain authorities, enforcement
of MSoD constraints is only possible at the access
control decision making stage. This requires the
current access control decision to be dependent upon
the previous access control decisions for the same
business context. The ISO Access Control Framework
[13] has this feature built into its model. To make
history dependent access control decisions, a Retained
Access control Decision Information (ADI) component
is specified. The Retained ADI is responsible for
recording and maintaining information about all
previous access control decisions, so that current
decisions made by the Access control Decision
Function (ADF) – the ISO term for the Policy Decision
Point (PDP) – can properly take into account policy
constraints such as MSoD (see Figure 3).

Decision
Request

Decision

 PEP(AEF)

Initiator ADI

Access Request ADI

Target ADI
Contextual
Information

Access Control Policy Rules

Retained
ADI

PDP (ADF)

Figure 3. Access control framework from ISO
 10181-3 with the Retained ADI

Normally the following information needs to be

passed from the Access control Enforcement Function
(AEF) – the ISO term for the Policy Enforcement Point
(PEP) – to the ADF/PDP in order to make an RBAC
decision for a user: 1) the user’s attributes/roles
(optionally including the user’s ID), 2) the requested
operation and its parameters, 3) the requested target
object (identified by a set of attributes) and 4) any
environmental or contextual information such as the
time of day.

In order to make multi-session access control
decisions, the user’s ID becomes mandatory so that the
ADF/PDP can link together the user’s sessions. We
also require 5) the business context instance so that the

ADF/PDP can determine which MSoD policy applies.
Conceptually, the business context instance could be
regarded as part of the contextual information, but we
prefer to keep it as a separate parameter because
special matching rules apply to it (see later). The PEP,
being part of the application, is easily able to identify
the business context instance of each user request1.
Based on all these access request parameters, and the
information from previous access control sessions
stored in the retained ADI, MSoD policies can now be
enforced by the PDP.

4.2 MSoD policy enforcement procedure

MSoD policies are a component of RBAC policies.

When a PDP first initialises, it must read in the RBAC
policy including the MSoD component. It also needs to
initialise the retained ADI from previous sessions. The
retained ADI is conceptually secure stable storage
holding previous access control decisions, and this can
be implemented in a variety of ways e.g. an encrypted
secure database, or a tamperproof audit trail such as
[5]. When the PDP initializes, it needs to reconstruct
the retained ADI from this physically secure stable
storage. For MSoD, each record in the retained ADI
needs to contain 1) user’s ID, 2) user’s activated
role(s), 3) operation granted, 4) target accessed, 5)
business context instance, and 6) time/date of grant
decision. The latter parameter is needed for
administrative purposes (see later).

As shown in Figure 3, when the PEP requests the
PDP to make an access control decision, the 5 sets of
parameters mentioned in 4.1 above are passed from the
PEP to the PDP. The PDP first performs its normal
checking against the RBAC policy, and if the interim
result is grant, then the PDP will further perform the
following algorithm to check each user’s access
request against the MSoD set of policies. Input to the
algorithm comprises the user’s ID, user’s activated
role(s), operation granted, target to be accessed and
business context instance name. The return value is
unaltered or set to Deny access.
1) Match the input business context instance against

the business contexts in the MSoD set of policies. If
there is no match EXIT. (Matching is based on the
context naming hierarchy. If the input context
instance is equal to or subordinate to any of the
contexts in the set of MSoD policies, then a match

1 The policy writer also needs to know what the business contexts
are in order to construct a correct policy, but this is no different from
the current requirement of needing to know the correct operations,
targets, roles etc.

with a policy business context is flagged2. If there
are multiple matches then all policies apply and are
selected.) If a matched policy pertains to a single
business context instance (!), replace policy
business context with the instance of the input
business context.

2) For each matched MSoD policy do the following.
When no more, EXIT.

3) Match the policy business context against the
business context instances stored in the retained
ADI. (Retained ADI context instance matches if it is
equal or subordinate to policy context, noting that
policy context of * matches all instance values.) If
there are one or more matches goto 5).

4) Check if the requested operation is the first step in
the matched policy business context. If it is, or if
there is no first step in the policy, add a new entry to
the retainedADIlist then goto 7).

5) For each MMER in the policy, do
i. Match activated role(s) against MMER

role(s). Number of matched roles = nr
ii. If no match goto next MMER.
iii. Ignoring nr current matched role(s) in

MMER, count number of remaining roles
in the MMER that match roles from
retained ADI for this user ID and matched
policy business context.

iv. If count LT (ForbiddenCardinality-nr) add
nr new records to retainedADIlist for
activated role(s) and goto next MMER, else
set DENY and EXIT.

6) For each MMEP in the policy, do
i. Match requested operation and target against

MMEP privilege(s).
ii. If no match goto next MMEP.
iii. Ignoring current matched operation and target

in MMEP, count number of remaining
operation and targets in the MMEP that match
an operation and target from retained ADI for
this user ID and matched policy business
context. If count LT (ForbiddenCardinality-1)
add a new record to retainedADIlist for
current operation and target and goto next
MMEP, else set DENY and EXIT.

7) If requested operation equals last step for this
MSoD policy business context (i.e. business
context is terminated), then delete every record
from retained ADI that has a matching business
context instance (i.e. equal or subordinate to
policy business context), else store
retainedADIlist in retained ADI.

2 Note that we do not need to be concerned with business contexts
that are superior to ones in the MSoD policy, since their absence
from the policy means that there are no constraints at this higher
level.

8) Goto 2).
Note that if the access request is denied, then no

change needs to be made to the retained ADI database,
as it has no effect on future RBAC with MSoD
decisions. Only granted decisions are stored in the
retained ADI.

4.3. Explicit management of the retained ADI

The retained ADI is a core component for

implementing MSoD in an RBAC PDP. Entries for a
business context instance are added to the retained ADI
after the first step of the business context is initiated,
and they are removed from the retained ADI after the
last step of the business context has finished. Providing
the policy contains the last step of a business context,
or it can be implied, then no administrative
management of the retained ADI is needed. But for
cases where a business context has no defined or
implied last step, then a control mechanism is needed
to manage the retained ADI, otherwise it will get too
large and performance will be degraded. (Note that
there are no security implications from not purging the
retained ADI, only performance implications.) We
propose that a management port on the PDP can be
used to manage the retained ADI, by treating the
retained ADI as a target resource that only trusted
administrators are allowed to access via the PDP’s
management port. We can securely maintain the
retained ADI, by defining an RBAC policy to protect
it. A new role of say “RetainedADIController” is
created with privileges to perform some operations on
the retained ADI such as “remove record” or “purge”.
We plan to implement this feature next.

5. Implementation of MSoD in PERMIS

PERMIS is a Privilege Management Infrastructure
whose core component is an RBAC decision making
PDP [11]. Here we show how MSoD policies have
been implemented in PERMIS.

5.1. Structure of PERMIS

The PERMIS infrastructure comprises three sub-
systems: a privilege allocation (PA) sub-system for
allocating roles to users, a policy management sub-
system for creating RBAC policies, and a credential
verification service/policy decision point (CVS/PDP)
sub-system for granting or denying user’s access to
resources. We are primarily concerned with the latter
in this paper. User’s roles and attributes are typically
stored in one or more LDAP directories. They are
usually transported as digitally signed credentials,

encoded as either SAML assertions [19] or X.509
attribute certificates [20]. The function of the CVS is to
validate these credentials and extract the valid roles
and attributes from them, so that the PDP can make an
access control decision. It is at this point that MSoD
policies can be imposed by the PDP. The PERMIS
CVS/PDP sub-system structure is shown in Figure 4.

Figure 4. Sub-system structure of PERMIS

CVS-PDP

5.2. Implementation

Every time an access control decision request is
passed to the PERMIS PDP, the request and the
response are logged in a secure audit trail [5]. This
creates a cryptographically protected log of events in
stable storage. Any granted decision that involves an
MSoD policy is stored as retained ADI in memory as
the 6 tuple defined in Section 4.2, as well as in the
secure audit trail. When a granted last step is recorded
in the audit trail, the retained ADI records for that
business context instance and any subordinate
instances are flushed from memory (but not from the
audit trail). At start up, the PDP reads in its policy, and
then processes the last n audit trails starting from time t
(where t and n are administrative parameters). It
extracts the retained ADI from these according to its
current set of MSoD policies. Once its retained ADI is
recovered to memory, the PDP is ready to start making
access control decisions again.

By adding the business context instance to the list
of environmental parameters that are already passed to
the PERMIS PDP, we have not needed to alter the Java
API to PERMIS in order to support multiple session
separation of duties policies. The code is expected to
be publicly released as open source via the US NMI
release [17] in 2007.

6. Related Work, Limitations and
Conclusions

SoD has been widely studied by many researchers.
Sandhu [4] presented one of the earliest papers to
explicitly identify SoD as an issue in business
transactions. His work predated that on RBAC, and his
solution used a history based transaction control model
and expressed SoD rules by assigning conflicting tasks
to differently named roles in order to avoid collusion or
conflict of interest. The expression and enforcement of
the transaction control model and the SoD rules are
application specific and authorization for SoD is based
on users’ identities, not on roles – i.e. users with
different user identities are required to execute
conflicting tasks, so it is not based on RBAC, and does
not form part of a generic RBAC model. In contrast we
have provided an RBAC mechanism for SoD, and we
have expressed the SoD rules as a generic RBAC sub
policy in XML, whilst authorization is based on users’
roles, not on their identities (although SoD
enforcement is based on their identities).

Kuhn [3] discussed mutual exclusion of roles for
SoD and analyzed the properties of different situations
of mutually exclusive roles – partial and complete
exclusion, authorization-time and run-time exclusion.
But Kuhn’s work is only on static and dynamic SoD, it
doesn’t solve the problem in a business process
environment when authorization spans multiple user
sessions. In contrast, our work has solved the multi-
session SoD problem in RBAC.

Simon and Zurko [8] proposed SoD policies in a
role-based environment in the form of condition rules.
They also discussed the concept of history based SoD,
but no XML policy was discussed nor how the rules
could be integrated with RBAC policies. Finally no
enforcement or implementation mechanism was
discussed.

Gligor et al. [9] discussed SoD policies in RBAC
and gave formalized expressions of SoD policies in
different situations – Static SoD, Dynamic SoD,
Object-based Static SoD, Object-based Dynamic SoD,
Operational Dynamic SoD, History based Dynamic
SoD, etc. Their work provides an excellent
formalization of SoD policies at the conceptual level.
But business process contexts are not explicitly
expressed in their work, and no XML policy was
presented. Finally no enforcement or implementation
mechanism of SoD in RBAC was discussed in their
work.

Ahn et al. proposed a constraint language – RCL
2000 (Role based Constraint Language 2000), to
support role-based SoD constraints in RBAC [10], and
static and dynamic SoD can be supported by their

language. But RCL 2000 is a proprietary notation, and
it needs to be further extended to support history based
SoD. Finally, no enforcement mechanism for
applications was presented in their work.

In [18], Crampton treated SoD in RBAC systems.
He analyzed different types of separation of duty as
user based separation (no role in a specified set can be
assigned to a set of users), role-based (no user should
be assigned a set of roles), permission-based, and
object-based. Compared to this taxonomy, our work
focuses on role-based and permission-based SoD.
Crampton proposes to enforce SoD via an anti-role. As
a role is associated with a set of permissions, an anti-
role is associated with a set of prohibitions that
constitute a blacklist for each user. Crampton proposes
that implementations should periodically purge the
assignments of sanitized permissions, thus deleting the
anti-role effect. In comparison we have proposed a
better solution using the business context to define the
scope of an MSoD policy, and deletion of the retained
ADI only after a business context has terminated.

In [12] Bertino et al propose a solution for SoD in
workflow applications that is not history based, but
rather computes the set of all possible role and user
assignments that dont violate the SoD policy and other
constraints, prior to workflow commencing. Then
when a user asks to activate a role, it checks if this is
possible, and after the task finishes prunes the rules to
make future evaluations faster. However the solution is
based on a central authority that knows all the users,
roles and user role assignments whilst our solution
does not have this restriction and can work in a
distributed environment. Bertino’s solution focuses
solely on SoD within workflows and requires prior
specification and knowledge of the workflow and its
tasks. In contrast our approach does not require
knowledge of all (or any of) the workflow tasks.
Furthermore some examples of SoD are not related to
workflows, as in Example 1. Our approach can cater
for this whilst Bertino’s cannot.

Our work is not without its limitations though.
Firstly, the PDP needs to know the name or ID of the
user who has activated the roles, in order to link the
different access control sessions of the user together. In
a pure RBAC system the PDP does not need to know
the name of the user, and can make access control
decisions based solely on the user’s roles. The original
PERMIS PDP can do this, but the MSoD PERMIS
PDP needs the user’s ID in order to enforce multiple
session SoD. Secondly, we have assumed that the user
will have the same ID for each session, and that each
role or attribute is linked to the same user ID. The first
assumption does not always hold true, for example, in
Shibboleth [15] a user is given a different handle ID
for each session. If this was the only ID ever delivered

to the PDP it would not be possible to support MSoD
with Shibboleth. However, it is possible to configure
Shibboleth to return the user’s ID along with their
other attributes, in which case MSoD can be supported.
The second assumption does not always hold true
either. In a multi-authority VO, each authority may use
different identifiers for identifying the same user. The
Liberty Alliance model [16] works on this basis. Thus
a user could use one identity from one authority to
activate one role e.g. clerk, and another identity from
another authority to activate a second role e.g. auditor.
Our MSoD procedure would not be able to detect this.
However the Liberty Model supports identity linking
between pairs of authorities, providing each service
provider with a one way alias for identifying the same
user in a different authority (even though it does not
know the user’s true identity in each authority). In this
way MSoD can be enforced by linking the user’s
aliases to the local identity, and basing the MSoD
policy on the local identity. Finally, we anticipate that
our current implementation will not be scalable, due to
the time taken to initialize the retained ADI from the
secure audit trails. Thus our next implementation will
use a secure relational database to store the retained
ADI instead of in-core memory. Nevertheless the
concepts and policies described in this paper will
remain the same.

7. Acknowledgments

The authors would like to thank UK JISC for funding
this work under the DyCom project.

8. References

[1] N. Li, Z. Bizri, M. V. Tripunitara. “On mutually-
exclusive roles and separation of duty”. CCS’04, October 25-
29, 2004, Washington, DC, USA. pp.42-51.
[2] American National Standards Institute, International
Committee for Information Technology Standards
(ANSI/INCITS). “Information Technology - Role Based
Access Control” ANSI INCITS 359-2004
[3] D. Richard Kuhn. “Mutual exclusion of roles as a means
of implementing separation of duty in role-based access
control systems”. Proceedings of the second ACM workshop
on Role-based access control, pp.23-30, 1997
[4] R.S.Sandhu. “Transaction control expressions for
separation of duties”. In Proceedings of the Fourth Annual
Computer Security Applications Conference (ACSAC’88),
Dec. 1988.
[5] W.Xu, D.Chadwick, S.Otenko. “A PKI-based Secure
Audit Web Service”. Proc. IASTED Int. Conf. on
Communication, Network, and Information Security (CNIS
2005). Phoenix, AZ, USA.14-16 November, 2005.
[6] Johnston, W., Mudumbai, S., Thompson, M.
“Authorization and Attribute Certificates for Widely
Distributed Access Control.” IEEE 7th Int. workshop on

Enabling Technologies: Infrastructure for Collaborative
Enterprises, Stanford, CA. June, 1998. Page(s): 340 -345
[7] OASIS “eXtensible Access Control Markup Language
(XACML) Version 2.0”. OASIS Standard, 1 Feb 2005
[8] T.T.Simon and M.E.Zurko. “Separation of duty in role-
based environments”. Proc. 10th Computer Security
Foundations Workshop, pp.183-194. IEEE Computer Society
Press, June 1997.
[9] V.D.Gligor, S.I.Gavrila, and D.Ferraiolo. “On the formal
definition of separation-of-duty policies and their
composition”. Proc. IEEE Symp. on Research in Security and
Privacy, pp.172-183, May 1998.
[10] G.-J. Ahn and R.S.Sandhu. “Role-based authorisation
constraints specification”. ACM Trans. on Information and
System Security, 3(4):207-226, Nov.2000.
[11] D. W. Chadwick, A. Otenko, E. Ball. “Role-based
access control with X.509 attribute certificates”. IEEE
Internet Computing, March-April 2003, pp.62-69.
[12] E. Bertino, E. Ferrari and V. Atluri. “The specification
and enforcement of authorization constraints in workflow
management systems”. ACM Trans. on Information and
System Security, Vol.2, No.1, February 1999, pp. 65-104.
[13] ITU-T Recommendation X.812 (1996) | ISO/IEC
10181-3:1996. “Information technology – Open systems
interconnection – Security frameworks for open systems:
Access control framework”.
[14] Bertino, E., Castano, S., Farrari, E. “On specifying
security policies for web documents with an XML-based
language”. Proc. 6th ACM Symp. Access Control Models
and Technologies, ACM Press, 2001, pp. 41-52.
[15] Scott Cantor. “Shibboleth Architecture, Protocols and
Profiles”, Working Draft 10 September 2005.
[16] Thomas Wason. “Liberty ID-FF Architecture
Overview.” Version: 1.2-errata-v1.0.
[17] http://www.nmi-edit.org/releases/index.cfm#PERMIS
[18] J. Crampton, “Specifying and Enforcing Constraints in
Role-Based Access Control”, Proc. of the 8th ACM symp. on
Access control models and Technologies (SACMAT 2003),
pages 43–50, Como, Italy, June 2003.
[19] OASIS. “Assertions and Protocol for the OASIS
Security Assertion Markup Language (SAML) V2.0”, OASIS
Standard, 15 March 2005
[20] ISO 9594-8/ITU-T Rec. X.509 (2001) The Directory:
Public-key and attribute certificate frameworks.

Appendix A: The MSoD policy schema

<?xml version="1.0" >
<xs:schema
xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">
 <xs:element name="MSoDPolicySet">
 <xs:complexType>
 <xs:sequence>
 <xs:element maxOccurs="unbounded"
ref="MSoDPolicy"/>
 </xs:sequence>
 </xs:complexType>

 </xs:element>
 <xs:element name="MSoDPolicy">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="FirstStep" minOccurs="0" />
 <xs:element ref="LastStep" minOccurs="0" />
 <xs:choice>
 <xs:element maxOccurs="unbounded"
ref="MMER"/>
 <xs:element maxOccurs="unbounded"
ref="MMEP"/>
 </xs:choice>
 </xs:sequence>
 <xs:attribute name="BusinessContext"
use="required" type="xs:NCName"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="FirstStep">
 <xs:complexType>
 <xs:attribute name="operation" use="required"
type="xs:NCName"/>
 <xs:attribute name="targetURI" use="required"
type="xs:anyURI"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="LastStep">
 <xs:complexType>
 <xs:attribute name="operation" use="required"
type="xs:NCName"/>
 <xs:attribute name="targetURI" use="required"
type="xs:anyURI"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="MMER">
 <xs:complexType>

 <xs:sequence>
 <xs:element maxOccurs="unbounded"
minOccurs= “2” ref="Role"/>
 </xs:sequence>
 <xs:attribute name="ForbiddenCardinality"
use="required" type="xs:integer"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="Role">
 <xs:complexType>
 <xs:attribute name="type" use="required"
type="xs:NCName"/>
 <xs:attribute name="value" use="required"
type="xs:NCName"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="MMEP">
 <xs:complexType>
 <xs:sequence>
 <xs:element maxOccurs="unbounded"
ref="Privilege"/>
 </xs:sequence>
 <xs:attribute name="ForbiddenCardinality"
use="required" type="xs:integer"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="Privilege">
 <xs:complexType>
 <xs:attribute name="target" use="required"
type="xs:anyURI"/>
 <xs:attribute name="operation" use="required"
type="xs:NCName"/>
 </xs:complexType>
 </xs:element>
</xs:schema>

